Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
      6 #define V8_ARM_MACRO_ASSEMBLER_ARM_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/frames.h"
     10 #include "src/globals.h"
     11 
     12 namespace v8 {
     13 namespace internal {
     14 
     15 // ----------------------------------------------------------------------------
     16 // Static helper functions
     17 
     18 // Generate a MemOperand for loading a field from an object.
     19 inline MemOperand FieldMemOperand(Register object, int offset) {
     20   return MemOperand(object, offset - kHeapObjectTag);
     21 }
     22 
     23 
     24 // Give alias names to registers
     25 const Register cp = { kRegister_r7_Code };  // JavaScript context pointer.
     26 const Register pp = { kRegister_r8_Code };  // Constant pool pointer.
     27 const Register kRootRegister = { kRegister_r10_Code };  // Roots array pointer.
     28 
     29 // Flags used for AllocateHeapNumber
     30 enum TaggingMode {
     31   // Tag the result.
     32   TAG_RESULT,
     33   // Don't tag
     34   DONT_TAG_RESULT
     35 };
     36 
     37 
     38 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     39 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     40 enum PointersToHereCheck {
     41   kPointersToHereMaybeInteresting,
     42   kPointersToHereAreAlwaysInteresting
     43 };
     44 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
     45 
     46 
     47 Register GetRegisterThatIsNotOneOf(Register reg1,
     48                                    Register reg2 = no_reg,
     49                                    Register reg3 = no_reg,
     50                                    Register reg4 = no_reg,
     51                                    Register reg5 = no_reg,
     52                                    Register reg6 = no_reg);
     53 
     54 
     55 #ifdef DEBUG
     56 bool AreAliased(Register reg1,
     57                 Register reg2,
     58                 Register reg3 = no_reg,
     59                 Register reg4 = no_reg,
     60                 Register reg5 = no_reg,
     61                 Register reg6 = no_reg);
     62 #endif
     63 
     64 
     65 enum TargetAddressStorageMode {
     66   CAN_INLINE_TARGET_ADDRESS,
     67   NEVER_INLINE_TARGET_ADDRESS
     68 };
     69 
     70 // MacroAssembler implements a collection of frequently used macros.
     71 class MacroAssembler: public Assembler {
     72  public:
     73   // The isolate parameter can be NULL if the macro assembler should
     74   // not use isolate-dependent functionality. In this case, it's the
     75   // responsibility of the caller to never invoke such function on the
     76   // macro assembler.
     77   MacroAssembler(Isolate* isolate, void* buffer, int size);
     78 
     79   // Jump, Call, and Ret pseudo instructions implementing inter-working.
     80   void Jump(Register target, Condition cond = al);
     81   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
     82   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
     83   static int CallSize(Register target, Condition cond = al);
     84   void Call(Register target, Condition cond = al);
     85   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
     86   int CallStubSize(CodeStub* stub,
     87                    TypeFeedbackId ast_id = TypeFeedbackId::None(),
     88                    Condition cond = al);
     89   static int CallSizeNotPredictableCodeSize(Isolate* isolate,
     90                                             Address target,
     91                                             RelocInfo::Mode rmode,
     92                                             Condition cond = al);
     93   void Call(Address target, RelocInfo::Mode rmode,
     94             Condition cond = al,
     95             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
     96   int CallSize(Handle<Code> code,
     97                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
     98                TypeFeedbackId ast_id = TypeFeedbackId::None(),
     99                Condition cond = al);
    100   void Call(Handle<Code> code,
    101             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    102             TypeFeedbackId ast_id = TypeFeedbackId::None(),
    103             Condition cond = al,
    104             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
    105   void Ret(Condition cond = al);
    106 
    107   // Emit code to discard a non-negative number of pointer-sized elements
    108   // from the stack, clobbering only the sp register.
    109   void Drop(int count, Condition cond = al);
    110 
    111   void Ret(int drop, Condition cond = al);
    112 
    113   // Swap two registers.  If the scratch register is omitted then a slightly
    114   // less efficient form using xor instead of mov is emitted.
    115   void Swap(Register reg1,
    116             Register reg2,
    117             Register scratch = no_reg,
    118             Condition cond = al);
    119 
    120   void Mls(Register dst, Register src1, Register src2, Register srcA,
    121            Condition cond = al);
    122   void And(Register dst, Register src1, const Operand& src2,
    123            Condition cond = al);
    124   void Ubfx(Register dst, Register src, int lsb, int width,
    125             Condition cond = al);
    126   void Sbfx(Register dst, Register src, int lsb, int width,
    127             Condition cond = al);
    128   // The scratch register is not used for ARMv7.
    129   // scratch can be the same register as src (in which case it is trashed), but
    130   // not the same as dst.
    131   void Bfi(Register dst,
    132            Register src,
    133            Register scratch,
    134            int lsb,
    135            int width,
    136            Condition cond = al);
    137   void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
    138   void Usat(Register dst, int satpos, const Operand& src,
    139             Condition cond = al);
    140 
    141   void Call(Label* target);
    142   void Push(Register src) { push(src); }
    143   void Pop(Register dst) { pop(dst); }
    144 
    145   // Register move. May do nothing if the registers are identical.
    146   void Move(Register dst, Handle<Object> value);
    147   void Move(Register dst, Register src, Condition cond = al);
    148   void Move(DwVfpRegister dst, DwVfpRegister src);
    149 
    150   void Load(Register dst, const MemOperand& src, Representation r);
    151   void Store(Register src, const MemOperand& dst, Representation r);
    152 
    153   // Load an object from the root table.
    154   void LoadRoot(Register destination,
    155                 Heap::RootListIndex index,
    156                 Condition cond = al);
    157   // Store an object to the root table.
    158   void StoreRoot(Register source,
    159                  Heap::RootListIndex index,
    160                  Condition cond = al);
    161 
    162   // ---------------------------------------------------------------------------
    163   // GC Support
    164 
    165   void IncrementalMarkingRecordWriteHelper(Register object,
    166                                            Register value,
    167                                            Register address);
    168 
    169   enum RememberedSetFinalAction {
    170     kReturnAtEnd,
    171     kFallThroughAtEnd
    172   };
    173 
    174   // Record in the remembered set the fact that we have a pointer to new space
    175   // at the address pointed to by the addr register.  Only works if addr is not
    176   // in new space.
    177   void RememberedSetHelper(Register object,  // Used for debug code.
    178                            Register addr,
    179                            Register scratch,
    180                            SaveFPRegsMode save_fp,
    181                            RememberedSetFinalAction and_then);
    182 
    183   void CheckPageFlag(Register object,
    184                      Register scratch,
    185                      int mask,
    186                      Condition cc,
    187                      Label* condition_met);
    188 
    189   void CheckMapDeprecated(Handle<Map> map,
    190                           Register scratch,
    191                           Label* if_deprecated);
    192 
    193   // Check if object is in new space.  Jumps if the object is not in new space.
    194   // The register scratch can be object itself, but scratch will be clobbered.
    195   void JumpIfNotInNewSpace(Register object,
    196                            Register scratch,
    197                            Label* branch) {
    198     InNewSpace(object, scratch, ne, branch);
    199   }
    200 
    201   // Check if object is in new space.  Jumps if the object is in new space.
    202   // The register scratch can be object itself, but it will be clobbered.
    203   void JumpIfInNewSpace(Register object,
    204                         Register scratch,
    205                         Label* branch) {
    206     InNewSpace(object, scratch, eq, branch);
    207   }
    208 
    209   // Check if an object has a given incremental marking color.
    210   void HasColor(Register object,
    211                 Register scratch0,
    212                 Register scratch1,
    213                 Label* has_color,
    214                 int first_bit,
    215                 int second_bit);
    216 
    217   void JumpIfBlack(Register object,
    218                    Register scratch0,
    219                    Register scratch1,
    220                    Label* on_black);
    221 
    222   // Checks the color of an object.  If the object is already grey or black
    223   // then we just fall through, since it is already live.  If it is white and
    224   // we can determine that it doesn't need to be scanned, then we just mark it
    225   // black and fall through.  For the rest we jump to the label so the
    226   // incremental marker can fix its assumptions.
    227   void EnsureNotWhite(Register object,
    228                       Register scratch1,
    229                       Register scratch2,
    230                       Register scratch3,
    231                       Label* object_is_white_and_not_data);
    232 
    233   // Detects conservatively whether an object is data-only, i.e. it does need to
    234   // be scanned by the garbage collector.
    235   void JumpIfDataObject(Register value,
    236                         Register scratch,
    237                         Label* not_data_object);
    238 
    239   // Notify the garbage collector that we wrote a pointer into an object.
    240   // |object| is the object being stored into, |value| is the object being
    241   // stored.  value and scratch registers are clobbered by the operation.
    242   // The offset is the offset from the start of the object, not the offset from
    243   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
    244   void RecordWriteField(
    245       Register object,
    246       int offset,
    247       Register value,
    248       Register scratch,
    249       LinkRegisterStatus lr_status,
    250       SaveFPRegsMode save_fp,
    251       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    252       SmiCheck smi_check = INLINE_SMI_CHECK,
    253       PointersToHereCheck pointers_to_here_check_for_value =
    254           kPointersToHereMaybeInteresting);
    255 
    256   // As above, but the offset has the tag presubtracted.  For use with
    257   // MemOperand(reg, off).
    258   inline void RecordWriteContextSlot(
    259       Register context,
    260       int offset,
    261       Register value,
    262       Register scratch,
    263       LinkRegisterStatus lr_status,
    264       SaveFPRegsMode save_fp,
    265       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    266       SmiCheck smi_check = INLINE_SMI_CHECK,
    267       PointersToHereCheck pointers_to_here_check_for_value =
    268           kPointersToHereMaybeInteresting) {
    269     RecordWriteField(context,
    270                      offset + kHeapObjectTag,
    271                      value,
    272                      scratch,
    273                      lr_status,
    274                      save_fp,
    275                      remembered_set_action,
    276                      smi_check,
    277                      pointers_to_here_check_for_value);
    278   }
    279 
    280   void RecordWriteForMap(
    281       Register object,
    282       Register map,
    283       Register dst,
    284       LinkRegisterStatus lr_status,
    285       SaveFPRegsMode save_fp);
    286 
    287   // For a given |object| notify the garbage collector that the slot |address|
    288   // has been written.  |value| is the object being stored. The value and
    289   // address registers are clobbered by the operation.
    290   void RecordWrite(
    291       Register object,
    292       Register address,
    293       Register value,
    294       LinkRegisterStatus lr_status,
    295       SaveFPRegsMode save_fp,
    296       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    297       SmiCheck smi_check = INLINE_SMI_CHECK,
    298       PointersToHereCheck pointers_to_here_check_for_value =
    299           kPointersToHereMaybeInteresting);
    300 
    301   // Push a handle.
    302   void Push(Handle<Object> handle);
    303   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
    304 
    305   // Push two registers.  Pushes leftmost register first (to highest address).
    306   void Push(Register src1, Register src2, Condition cond = al) {
    307     ASSERT(!src1.is(src2));
    308     if (src1.code() > src2.code()) {
    309       stm(db_w, sp, src1.bit() | src2.bit(), cond);
    310     } else {
    311       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    312       str(src2, MemOperand(sp, 4, NegPreIndex), cond);
    313     }
    314   }
    315 
    316   // Push three registers.  Pushes leftmost register first (to highest address).
    317   void Push(Register src1, Register src2, Register src3, Condition cond = al) {
    318     ASSERT(!src1.is(src2));
    319     ASSERT(!src2.is(src3));
    320     ASSERT(!src1.is(src3));
    321     if (src1.code() > src2.code()) {
    322       if (src2.code() > src3.code()) {
    323         stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    324       } else {
    325         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    326         str(src3, MemOperand(sp, 4, NegPreIndex), cond);
    327       }
    328     } else {
    329       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    330       Push(src2, src3, cond);
    331     }
    332   }
    333 
    334   // Push four registers.  Pushes leftmost register first (to highest address).
    335   void Push(Register src1,
    336             Register src2,
    337             Register src3,
    338             Register src4,
    339             Condition cond = al) {
    340     ASSERT(!src1.is(src2));
    341     ASSERT(!src2.is(src3));
    342     ASSERT(!src1.is(src3));
    343     ASSERT(!src1.is(src4));
    344     ASSERT(!src2.is(src4));
    345     ASSERT(!src3.is(src4));
    346     if (src1.code() > src2.code()) {
    347       if (src2.code() > src3.code()) {
    348         if (src3.code() > src4.code()) {
    349           stm(db_w,
    350               sp,
    351               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    352               cond);
    353         } else {
    354           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    355           str(src4, MemOperand(sp, 4, NegPreIndex), cond);
    356         }
    357       } else {
    358         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    359         Push(src3, src4, cond);
    360       }
    361     } else {
    362       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    363       Push(src2, src3, src4, cond);
    364     }
    365   }
    366 
    367   // Pop two registers. Pops rightmost register first (from lower address).
    368   void Pop(Register src1, Register src2, Condition cond = al) {
    369     ASSERT(!src1.is(src2));
    370     if (src1.code() > src2.code()) {
    371       ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    372     } else {
    373       ldr(src2, MemOperand(sp, 4, PostIndex), cond);
    374       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    375     }
    376   }
    377 
    378   // Pop three registers.  Pops rightmost register first (from lower address).
    379   void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
    380     ASSERT(!src1.is(src2));
    381     ASSERT(!src2.is(src3));
    382     ASSERT(!src1.is(src3));
    383     if (src1.code() > src2.code()) {
    384       if (src2.code() > src3.code()) {
    385         ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    386       } else {
    387         ldr(src3, MemOperand(sp, 4, PostIndex), cond);
    388         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    389       }
    390     } else {
    391       Pop(src2, src3, cond);
    392       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    393     }
    394   }
    395 
    396   // Pop four registers.  Pops rightmost register first (from lower address).
    397   void Pop(Register src1,
    398            Register src2,
    399            Register src3,
    400            Register src4,
    401            Condition cond = al) {
    402     ASSERT(!src1.is(src2));
    403     ASSERT(!src2.is(src3));
    404     ASSERT(!src1.is(src3));
    405     ASSERT(!src1.is(src4));
    406     ASSERT(!src2.is(src4));
    407     ASSERT(!src3.is(src4));
    408     if (src1.code() > src2.code()) {
    409       if (src2.code() > src3.code()) {
    410         if (src3.code() > src4.code()) {
    411           ldm(ia_w,
    412               sp,
    413               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    414               cond);
    415         } else {
    416           ldr(src4, MemOperand(sp, 4, PostIndex), cond);
    417           ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    418         }
    419       } else {
    420         Pop(src3, src4, cond);
    421         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    422       }
    423     } else {
    424       Pop(src2, src3, src4, cond);
    425       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    426     }
    427   }
    428 
    429   // Push a fixed frame, consisting of lr, fp, constant pool (if
    430   // FLAG_enable_ool_constant_pool), context and JS function / marker id if
    431   // marker_reg is a valid register.
    432   void PushFixedFrame(Register marker_reg = no_reg);
    433   void PopFixedFrame(Register marker_reg = no_reg);
    434 
    435   // Push and pop the registers that can hold pointers, as defined by the
    436   // RegList constant kSafepointSavedRegisters.
    437   void PushSafepointRegisters();
    438   void PopSafepointRegisters();
    439   void PushSafepointRegistersAndDoubles();
    440   void PopSafepointRegistersAndDoubles();
    441   // Store value in register src in the safepoint stack slot for
    442   // register dst.
    443   void StoreToSafepointRegisterSlot(Register src, Register dst);
    444   void StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst);
    445   // Load the value of the src register from its safepoint stack slot
    446   // into register dst.
    447   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    448 
    449   // Load two consecutive registers with two consecutive memory locations.
    450   void Ldrd(Register dst1,
    451             Register dst2,
    452             const MemOperand& src,
    453             Condition cond = al);
    454 
    455   // Store two consecutive registers to two consecutive memory locations.
    456   void Strd(Register src1,
    457             Register src2,
    458             const MemOperand& dst,
    459             Condition cond = al);
    460 
    461   // Ensure that FPSCR contains values needed by JavaScript.
    462   // We need the NaNModeControlBit to be sure that operations like
    463   // vadd and vsub generate the Canonical NaN (if a NaN must be generated).
    464   // In VFP3 it will be always the Canonical NaN.
    465   // In VFP2 it will be either the Canonical NaN or the negative version
    466   // of the Canonical NaN. It doesn't matter if we have two values. The aim
    467   // is to be sure to never generate the hole NaN.
    468   void VFPEnsureFPSCRState(Register scratch);
    469 
    470   // If the value is a NaN, canonicalize the value else, do nothing.
    471   void VFPCanonicalizeNaN(const DwVfpRegister dst,
    472                           const DwVfpRegister src,
    473                           const Condition cond = al);
    474   void VFPCanonicalizeNaN(const DwVfpRegister value,
    475                           const Condition cond = al) {
    476     VFPCanonicalizeNaN(value, value, cond);
    477   }
    478 
    479   // Compare double values and move the result to the normal condition flags.
    480   void VFPCompareAndSetFlags(const DwVfpRegister src1,
    481                              const DwVfpRegister src2,
    482                              const Condition cond = al);
    483   void VFPCompareAndSetFlags(const DwVfpRegister src1,
    484                              const double src2,
    485                              const Condition cond = al);
    486 
    487   // Compare double values and then load the fpscr flags to a register.
    488   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
    489                               const DwVfpRegister src2,
    490                               const Register fpscr_flags,
    491                               const Condition cond = al);
    492   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
    493                               const double src2,
    494                               const Register fpscr_flags,
    495                               const Condition cond = al);
    496 
    497   void Vmov(const DwVfpRegister dst,
    498             const double imm,
    499             const Register scratch = no_reg);
    500 
    501   void VmovHigh(Register dst, DwVfpRegister src);
    502   void VmovHigh(DwVfpRegister dst, Register src);
    503   void VmovLow(Register dst, DwVfpRegister src);
    504   void VmovLow(DwVfpRegister dst, Register src);
    505 
    506   // Loads the number from object into dst register.
    507   // If |object| is neither smi nor heap number, |not_number| is jumped to
    508   // with |object| still intact.
    509   void LoadNumber(Register object,
    510                   LowDwVfpRegister dst,
    511                   Register heap_number_map,
    512                   Register scratch,
    513                   Label* not_number);
    514 
    515   // Loads the number from object into double_dst in the double format.
    516   // Control will jump to not_int32 if the value cannot be exactly represented
    517   // by a 32-bit integer.
    518   // Floating point value in the 32-bit integer range that are not exact integer
    519   // won't be loaded.
    520   void LoadNumberAsInt32Double(Register object,
    521                                DwVfpRegister double_dst,
    522                                Register heap_number_map,
    523                                Register scratch,
    524                                LowDwVfpRegister double_scratch,
    525                                Label* not_int32);
    526 
    527   // Loads the number from object into dst as a 32-bit integer.
    528   // Control will jump to not_int32 if the object cannot be exactly represented
    529   // by a 32-bit integer.
    530   // Floating point value in the 32-bit integer range that are not exact integer
    531   // won't be converted.
    532   void LoadNumberAsInt32(Register object,
    533                          Register dst,
    534                          Register heap_number_map,
    535                          Register scratch,
    536                          DwVfpRegister double_scratch0,
    537                          LowDwVfpRegister double_scratch1,
    538                          Label* not_int32);
    539 
    540   // Generates function and stub prologue code.
    541   void StubPrologue();
    542   void Prologue(bool code_pre_aging);
    543 
    544   // Enter exit frame.
    545   // stack_space - extra stack space, used for alignment before call to C.
    546   void EnterExitFrame(bool save_doubles, int stack_space = 0);
    547 
    548   // Leave the current exit frame. Expects the return value in r0.
    549   // Expect the number of values, pushed prior to the exit frame, to
    550   // remove in a register (or no_reg, if there is nothing to remove).
    551   void LeaveExitFrame(bool save_doubles,
    552                       Register argument_count,
    553                       bool restore_context);
    554 
    555   // Get the actual activation frame alignment for target environment.
    556   static int ActivationFrameAlignment();
    557 
    558   void LoadContext(Register dst, int context_chain_length);
    559 
    560   // Conditionally load the cached Array transitioned map of type
    561   // transitioned_kind from the native context if the map in register
    562   // map_in_out is the cached Array map in the native context of
    563   // expected_kind.
    564   void LoadTransitionedArrayMapConditional(
    565       ElementsKind expected_kind,
    566       ElementsKind transitioned_kind,
    567       Register map_in_out,
    568       Register scratch,
    569       Label* no_map_match);
    570 
    571   void LoadGlobalFunction(int index, Register function);
    572 
    573   // Load the initial map from the global function. The registers
    574   // function and map can be the same, function is then overwritten.
    575   void LoadGlobalFunctionInitialMap(Register function,
    576                                     Register map,
    577                                     Register scratch);
    578 
    579   void InitializeRootRegister() {
    580     ExternalReference roots_array_start =
    581         ExternalReference::roots_array_start(isolate());
    582     mov(kRootRegister, Operand(roots_array_start));
    583   }
    584 
    585   // ---------------------------------------------------------------------------
    586   // JavaScript invokes
    587 
    588   // Invoke the JavaScript function code by either calling or jumping.
    589   void InvokeCode(Register code,
    590                   const ParameterCount& expected,
    591                   const ParameterCount& actual,
    592                   InvokeFlag flag,
    593                   const CallWrapper& call_wrapper);
    594 
    595   // Invoke the JavaScript function in the given register. Changes the
    596   // current context to the context in the function before invoking.
    597   void InvokeFunction(Register function,
    598                       const ParameterCount& actual,
    599                       InvokeFlag flag,
    600                       const CallWrapper& call_wrapper);
    601 
    602   void InvokeFunction(Register function,
    603                       const ParameterCount& expected,
    604                       const ParameterCount& actual,
    605                       InvokeFlag flag,
    606                       const CallWrapper& call_wrapper);
    607 
    608   void InvokeFunction(Handle<JSFunction> function,
    609                       const ParameterCount& expected,
    610                       const ParameterCount& actual,
    611                       InvokeFlag flag,
    612                       const CallWrapper& call_wrapper);
    613 
    614   void IsObjectJSObjectType(Register heap_object,
    615                             Register map,
    616                             Register scratch,
    617                             Label* fail);
    618 
    619   void IsInstanceJSObjectType(Register map,
    620                               Register scratch,
    621                               Label* fail);
    622 
    623   void IsObjectJSStringType(Register object,
    624                             Register scratch,
    625                             Label* fail);
    626 
    627   void IsObjectNameType(Register object,
    628                         Register scratch,
    629                         Label* fail);
    630 
    631   // ---------------------------------------------------------------------------
    632   // Debugger Support
    633 
    634   void DebugBreak();
    635 
    636   // ---------------------------------------------------------------------------
    637   // Exception handling
    638 
    639   // Push a new try handler and link into try handler chain.
    640   void PushTryHandler(StackHandler::Kind kind, int handler_index);
    641 
    642   // Unlink the stack handler on top of the stack from the try handler chain.
    643   // Must preserve the result register.
    644   void PopTryHandler();
    645 
    646   // Passes thrown value to the handler of top of the try handler chain.
    647   void Throw(Register value);
    648 
    649   // Propagates an uncatchable exception to the top of the current JS stack's
    650   // handler chain.
    651   void ThrowUncatchable(Register value);
    652 
    653   // ---------------------------------------------------------------------------
    654   // Inline caching support
    655 
    656   // Generate code for checking access rights - used for security checks
    657   // on access to global objects across environments. The holder register
    658   // is left untouched, whereas both scratch registers are clobbered.
    659   void CheckAccessGlobalProxy(Register holder_reg,
    660                               Register scratch,
    661                               Label* miss);
    662 
    663   void GetNumberHash(Register t0, Register scratch);
    664 
    665   void LoadFromNumberDictionary(Label* miss,
    666                                 Register elements,
    667                                 Register key,
    668                                 Register result,
    669                                 Register t0,
    670                                 Register t1,
    671                                 Register t2);
    672 
    673 
    674   inline void MarkCode(NopMarkerTypes type) {
    675     nop(type);
    676   }
    677 
    678   // Check if the given instruction is a 'type' marker.
    679   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
    680   // These instructions are generated to mark special location in the code,
    681   // like some special IC code.
    682   static inline bool IsMarkedCode(Instr instr, int type) {
    683     ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
    684     return IsNop(instr, type);
    685   }
    686 
    687 
    688   static inline int GetCodeMarker(Instr instr) {
    689     int dst_reg_offset = 12;
    690     int dst_mask = 0xf << dst_reg_offset;
    691     int src_mask = 0xf;
    692     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
    693     int src_reg = instr & src_mask;
    694     uint32_t non_register_mask = ~(dst_mask | src_mask);
    695     uint32_t mov_mask = al | 13 << 21;
    696 
    697     // Return <n> if we have a mov rn rn, else return -1.
    698     int type = ((instr & non_register_mask) == mov_mask) &&
    699                (dst_reg == src_reg) &&
    700                (FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
    701                    ? src_reg
    702                    : -1;
    703     ASSERT((type == -1) ||
    704            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
    705     return type;
    706   }
    707 
    708 
    709   // ---------------------------------------------------------------------------
    710   // Allocation support
    711 
    712   // Allocate an object in new space or old pointer space. The object_size is
    713   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
    714   // is passed. If the space is exhausted control continues at the gc_required
    715   // label. The allocated object is returned in result. If the flag
    716   // tag_allocated_object is true the result is tagged as as a heap object.
    717   // All registers are clobbered also when control continues at the gc_required
    718   // label.
    719   void Allocate(int object_size,
    720                 Register result,
    721                 Register scratch1,
    722                 Register scratch2,
    723                 Label* gc_required,
    724                 AllocationFlags flags);
    725 
    726   void Allocate(Register object_size,
    727                 Register result,
    728                 Register scratch1,
    729                 Register scratch2,
    730                 Label* gc_required,
    731                 AllocationFlags flags);
    732 
    733   // Undo allocation in new space. The object passed and objects allocated after
    734   // it will no longer be allocated. The caller must make sure that no pointers
    735   // are left to the object(s) no longer allocated as they would be invalid when
    736   // allocation is undone.
    737   void UndoAllocationInNewSpace(Register object, Register scratch);
    738 
    739 
    740   void AllocateTwoByteString(Register result,
    741                              Register length,
    742                              Register scratch1,
    743                              Register scratch2,
    744                              Register scratch3,
    745                              Label* gc_required);
    746   void AllocateAsciiString(Register result,
    747                            Register length,
    748                            Register scratch1,
    749                            Register scratch2,
    750                            Register scratch3,
    751                            Label* gc_required);
    752   void AllocateTwoByteConsString(Register result,
    753                                  Register length,
    754                                  Register scratch1,
    755                                  Register scratch2,
    756                                  Label* gc_required);
    757   void AllocateAsciiConsString(Register result,
    758                                Register length,
    759                                Register scratch1,
    760                                Register scratch2,
    761                                Label* gc_required);
    762   void AllocateTwoByteSlicedString(Register result,
    763                                    Register length,
    764                                    Register scratch1,
    765                                    Register scratch2,
    766                                    Label* gc_required);
    767   void AllocateAsciiSlicedString(Register result,
    768                                  Register length,
    769                                  Register scratch1,
    770                                  Register scratch2,
    771                                  Label* gc_required);
    772 
    773   // Allocates a heap number or jumps to the gc_required label if the young
    774   // space is full and a scavenge is needed. All registers are clobbered also
    775   // when control continues at the gc_required label.
    776   void AllocateHeapNumber(Register result,
    777                           Register scratch1,
    778                           Register scratch2,
    779                           Register heap_number_map,
    780                           Label* gc_required,
    781                           TaggingMode tagging_mode = TAG_RESULT);
    782   void AllocateHeapNumberWithValue(Register result,
    783                                    DwVfpRegister value,
    784                                    Register scratch1,
    785                                    Register scratch2,
    786                                    Register heap_number_map,
    787                                    Label* gc_required);
    788 
    789   // Copies a fixed number of fields of heap objects from src to dst.
    790   void CopyFields(Register dst,
    791                   Register src,
    792                   LowDwVfpRegister double_scratch,
    793                   int field_count);
    794 
    795   // Copies a number of bytes from src to dst. All registers are clobbered. On
    796   // exit src and dst will point to the place just after where the last byte was
    797   // read or written and length will be zero.
    798   void CopyBytes(Register src,
    799                  Register dst,
    800                  Register length,
    801                  Register scratch);
    802 
    803   // Initialize fields with filler values.  Fields starting at |start_offset|
    804   // not including end_offset are overwritten with the value in |filler|.  At
    805   // the end the loop, |start_offset| takes the value of |end_offset|.
    806   void InitializeFieldsWithFiller(Register start_offset,
    807                                   Register end_offset,
    808                                   Register filler);
    809 
    810   // ---------------------------------------------------------------------------
    811   // Support functions.
    812 
    813   // Try to get function prototype of a function and puts the value in
    814   // the result register. Checks that the function really is a
    815   // function and jumps to the miss label if the fast checks fail. The
    816   // function register will be untouched; the other registers may be
    817   // clobbered.
    818   void TryGetFunctionPrototype(Register function,
    819                                Register result,
    820                                Register scratch,
    821                                Label* miss,
    822                                bool miss_on_bound_function = false);
    823 
    824   // Compare object type for heap object.  heap_object contains a non-Smi
    825   // whose object type should be compared with the given type.  This both
    826   // sets the flags and leaves the object type in the type_reg register.
    827   // It leaves the map in the map register (unless the type_reg and map register
    828   // are the same register).  It leaves the heap object in the heap_object
    829   // register unless the heap_object register is the same register as one of the
    830   // other registers.
    831   // Type_reg can be no_reg. In that case ip is used.
    832   void CompareObjectType(Register heap_object,
    833                          Register map,
    834                          Register type_reg,
    835                          InstanceType type);
    836 
    837   // Compare object type for heap object. Branch to false_label if type
    838   // is lower than min_type or greater than max_type.
    839   // Load map into the register map.
    840   void CheckObjectTypeRange(Register heap_object,
    841                             Register map,
    842                             InstanceType min_type,
    843                             InstanceType max_type,
    844                             Label* false_label);
    845 
    846   // Compare instance type in a map.  map contains a valid map object whose
    847   // object type should be compared with the given type.  This both
    848   // sets the flags and leaves the object type in the type_reg register.
    849   void CompareInstanceType(Register map,
    850                            Register type_reg,
    851                            InstanceType type);
    852 
    853 
    854   // Check if a map for a JSObject indicates that the object has fast elements.
    855   // Jump to the specified label if it does not.
    856   void CheckFastElements(Register map,
    857                          Register scratch,
    858                          Label* fail);
    859 
    860   // Check if a map for a JSObject indicates that the object can have both smi
    861   // and HeapObject elements.  Jump to the specified label if it does not.
    862   void CheckFastObjectElements(Register map,
    863                                Register scratch,
    864                                Label* fail);
    865 
    866   // Check if a map for a JSObject indicates that the object has fast smi only
    867   // elements.  Jump to the specified label if it does not.
    868   void CheckFastSmiElements(Register map,
    869                             Register scratch,
    870                             Label* fail);
    871 
    872   // Check to see if maybe_number can be stored as a double in
    873   // FastDoubleElements. If it can, store it at the index specified by key in
    874   // the FastDoubleElements array elements. Otherwise jump to fail.
    875   void StoreNumberToDoubleElements(Register value_reg,
    876                                    Register key_reg,
    877                                    Register elements_reg,
    878                                    Register scratch1,
    879                                    LowDwVfpRegister double_scratch,
    880                                    Label* fail,
    881                                    int elements_offset = 0);
    882 
    883   // Compare an object's map with the specified map and its transitioned
    884   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
    885   // set with result of map compare. If multiple map compares are required, the
    886   // compare sequences branches to early_success.
    887   void CompareMap(Register obj,
    888                   Register scratch,
    889                   Handle<Map> map,
    890                   Label* early_success);
    891 
    892   // As above, but the map of the object is already loaded into the register
    893   // which is preserved by the code generated.
    894   void CompareMap(Register obj_map,
    895                   Handle<Map> map,
    896                   Label* early_success);
    897 
    898   // Check if the map of an object is equal to a specified map and branch to
    899   // label if not. Skip the smi check if not required (object is known to be a
    900   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
    901   // against maps that are ElementsKind transition maps of the specified map.
    902   void CheckMap(Register obj,
    903                 Register scratch,
    904                 Handle<Map> map,
    905                 Label* fail,
    906                 SmiCheckType smi_check_type);
    907 
    908 
    909   void CheckMap(Register obj,
    910                 Register scratch,
    911                 Heap::RootListIndex index,
    912                 Label* fail,
    913                 SmiCheckType smi_check_type);
    914 
    915 
    916   // Check if the map of an object is equal to a specified map and branch to a
    917   // specified target if equal. Skip the smi check if not required (object is
    918   // known to be a heap object)
    919   void DispatchMap(Register obj,
    920                    Register scratch,
    921                    Handle<Map> map,
    922                    Handle<Code> success,
    923                    SmiCheckType smi_check_type);
    924 
    925 
    926   // Compare the object in a register to a value from the root list.
    927   // Uses the ip register as scratch.
    928   void CompareRoot(Register obj, Heap::RootListIndex index);
    929 
    930 
    931   // Load and check the instance type of an object for being a string.
    932   // Loads the type into the second argument register.
    933   // Returns a condition that will be enabled if the object was a string
    934   // and the passed-in condition passed. If the passed-in condition failed
    935   // then flags remain unchanged.
    936   Condition IsObjectStringType(Register obj,
    937                                Register type,
    938                                Condition cond = al) {
    939     ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset), cond);
    940     ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset), cond);
    941     tst(type, Operand(kIsNotStringMask), cond);
    942     ASSERT_EQ(0, kStringTag);
    943     return eq;
    944   }
    945 
    946 
    947   // Picks out an array index from the hash field.
    948   // Register use:
    949   //   hash - holds the index's hash. Clobbered.
    950   //   index - holds the overwritten index on exit.
    951   void IndexFromHash(Register hash, Register index);
    952 
    953   // Get the number of least significant bits from a register
    954   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
    955   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
    956 
    957   // Load the value of a smi object into a double register.
    958   // The register value must be between d0 and d15.
    959   void SmiToDouble(LowDwVfpRegister value, Register smi);
    960 
    961   // Check if a double can be exactly represented as a signed 32-bit integer.
    962   // Z flag set to one if true.
    963   void TestDoubleIsInt32(DwVfpRegister double_input,
    964                          LowDwVfpRegister double_scratch);
    965 
    966   // Try to convert a double to a signed 32-bit integer.
    967   // Z flag set to one and result assigned if the conversion is exact.
    968   void TryDoubleToInt32Exact(Register result,
    969                              DwVfpRegister double_input,
    970                              LowDwVfpRegister double_scratch);
    971 
    972   // Floor a double and writes the value to the result register.
    973   // Go to exact if the conversion is exact (to be able to test -0),
    974   // fall through calling code if an overflow occurred, else go to done.
    975   // In return, input_high is loaded with high bits of input.
    976   void TryInt32Floor(Register result,
    977                      DwVfpRegister double_input,
    978                      Register input_high,
    979                      LowDwVfpRegister double_scratch,
    980                      Label* done,
    981                      Label* exact);
    982 
    983   // Performs a truncating conversion of a floating point number as used by
    984   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
    985   // succeeds, otherwise falls through if result is saturated. On return
    986   // 'result' either holds answer, or is clobbered on fall through.
    987   //
    988   // Only public for the test code in test-code-stubs-arm.cc.
    989   void TryInlineTruncateDoubleToI(Register result,
    990                                   DwVfpRegister input,
    991                                   Label* done);
    992 
    993   // Performs a truncating conversion of a floating point number as used by
    994   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
    995   // Exits with 'result' holding the answer.
    996   void TruncateDoubleToI(Register result, DwVfpRegister double_input);
    997 
    998   // Performs a truncating conversion of a heap number as used by
    999   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
   1000   // must be different registers.  Exits with 'result' holding the answer.
   1001   void TruncateHeapNumberToI(Register result, Register object);
   1002 
   1003   // Converts the smi or heap number in object to an int32 using the rules
   1004   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
   1005   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
   1006   // different registers.
   1007   void TruncateNumberToI(Register object,
   1008                          Register result,
   1009                          Register heap_number_map,
   1010                          Register scratch1,
   1011                          Label* not_int32);
   1012 
   1013   // Check whether d16-d31 are available on the CPU. The result is given by the
   1014   // Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
   1015   void CheckFor32DRegs(Register scratch);
   1016 
   1017   // Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
   1018   // values to location, saving [d0..(d15|d31)].
   1019   void SaveFPRegs(Register location, Register scratch);
   1020 
   1021   // Does a runtime check for 16/32 FP registers. Either way, pops 32 double
   1022   // values to location, restoring [d0..(d15|d31)].
   1023   void RestoreFPRegs(Register location, Register scratch);
   1024 
   1025   // ---------------------------------------------------------------------------
   1026   // Runtime calls
   1027 
   1028   // Call a code stub.
   1029   void CallStub(CodeStub* stub,
   1030                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
   1031                 Condition cond = al);
   1032 
   1033   // Call a code stub.
   1034   void TailCallStub(CodeStub* stub, Condition cond = al);
   1035 
   1036   // Call a runtime routine.
   1037   void CallRuntime(const Runtime::Function* f,
   1038                    int num_arguments,
   1039                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
   1040   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
   1041     const Runtime::Function* function = Runtime::FunctionForId(id);
   1042     CallRuntime(function, function->nargs, kSaveFPRegs);
   1043   }
   1044 
   1045   // Convenience function: Same as above, but takes the fid instead.
   1046   void CallRuntime(Runtime::FunctionId id,
   1047                    int num_arguments,
   1048                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1049     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
   1050   }
   1051 
   1052   // Convenience function: call an external reference.
   1053   void CallExternalReference(const ExternalReference& ext,
   1054                              int num_arguments);
   1055 
   1056   // Tail call of a runtime routine (jump).
   1057   // Like JumpToExternalReference, but also takes care of passing the number
   1058   // of parameters.
   1059   void TailCallExternalReference(const ExternalReference& ext,
   1060                                  int num_arguments,
   1061                                  int result_size);
   1062 
   1063   // Convenience function: tail call a runtime routine (jump).
   1064   void TailCallRuntime(Runtime::FunctionId fid,
   1065                        int num_arguments,
   1066                        int result_size);
   1067 
   1068   int CalculateStackPassedWords(int num_reg_arguments,
   1069                                 int num_double_arguments);
   1070 
   1071   // Before calling a C-function from generated code, align arguments on stack.
   1072   // After aligning the frame, non-register arguments must be stored in
   1073   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
   1074   // are word sized. If double arguments are used, this function assumes that
   1075   // all double arguments are stored before core registers; otherwise the
   1076   // correct alignment of the double values is not guaranteed.
   1077   // Some compilers/platforms require the stack to be aligned when calling
   1078   // C++ code.
   1079   // Needs a scratch register to do some arithmetic. This register will be
   1080   // trashed.
   1081   void PrepareCallCFunction(int num_reg_arguments,
   1082                             int num_double_registers,
   1083                             Register scratch);
   1084   void PrepareCallCFunction(int num_reg_arguments,
   1085                             Register scratch);
   1086 
   1087   // There are two ways of passing double arguments on ARM, depending on
   1088   // whether soft or hard floating point ABI is used. These functions
   1089   // abstract parameter passing for the three different ways we call
   1090   // C functions from generated code.
   1091   void MovToFloatParameter(DwVfpRegister src);
   1092   void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
   1093   void MovToFloatResult(DwVfpRegister src);
   1094 
   1095   // Calls a C function and cleans up the space for arguments allocated
   1096   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1097   // garbage collection, since that might move the code and invalidate the
   1098   // return address (unless this is somehow accounted for by the called
   1099   // function).
   1100   void CallCFunction(ExternalReference function, int num_arguments);
   1101   void CallCFunction(Register function, int num_arguments);
   1102   void CallCFunction(ExternalReference function,
   1103                      int num_reg_arguments,
   1104                      int num_double_arguments);
   1105   void CallCFunction(Register function,
   1106                      int num_reg_arguments,
   1107                      int num_double_arguments);
   1108 
   1109   void MovFromFloatParameter(DwVfpRegister dst);
   1110   void MovFromFloatResult(DwVfpRegister dst);
   1111 
   1112   // Calls an API function.  Allocates HandleScope, extracts returned value
   1113   // from handle and propagates exceptions.  Restores context.  stack_space
   1114   // - space to be unwound on exit (includes the call JS arguments space and
   1115   // the additional space allocated for the fast call).
   1116   void CallApiFunctionAndReturn(Register function_address,
   1117                                 ExternalReference thunk_ref,
   1118                                 int stack_space,
   1119                                 MemOperand return_value_operand,
   1120                                 MemOperand* context_restore_operand);
   1121 
   1122   // Jump to a runtime routine.
   1123   void JumpToExternalReference(const ExternalReference& builtin);
   1124 
   1125   // Invoke specified builtin JavaScript function. Adds an entry to
   1126   // the unresolved list if the name does not resolve.
   1127   void InvokeBuiltin(Builtins::JavaScript id,
   1128                      InvokeFlag flag,
   1129                      const CallWrapper& call_wrapper = NullCallWrapper());
   1130 
   1131   // Store the code object for the given builtin in the target register and
   1132   // setup the function in r1.
   1133   void GetBuiltinEntry(Register target, Builtins::JavaScript id);
   1134 
   1135   // Store the function for the given builtin in the target register.
   1136   void GetBuiltinFunction(Register target, Builtins::JavaScript id);
   1137 
   1138   Handle<Object> CodeObject() {
   1139     ASSERT(!code_object_.is_null());
   1140     return code_object_;
   1141   }
   1142 
   1143 
   1144   // Emit code for a truncating division by a constant. The dividend register is
   1145   // unchanged and ip gets clobbered. Dividend and result must be different.
   1146   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
   1147 
   1148   // ---------------------------------------------------------------------------
   1149   // StatsCounter support
   1150 
   1151   void SetCounter(StatsCounter* counter, int value,
   1152                   Register scratch1, Register scratch2);
   1153   void IncrementCounter(StatsCounter* counter, int value,
   1154                         Register scratch1, Register scratch2);
   1155   void DecrementCounter(StatsCounter* counter, int value,
   1156                         Register scratch1, Register scratch2);
   1157 
   1158 
   1159   // ---------------------------------------------------------------------------
   1160   // Debugging
   1161 
   1162   // Calls Abort(msg) if the condition cond is not satisfied.
   1163   // Use --debug_code to enable.
   1164   void Assert(Condition cond, BailoutReason reason);
   1165   void AssertFastElements(Register elements);
   1166 
   1167   // Like Assert(), but always enabled.
   1168   void Check(Condition cond, BailoutReason reason);
   1169 
   1170   // Print a message to stdout and abort execution.
   1171   void Abort(BailoutReason msg);
   1172 
   1173   // Verify restrictions about code generated in stubs.
   1174   void set_generating_stub(bool value) { generating_stub_ = value; }
   1175   bool generating_stub() { return generating_stub_; }
   1176   void set_has_frame(bool value) { has_frame_ = value; }
   1177   bool has_frame() { return has_frame_; }
   1178   inline bool AllowThisStubCall(CodeStub* stub);
   1179 
   1180   // EABI variant for double arguments in use.
   1181   bool use_eabi_hardfloat() {
   1182 #ifdef __arm__
   1183     return OS::ArmUsingHardFloat();
   1184 #elif USE_EABI_HARDFLOAT
   1185     return true;
   1186 #else
   1187     return false;
   1188 #endif
   1189   }
   1190 
   1191   // ---------------------------------------------------------------------------
   1192   // Number utilities
   1193 
   1194   // Check whether the value of reg is a power of two and not zero. If not
   1195   // control continues at the label not_power_of_two. If reg is a power of two
   1196   // the register scratch contains the value of (reg - 1) when control falls
   1197   // through.
   1198   void JumpIfNotPowerOfTwoOrZero(Register reg,
   1199                                  Register scratch,
   1200                                  Label* not_power_of_two_or_zero);
   1201   // Check whether the value of reg is a power of two and not zero.
   1202   // Control falls through if it is, with scratch containing the mask
   1203   // value (reg - 1).
   1204   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
   1205   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
   1206   // strictly positive but not a power of two.
   1207   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
   1208                                        Register scratch,
   1209                                        Label* zero_and_neg,
   1210                                        Label* not_power_of_two);
   1211 
   1212   // ---------------------------------------------------------------------------
   1213   // Smi utilities
   1214 
   1215   void SmiTag(Register reg, SBit s = LeaveCC) {
   1216     add(reg, reg, Operand(reg), s);
   1217   }
   1218   void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
   1219     add(dst, src, Operand(src), s);
   1220   }
   1221 
   1222   // Try to convert int32 to smi. If the value is to large, preserve
   1223   // the original value and jump to not_a_smi. Destroys scratch and
   1224   // sets flags.
   1225   void TrySmiTag(Register reg, Label* not_a_smi) {
   1226     TrySmiTag(reg, reg, not_a_smi);
   1227   }
   1228   void TrySmiTag(Register reg, Register src, Label* not_a_smi) {
   1229     SmiTag(ip, src, SetCC);
   1230     b(vs, not_a_smi);
   1231     mov(reg, ip);
   1232   }
   1233 
   1234 
   1235   void SmiUntag(Register reg, SBit s = LeaveCC) {
   1236     mov(reg, Operand::SmiUntag(reg), s);
   1237   }
   1238   void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
   1239     mov(dst, Operand::SmiUntag(src), s);
   1240   }
   1241 
   1242   // Untag the source value into destination and jump if source is a smi.
   1243   // Souce and destination can be the same register.
   1244   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
   1245 
   1246   // Untag the source value into destination and jump if source is not a smi.
   1247   // Souce and destination can be the same register.
   1248   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
   1249 
   1250   // Test if the register contains a smi (Z == 0 (eq) if true).
   1251   inline void SmiTst(Register value) {
   1252     tst(value, Operand(kSmiTagMask));
   1253   }
   1254   inline void NonNegativeSmiTst(Register value) {
   1255     tst(value, Operand(kSmiTagMask | kSmiSignMask));
   1256   }
   1257   // Jump if the register contains a smi.
   1258   inline void JumpIfSmi(Register value, Label* smi_label) {
   1259     tst(value, Operand(kSmiTagMask));
   1260     b(eq, smi_label);
   1261   }
   1262   // Jump if either of the registers contain a non-smi.
   1263   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
   1264     tst(value, Operand(kSmiTagMask));
   1265     b(ne, not_smi_label);
   1266   }
   1267   // Jump if either of the registers contain a non-smi.
   1268   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
   1269   // Jump if either of the registers contain a smi.
   1270   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
   1271 
   1272   // Abort execution if argument is a smi, enabled via --debug-code.
   1273   void AssertNotSmi(Register object);
   1274   void AssertSmi(Register object);
   1275 
   1276   // Abort execution if argument is not a string, enabled via --debug-code.
   1277   void AssertString(Register object);
   1278 
   1279   // Abort execution if argument is not a name, enabled via --debug-code.
   1280   void AssertName(Register object);
   1281 
   1282   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1283   // via --debug-code.
   1284   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
   1285 
   1286   // Abort execution if reg is not the root value with the given index,
   1287   // enabled via --debug-code.
   1288   void AssertIsRoot(Register reg, Heap::RootListIndex index);
   1289 
   1290   // ---------------------------------------------------------------------------
   1291   // HeapNumber utilities
   1292 
   1293   void JumpIfNotHeapNumber(Register object,
   1294                            Register heap_number_map,
   1295                            Register scratch,
   1296                            Label* on_not_heap_number);
   1297 
   1298   // ---------------------------------------------------------------------------
   1299   // String utilities
   1300 
   1301   // Generate code to do a lookup in the number string cache. If the number in
   1302   // the register object is found in the cache the generated code falls through
   1303   // with the result in the result register. The object and the result register
   1304   // can be the same. If the number is not found in the cache the code jumps to
   1305   // the label not_found with only the content of register object unchanged.
   1306   void LookupNumberStringCache(Register object,
   1307                                Register result,
   1308                                Register scratch1,
   1309                                Register scratch2,
   1310                                Register scratch3,
   1311                                Label* not_found);
   1312 
   1313   // Checks if both objects are sequential ASCII strings and jumps to label
   1314   // if either is not. Assumes that neither object is a smi.
   1315   void JumpIfNonSmisNotBothSequentialAsciiStrings(Register object1,
   1316                                                   Register object2,
   1317                                                   Register scratch1,
   1318                                                   Register scratch2,
   1319                                                   Label* failure);
   1320 
   1321   // Checks if both objects are sequential ASCII strings and jumps to label
   1322   // if either is not.
   1323   void JumpIfNotBothSequentialAsciiStrings(Register first,
   1324                                            Register second,
   1325                                            Register scratch1,
   1326                                            Register scratch2,
   1327                                            Label* not_flat_ascii_strings);
   1328 
   1329   // Checks if both instance types are sequential ASCII strings and jumps to
   1330   // label if either is not.
   1331   void JumpIfBothInstanceTypesAreNotSequentialAscii(
   1332       Register first_object_instance_type,
   1333       Register second_object_instance_type,
   1334       Register scratch1,
   1335       Register scratch2,
   1336       Label* failure);
   1337 
   1338   // Check if instance type is sequential ASCII string and jump to label if
   1339   // it is not.
   1340   void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
   1341                                               Register scratch,
   1342                                               Label* failure);
   1343 
   1344   void JumpIfNotUniqueName(Register reg, Label* not_unique_name);
   1345 
   1346   void EmitSeqStringSetCharCheck(Register string,
   1347                                  Register index,
   1348                                  Register value,
   1349                                  uint32_t encoding_mask);
   1350 
   1351   // ---------------------------------------------------------------------------
   1352   // Patching helpers.
   1353 
   1354   // Get the location of a relocated constant (its address in the constant pool)
   1355   // from its load site.
   1356   void GetRelocatedValueLocation(Register ldr_location,
   1357                                  Register result);
   1358 
   1359 
   1360   void ClampUint8(Register output_reg, Register input_reg);
   1361 
   1362   void ClampDoubleToUint8(Register result_reg,
   1363                           DwVfpRegister input_reg,
   1364                           LowDwVfpRegister double_scratch);
   1365 
   1366 
   1367   void LoadInstanceDescriptors(Register map, Register descriptors);
   1368   void EnumLength(Register dst, Register map);
   1369   void NumberOfOwnDescriptors(Register dst, Register map);
   1370 
   1371   template<typename Field>
   1372   void DecodeField(Register dst, Register src) {
   1373     Ubfx(dst, src, Field::kShift, Field::kSize);
   1374   }
   1375 
   1376   template<typename Field>
   1377   void DecodeField(Register reg) {
   1378     DecodeField<Field>(reg, reg);
   1379   }
   1380 
   1381   template<typename Field>
   1382   void DecodeFieldToSmi(Register dst, Register src) {
   1383     static const int shift = Field::kShift;
   1384     static const int mask = Field::kMask >> shift << kSmiTagSize;
   1385     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
   1386     STATIC_ASSERT(kSmiTag == 0);
   1387     if (shift < kSmiTagSize) {
   1388       mov(dst, Operand(src, LSL, kSmiTagSize - shift));
   1389       and_(dst, dst, Operand(mask));
   1390     } else if (shift > kSmiTagSize) {
   1391       mov(dst, Operand(src, LSR, shift - kSmiTagSize));
   1392       and_(dst, dst, Operand(mask));
   1393     } else {
   1394       and_(dst, src, Operand(mask));
   1395     }
   1396   }
   1397 
   1398   template<typename Field>
   1399   void DecodeFieldToSmi(Register reg) {
   1400     DecodeField<Field>(reg, reg);
   1401   }
   1402 
   1403   // Activation support.
   1404   void EnterFrame(StackFrame::Type type, bool load_constant_pool = false);
   1405   // Returns the pc offset at which the frame ends.
   1406   int LeaveFrame(StackFrame::Type type);
   1407 
   1408   // Expects object in r0 and returns map with validated enum cache
   1409   // in r0.  Assumes that any other register can be used as a scratch.
   1410   void CheckEnumCache(Register null_value, Label* call_runtime);
   1411 
   1412   // AllocationMemento support. Arrays may have an associated
   1413   // AllocationMemento object that can be checked for in order to pretransition
   1414   // to another type.
   1415   // On entry, receiver_reg should point to the array object.
   1416   // scratch_reg gets clobbered.
   1417   // If allocation info is present, condition flags are set to eq.
   1418   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1419                                        Register scratch_reg,
   1420                                        Label* no_memento_found);
   1421 
   1422   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
   1423                                          Register scratch_reg,
   1424                                          Label* memento_found) {
   1425     Label no_memento_found;
   1426     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
   1427                                     &no_memento_found);
   1428     b(eq, memento_found);
   1429     bind(&no_memento_found);
   1430   }
   1431 
   1432   // Jumps to found label if a prototype map has dictionary elements.
   1433   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
   1434                                         Register scratch1, Label* found);
   1435 
   1436  private:
   1437   void CallCFunctionHelper(Register function,
   1438                            int num_reg_arguments,
   1439                            int num_double_arguments);
   1440 
   1441   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
   1442 
   1443   // Helper functions for generating invokes.
   1444   void InvokePrologue(const ParameterCount& expected,
   1445                       const ParameterCount& actual,
   1446                       Handle<Code> code_constant,
   1447                       Register code_reg,
   1448                       Label* done,
   1449                       bool* definitely_mismatches,
   1450                       InvokeFlag flag,
   1451                       const CallWrapper& call_wrapper);
   1452 
   1453   void InitializeNewString(Register string,
   1454                            Register length,
   1455                            Heap::RootListIndex map_index,
   1456                            Register scratch1,
   1457                            Register scratch2);
   1458 
   1459   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1460   void InNewSpace(Register object,
   1461                   Register scratch,
   1462                   Condition cond,  // eq for new space, ne otherwise.
   1463                   Label* branch);
   1464 
   1465   // Helper for finding the mark bits for an address.  Afterwards, the
   1466   // bitmap register points at the word with the mark bits and the mask
   1467   // the position of the first bit.  Leaves addr_reg unchanged.
   1468   inline void GetMarkBits(Register addr_reg,
   1469                           Register bitmap_reg,
   1470                           Register mask_reg);
   1471 
   1472   // Helper for throwing exceptions.  Compute a handler address and jump to
   1473   // it.  See the implementation for register usage.
   1474   void JumpToHandlerEntry();
   1475 
   1476   // Compute memory operands for safepoint stack slots.
   1477   static int SafepointRegisterStackIndex(int reg_code);
   1478   MemOperand SafepointRegisterSlot(Register reg);
   1479   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
   1480 
   1481   // Loads the constant pool pointer (pp) register.
   1482   void LoadConstantPoolPointerRegister();
   1483 
   1484   bool generating_stub_;
   1485   bool has_frame_;
   1486   // This handle will be patched with the code object on installation.
   1487   Handle<Object> code_object_;
   1488 
   1489   // Needs access to SafepointRegisterStackIndex for compiled frame
   1490   // traversal.
   1491   friend class StandardFrame;
   1492 };
   1493 
   1494 
   1495 // The code patcher is used to patch (typically) small parts of code e.g. for
   1496 // debugging and other types of instrumentation. When using the code patcher
   1497 // the exact number of bytes specified must be emitted. It is not legal to emit
   1498 // relocation information. If any of these constraints are violated it causes
   1499 // an assertion to fail.
   1500 class CodePatcher {
   1501  public:
   1502   enum FlushICache {
   1503     FLUSH,
   1504     DONT_FLUSH
   1505   };
   1506 
   1507   CodePatcher(byte* address,
   1508               int instructions,
   1509               FlushICache flush_cache = FLUSH);
   1510   virtual ~CodePatcher();
   1511 
   1512   // Macro assembler to emit code.
   1513   MacroAssembler* masm() { return &masm_; }
   1514 
   1515   // Emit an instruction directly.
   1516   void Emit(Instr instr);
   1517 
   1518   // Emit an address directly.
   1519   void Emit(Address addr);
   1520 
   1521   // Emit the condition part of an instruction leaving the rest of the current
   1522   // instruction unchanged.
   1523   void EmitCondition(Condition cond);
   1524 
   1525  private:
   1526   byte* address_;  // The address of the code being patched.
   1527   int size_;  // Number of bytes of the expected patch size.
   1528   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1529   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
   1530 };
   1531 
   1532 
   1533 class FrameAndConstantPoolScope {
   1534  public:
   1535   FrameAndConstantPoolScope(MacroAssembler* masm, StackFrame::Type type)
   1536       : masm_(masm),
   1537         type_(type),
   1538         old_has_frame_(masm->has_frame()),
   1539         old_constant_pool_available_(masm->is_constant_pool_available())  {
   1540     // We only want to enable constant pool access for non-manual frame scopes
   1541     // to ensure the constant pool pointer is valid throughout the scope.
   1542     ASSERT(type_ != StackFrame::MANUAL && type_ != StackFrame::NONE);
   1543     masm->set_has_frame(true);
   1544     masm->set_constant_pool_available(true);
   1545     masm->EnterFrame(type, !old_constant_pool_available_);
   1546   }
   1547 
   1548   ~FrameAndConstantPoolScope() {
   1549     masm_->LeaveFrame(type_);
   1550     masm_->set_has_frame(old_has_frame_);
   1551     masm_->set_constant_pool_available(old_constant_pool_available_);
   1552   }
   1553 
   1554   // Normally we generate the leave-frame code when this object goes
   1555   // out of scope.  Sometimes we may need to generate the code somewhere else
   1556   // in addition.  Calling this will achieve that, but the object stays in
   1557   // scope, the MacroAssembler is still marked as being in a frame scope, and
   1558   // the code will be generated again when it goes out of scope.
   1559   void GenerateLeaveFrame() {
   1560     ASSERT(type_ != StackFrame::MANUAL && type_ != StackFrame::NONE);
   1561     masm_->LeaveFrame(type_);
   1562   }
   1563 
   1564  private:
   1565   MacroAssembler* masm_;
   1566   StackFrame::Type type_;
   1567   bool old_has_frame_;
   1568   bool old_constant_pool_available_;
   1569 
   1570   DISALLOW_IMPLICIT_CONSTRUCTORS(FrameAndConstantPoolScope);
   1571 };
   1572 
   1573 
   1574 // Class for scoping the the unavailability of constant pool access.
   1575 class ConstantPoolUnavailableScope {
   1576  public:
   1577   explicit ConstantPoolUnavailableScope(MacroAssembler* masm)
   1578      : masm_(masm),
   1579        old_constant_pool_available_(masm->is_constant_pool_available()) {
   1580     if (FLAG_enable_ool_constant_pool) {
   1581       masm_->set_constant_pool_available(false);
   1582     }
   1583   }
   1584   ~ConstantPoolUnavailableScope() {
   1585     if (FLAG_enable_ool_constant_pool) {
   1586      masm_->set_constant_pool_available(old_constant_pool_available_);
   1587     }
   1588   }
   1589 
   1590  private:
   1591   MacroAssembler* masm_;
   1592   int old_constant_pool_available_;
   1593 
   1594   DISALLOW_IMPLICIT_CONSTRUCTORS(ConstantPoolUnavailableScope);
   1595 };
   1596 
   1597 
   1598 // -----------------------------------------------------------------------------
   1599 // Static helper functions.
   1600 
   1601 inline MemOperand ContextOperand(Register context, int index) {
   1602   return MemOperand(context, Context::SlotOffset(index));
   1603 }
   1604 
   1605 
   1606 inline MemOperand GlobalObjectOperand()  {
   1607   return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
   1608 }
   1609 
   1610 
   1611 #ifdef GENERATED_CODE_COVERAGE
   1612 #define CODE_COVERAGE_STRINGIFY(x) #x
   1613 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
   1614 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
   1615 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
   1616 #else
   1617 #define ACCESS_MASM(masm) masm->
   1618 #endif
   1619 
   1620 
   1621 } }  // namespace v8::internal
   1622 
   1623 #endif  // V8_ARM_MACRO_ASSEMBLER_ARM_H_
   1624