Home | History | Annotate | Download | only in message_loop
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/message_loop/message_pump_win.h"
      6 
      7 #include <math.h>
      8 
      9 #include "base/debug/trace_event.h"
     10 #include "base/message_loop/message_loop.h"
     11 #include "base/metrics/histogram.h"
     12 #include "base/process/memory.h"
     13 #include "base/strings/stringprintf.h"
     14 #include "base/win/wrapped_window_proc.h"
     15 
     16 namespace base {
     17 
     18 namespace {
     19 
     20 enum MessageLoopProblems {
     21   MESSAGE_POST_ERROR,
     22   COMPLETION_POST_ERROR,
     23   SET_TIMER_ERROR,
     24   MESSAGE_LOOP_PROBLEM_MAX,
     25 };
     26 
     27 }  // namespace
     28 
     29 static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p";
     30 
     31 // Message sent to get an additional time slice for pumping (processing) another
     32 // task (a series of such messages creates a continuous task pump).
     33 static const int kMsgHaveWork = WM_USER + 1;
     34 
     35 //-----------------------------------------------------------------------------
     36 // MessagePumpWin public:
     37 
     38 void MessagePumpWin::AddObserver(MessagePumpObserver* observer) {
     39   observers_.AddObserver(observer);
     40 }
     41 
     42 void MessagePumpWin::RemoveObserver(MessagePumpObserver* observer) {
     43   observers_.RemoveObserver(observer);
     44 }
     45 
     46 void MessagePumpWin::WillProcessMessage(const MSG& msg) {
     47   FOR_EACH_OBSERVER(MessagePumpObserver, observers_, WillProcessEvent(msg));
     48 }
     49 
     50 void MessagePumpWin::DidProcessMessage(const MSG& msg) {
     51   FOR_EACH_OBSERVER(MessagePumpObserver, observers_, DidProcessEvent(msg));
     52 }
     53 
     54 void MessagePumpWin::RunWithDispatcher(
     55     Delegate* delegate, MessagePumpDispatcher* dispatcher) {
     56   RunState s;
     57   s.delegate = delegate;
     58   s.dispatcher = dispatcher;
     59   s.should_quit = false;
     60   s.run_depth = state_ ? state_->run_depth + 1 : 1;
     61 
     62   RunState* previous_state = state_;
     63   state_ = &s;
     64 
     65   DoRunLoop();
     66 
     67   state_ = previous_state;
     68 }
     69 
     70 void MessagePumpWin::Quit() {
     71   DCHECK(state_);
     72   state_->should_quit = true;
     73 }
     74 
     75 //-----------------------------------------------------------------------------
     76 // MessagePumpWin protected:
     77 
     78 int MessagePumpWin::GetCurrentDelay() const {
     79   if (delayed_work_time_.is_null())
     80     return -1;
     81 
     82   // Be careful here.  TimeDelta has a precision of microseconds, but we want a
     83   // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
     84   // 6?  It should be 6 to avoid executing delayed work too early.
     85   double timeout =
     86       ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
     87 
     88   // If this value is negative, then we need to run delayed work soon.
     89   int delay = static_cast<int>(timeout);
     90   if (delay < 0)
     91     delay = 0;
     92 
     93   return delay;
     94 }
     95 
     96 //-----------------------------------------------------------------------------
     97 // MessagePumpForUI public:
     98 
     99 MessagePumpForUI::MessagePumpForUI()
    100     : atom_(0) {
    101   InitMessageWnd();
    102 }
    103 
    104 MessagePumpForUI::~MessagePumpForUI() {
    105   DestroyWindow(message_hwnd_);
    106   UnregisterClass(MAKEINTATOM(atom_),
    107                   GetModuleFromAddress(&WndProcThunk));
    108 }
    109 
    110 void MessagePumpForUI::ScheduleWork() {
    111   if (InterlockedExchange(&have_work_, 1))
    112     return;  // Someone else continued the pumping.
    113 
    114   // Make sure the MessagePump does some work for us.
    115   BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork,
    116                          reinterpret_cast<WPARAM>(this), 0);
    117   if (ret)
    118     return;  // There was room in the Window Message queue.
    119 
    120   // We have failed to insert a have-work message, so there is a chance that we
    121   // will starve tasks/timers while sitting in a nested message loop.  Nested
    122   // loops only look at Windows Message queues, and don't look at *our* task
    123   // queues, etc., so we might not get a time slice in such. :-(
    124   // We could abort here, but the fear is that this failure mode is plausibly
    125   // common (queue is full, of about 2000 messages), so we'll do a near-graceful
    126   // recovery.  Nested loops are pretty transient (we think), so this will
    127   // probably be recoverable.
    128   InterlockedExchange(&have_work_, 0);  // Clarify that we didn't really insert.
    129   UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR,
    130                             MESSAGE_LOOP_PROBLEM_MAX);
    131 }
    132 
    133 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
    134   //
    135   // We would *like* to provide high resolution timers.  Windows timers using
    136   // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup
    137   // mechanism because the application can enter modal windows loops where it
    138   // is not running our MessageLoop; the only way to have our timers fire in
    139   // these cases is to post messages there.
    140   //
    141   // To provide sub-10ms timers, we process timers directly from our run loop.
    142   // For the common case, timers will be processed there as the run loop does
    143   // its normal work.  However, we *also* set the system timer so that WM_TIMER
    144   // events fire.  This mops up the case of timers not being able to work in
    145   // modal message loops.  It is possible for the SetTimer to pop and have no
    146   // pending timers, because they could have already been processed by the
    147   // run loop itself.
    148   //
    149   // We use a single SetTimer corresponding to the timer that will expire
    150   // soonest.  As new timers are created and destroyed, we update SetTimer.
    151   // Getting a spurrious SetTimer event firing is benign, as we'll just be
    152   // processing an empty timer queue.
    153   //
    154   delayed_work_time_ = delayed_work_time;
    155 
    156   int delay_msec = GetCurrentDelay();
    157   DCHECK_GE(delay_msec, 0);
    158   if (delay_msec < USER_TIMER_MINIMUM)
    159     delay_msec = USER_TIMER_MINIMUM;
    160 
    161   // Create a WM_TIMER event that will wake us up to check for any pending
    162   // timers (in case we are running within a nested, external sub-pump).
    163   BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this),
    164                       delay_msec, NULL);
    165   if (ret)
    166     return;
    167   // If we can't set timers, we are in big trouble... but cross our fingers for
    168   // now.
    169   // TODO(jar): If we don't see this error, use a CHECK() here instead.
    170   UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR,
    171                             MESSAGE_LOOP_PROBLEM_MAX);
    172 }
    173 
    174 //-----------------------------------------------------------------------------
    175 // MessagePumpForUI private:
    176 
    177 // static
    178 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
    179     HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
    180   switch (message) {
    181     case kMsgHaveWork:
    182       reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
    183       break;
    184     case WM_TIMER:
    185       reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
    186       break;
    187   }
    188   return DefWindowProc(hwnd, message, wparam, lparam);
    189 }
    190 
    191 void MessagePumpForUI::DoRunLoop() {
    192   // IF this was just a simple PeekMessage() loop (servicing all possible work
    193   // queues), then Windows would try to achieve the following order according
    194   // to MSDN documentation about PeekMessage with no filter):
    195   //    * Sent messages
    196   //    * Posted messages
    197   //    * Sent messages (again)
    198   //    * WM_PAINT messages
    199   //    * WM_TIMER messages
    200   //
    201   // Summary: none of the above classes is starved, and sent messages has twice
    202   // the chance of being processed (i.e., reduced service time).
    203 
    204   for (;;) {
    205     // If we do any work, we may create more messages etc., and more work may
    206     // possibly be waiting in another task group.  When we (for example)
    207     // ProcessNextWindowsMessage(), there is a good chance there are still more
    208     // messages waiting.  On the other hand, when any of these methods return
    209     // having done no work, then it is pretty unlikely that calling them again
    210     // quickly will find any work to do.  Finally, if they all say they had no
    211     // work, then it is a good time to consider sleeping (waiting) for more
    212     // work.
    213 
    214     bool more_work_is_plausible = ProcessNextWindowsMessage();
    215     if (state_->should_quit)
    216       break;
    217 
    218     more_work_is_plausible |= state_->delegate->DoWork();
    219     if (state_->should_quit)
    220       break;
    221 
    222     more_work_is_plausible |=
    223         state_->delegate->DoDelayedWork(&delayed_work_time_);
    224     // If we did not process any delayed work, then we can assume that our
    225     // existing WM_TIMER if any will fire when delayed work should run.  We
    226     // don't want to disturb that timer if it is already in flight.  However,
    227     // if we did do all remaining delayed work, then lets kill the WM_TIMER.
    228     if (more_work_is_plausible && delayed_work_time_.is_null())
    229       KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
    230     if (state_->should_quit)
    231       break;
    232 
    233     if (more_work_is_plausible)
    234       continue;
    235 
    236     more_work_is_plausible = state_->delegate->DoIdleWork();
    237     if (state_->should_quit)
    238       break;
    239 
    240     if (more_work_is_plausible)
    241       continue;
    242 
    243     WaitForWork();  // Wait (sleep) until we have work to do again.
    244   }
    245 }
    246 
    247 void MessagePumpForUI::InitMessageWnd() {
    248   // Generate a unique window class name.
    249   string16 class_name = StringPrintf(kWndClassFormat, this);
    250 
    251   HINSTANCE instance = GetModuleFromAddress(&WndProcThunk);
    252   WNDCLASSEX wc = {0};
    253   wc.cbSize = sizeof(wc);
    254   wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>;
    255   wc.hInstance = instance;
    256   wc.lpszClassName = class_name.c_str();
    257   atom_ = RegisterClassEx(&wc);
    258   DCHECK(atom_);
    259 
    260   message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0,
    261                                HWND_MESSAGE, 0, instance, 0);
    262   DCHECK(message_hwnd_);
    263 }
    264 
    265 void MessagePumpForUI::WaitForWork() {
    266   // Wait until a message is available, up to the time needed by the timer
    267   // manager to fire the next set of timers.
    268   int delay = GetCurrentDelay();
    269   if (delay < 0)  // Negative value means no timers waiting.
    270     delay = INFINITE;
    271 
    272   DWORD result;
    273   result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
    274                                        MWMO_INPUTAVAILABLE);
    275 
    276   if (WAIT_OBJECT_0 == result) {
    277     // A WM_* message is available.
    278     // If a parent child relationship exists between windows across threads
    279     // then their thread inputs are implicitly attached.
    280     // This causes the MsgWaitForMultipleObjectsEx API to return indicating
    281     // that messages are ready for processing (Specifically, mouse messages
    282     // intended for the child window may appear if the child window has
    283     // capture).
    284     // The subsequent PeekMessages call may fail to return any messages thus
    285     // causing us to enter a tight loop at times.
    286     // The WaitMessage call below is a workaround to give the child window
    287     // some time to process its input messages.
    288     MSG msg = {0};
    289     DWORD queue_status = GetQueueStatus(QS_MOUSE);
    290     if (HIWORD(queue_status) & QS_MOUSE &&
    291         !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
    292       WaitMessage();
    293     }
    294     return;
    295   }
    296 
    297   DCHECK_NE(WAIT_FAILED, result) << GetLastError();
    298 }
    299 
    300 void MessagePumpForUI::HandleWorkMessage() {
    301   // If we are being called outside of the context of Run, then don't try to do
    302   // any work.  This could correspond to a MessageBox call or something of that
    303   // sort.
    304   if (!state_) {
    305     // Since we handled a kMsgHaveWork message, we must still update this flag.
    306     InterlockedExchange(&have_work_, 0);
    307     return;
    308   }
    309 
    310   // Let whatever would have run had we not been putting messages in the queue
    311   // run now.  This is an attempt to make our dummy message not starve other
    312   // messages that may be in the Windows message queue.
    313   ProcessPumpReplacementMessage();
    314 
    315   // Now give the delegate a chance to do some work.  He'll let us know if he
    316   // needs to do more work.
    317   if (state_->delegate->DoWork())
    318     ScheduleWork();
    319 }
    320 
    321 void MessagePumpForUI::HandleTimerMessage() {
    322   KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
    323 
    324   // If we are being called outside of the context of Run, then don't do
    325   // anything.  This could correspond to a MessageBox call or something of
    326   // that sort.
    327   if (!state_)
    328     return;
    329 
    330   state_->delegate->DoDelayedWork(&delayed_work_time_);
    331   if (!delayed_work_time_.is_null()) {
    332     // A bit gratuitous to set delayed_work_time_ again, but oh well.
    333     ScheduleDelayedWork(delayed_work_time_);
    334   }
    335 }
    336 
    337 bool MessagePumpForUI::ProcessNextWindowsMessage() {
    338   // If there are sent messages in the queue then PeekMessage internally
    339   // dispatches the message and returns false. We return true in this
    340   // case to ensure that the message loop peeks again instead of calling
    341   // MsgWaitForMultipleObjectsEx again.
    342   bool sent_messages_in_queue = false;
    343   DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
    344   if (HIWORD(queue_status) & QS_SENDMESSAGE)
    345     sent_messages_in_queue = true;
    346 
    347   MSG msg;
    348   if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE)
    349     return ProcessMessageHelper(msg);
    350 
    351   return sent_messages_in_queue;
    352 }
    353 
    354 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
    355   TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper",
    356                "message", msg.message);
    357   if (WM_QUIT == msg.message) {
    358     // Repost the QUIT message so that it will be retrieved by the primary
    359     // GetMessage() loop.
    360     state_->should_quit = true;
    361     PostQuitMessage(static_cast<int>(msg.wParam));
    362     return false;
    363   }
    364 
    365   // While running our main message pump, we discard kMsgHaveWork messages.
    366   if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
    367     return ProcessPumpReplacementMessage();
    368 
    369   if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
    370     return true;
    371 
    372   WillProcessMessage(msg);
    373 
    374   uint32_t action = MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT;
    375   if (state_->dispatcher)
    376     action = state_->dispatcher->Dispatch(msg);
    377   if (action & MessagePumpDispatcher::POST_DISPATCH_QUIT_LOOP)
    378     state_->should_quit = true;
    379   if (action & MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT) {
    380     TranslateMessage(&msg);
    381     DispatchMessage(&msg);
    382   }
    383 
    384   DidProcessMessage(msg);
    385   return true;
    386 }
    387 
    388 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
    389   // When we encounter a kMsgHaveWork message, this method is called to peek
    390   // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The
    391   // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
    392   // a continuous stream of such messages are posted.  This method carefully
    393   // peeks a message while there is no chance for a kMsgHaveWork to be pending,
    394   // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
    395   // possibly be posted), and finally dispatches that peeked replacement.  Note
    396   // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
    397 
    398   bool have_message = false;
    399   MSG msg;
    400   // We should not process all window messages if we are in the context of an
    401   // OS modal loop, i.e. in the context of a windows API call like MessageBox.
    402   // This is to ensure that these messages are peeked out by the OS modal loop.
    403   if (MessageLoop::current()->os_modal_loop()) {
    404     // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
    405     have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
    406                    PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
    407   } else {
    408     have_message = PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE;
    409   }
    410 
    411   DCHECK(!have_message || kMsgHaveWork != msg.message ||
    412          msg.hwnd != message_hwnd_);
    413 
    414   // Since we discarded a kMsgHaveWork message, we must update the flag.
    415   int old_have_work = InterlockedExchange(&have_work_, 0);
    416   DCHECK(old_have_work);
    417 
    418   // We don't need a special time slice if we didn't have_message to process.
    419   if (!have_message)
    420     return false;
    421 
    422   // Guarantee we'll get another time slice in the case where we go into native
    423   // windows code.   This ScheduleWork() may hurt performance a tiny bit when
    424   // tasks appear very infrequently, but when the event queue is busy, the
    425   // kMsgHaveWork events get (percentage wise) rarer and rarer.
    426   ScheduleWork();
    427   return ProcessMessageHelper(msg);
    428 }
    429 
    430 //-----------------------------------------------------------------------------
    431 // MessagePumpForIO public:
    432 
    433 MessagePumpForIO::MessagePumpForIO() {
    434   port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
    435   DCHECK(port_.IsValid());
    436 }
    437 
    438 void MessagePumpForIO::ScheduleWork() {
    439   if (InterlockedExchange(&have_work_, 1))
    440     return;  // Someone else continued the pumping.
    441 
    442   // Make sure the MessagePump does some work for us.
    443   BOOL ret = PostQueuedCompletionStatus(port_, 0,
    444                                         reinterpret_cast<ULONG_PTR>(this),
    445                                         reinterpret_cast<OVERLAPPED*>(this));
    446   if (ret)
    447     return;  // Post worked perfectly.
    448 
    449   // See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
    450   InterlockedExchange(&have_work_, 0);  // Clarify that we didn't succeed.
    451   UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR,
    452                             MESSAGE_LOOP_PROBLEM_MAX);
    453 }
    454 
    455 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
    456   // We know that we can't be blocked right now since this method can only be
    457   // called on the same thread as Run, so we only need to update our record of
    458   // how long to sleep when we do sleep.
    459   delayed_work_time_ = delayed_work_time;
    460 }
    461 
    462 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
    463                                          IOHandler* handler) {
    464   ULONG_PTR key = HandlerToKey(handler, true);
    465   HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
    466   DPCHECK(port);
    467 }
    468 
    469 bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
    470                                          IOHandler* handler) {
    471   // Job object notifications use the OVERLAPPED pointer to carry the message
    472   // data. Mark the completion key correspondingly, so we will not try to
    473   // convert OVERLAPPED* to IOContext*.
    474   ULONG_PTR key = HandlerToKey(handler, false);
    475   JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
    476   info.CompletionKey = reinterpret_cast<void*>(key);
    477   info.CompletionPort = port_;
    478   return SetInformationJobObject(job_handle,
    479                                  JobObjectAssociateCompletionPortInformation,
    480                                  &info,
    481                                  sizeof(info)) != FALSE;
    482 }
    483 
    484 //-----------------------------------------------------------------------------
    485 // MessagePumpForIO private:
    486 
    487 void MessagePumpForIO::DoRunLoop() {
    488   for (;;) {
    489     // If we do any work, we may create more messages etc., and more work may
    490     // possibly be waiting in another task group.  When we (for example)
    491     // WaitForIOCompletion(), there is a good chance there are still more
    492     // messages waiting.  On the other hand, when any of these methods return
    493     // having done no work, then it is pretty unlikely that calling them
    494     // again quickly will find any work to do.  Finally, if they all say they
    495     // had no work, then it is a good time to consider sleeping (waiting) for
    496     // more work.
    497 
    498     bool more_work_is_plausible = state_->delegate->DoWork();
    499     if (state_->should_quit)
    500       break;
    501 
    502     more_work_is_plausible |= WaitForIOCompletion(0, NULL);
    503     if (state_->should_quit)
    504       break;
    505 
    506     more_work_is_plausible |=
    507         state_->delegate->DoDelayedWork(&delayed_work_time_);
    508     if (state_->should_quit)
    509       break;
    510 
    511     if (more_work_is_plausible)
    512       continue;
    513 
    514     more_work_is_plausible = state_->delegate->DoIdleWork();
    515     if (state_->should_quit)
    516       break;
    517 
    518     if (more_work_is_plausible)
    519       continue;
    520 
    521     WaitForWork();  // Wait (sleep) until we have work to do again.
    522   }
    523 }
    524 
    525 // Wait until IO completes, up to the time needed by the timer manager to fire
    526 // the next set of timers.
    527 void MessagePumpForIO::WaitForWork() {
    528   // We do not support nested IO message loops. This is to avoid messy
    529   // recursion problems.
    530   DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
    531 
    532   int timeout = GetCurrentDelay();
    533   if (timeout < 0)  // Negative value means no timers waiting.
    534     timeout = INFINITE;
    535 
    536   WaitForIOCompletion(timeout, NULL);
    537 }
    538 
    539 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
    540   IOItem item;
    541   if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
    542     // We have to ask the system for another IO completion.
    543     if (!GetIOItem(timeout, &item))
    544       return false;
    545 
    546     if (ProcessInternalIOItem(item))
    547       return true;
    548   }
    549 
    550   // If |item.has_valid_io_context| is false then |item.context| does not point
    551   // to a context structure, and so should not be dereferenced, although it may
    552   // still hold valid non-pointer data.
    553   if (!item.has_valid_io_context || item.context->handler) {
    554     if (filter && item.handler != filter) {
    555       // Save this item for later
    556       completed_io_.push_back(item);
    557     } else {
    558       DCHECK(!item.has_valid_io_context ||
    559              (item.context->handler == item.handler));
    560       WillProcessIOEvent();
    561       item.handler->OnIOCompleted(item.context, item.bytes_transfered,
    562                                   item.error);
    563       DidProcessIOEvent();
    564     }
    565   } else {
    566     // The handler must be gone by now, just cleanup the mess.
    567     delete item.context;
    568   }
    569   return true;
    570 }
    571 
    572 // Asks the OS for another IO completion result.
    573 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
    574   memset(item, 0, sizeof(*item));
    575   ULONG_PTR key = NULL;
    576   OVERLAPPED* overlapped = NULL;
    577   if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
    578                                  &overlapped, timeout)) {
    579     if (!overlapped)
    580       return false;  // Nothing in the queue.
    581     item->error = GetLastError();
    582     item->bytes_transfered = 0;
    583   }
    584 
    585   item->handler = KeyToHandler(key, &item->has_valid_io_context);
    586   item->context = reinterpret_cast<IOContext*>(overlapped);
    587   return true;
    588 }
    589 
    590 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
    591   if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
    592       this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
    593     // This is our internal completion.
    594     DCHECK(!item.bytes_transfered);
    595     InterlockedExchange(&have_work_, 0);
    596     return true;
    597   }
    598   return false;
    599 }
    600 
    601 // Returns a completion item that was previously received.
    602 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
    603   DCHECK(!completed_io_.empty());
    604   for (std::list<IOItem>::iterator it = completed_io_.begin();
    605        it != completed_io_.end(); ++it) {
    606     if (!filter || it->handler == filter) {
    607       *item = *it;
    608       completed_io_.erase(it);
    609       return true;
    610     }
    611   }
    612   return false;
    613 }
    614 
    615 void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
    616   io_observers_.AddObserver(obs);
    617 }
    618 
    619 void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
    620   io_observers_.RemoveObserver(obs);
    621 }
    622 
    623 void MessagePumpForIO::WillProcessIOEvent() {
    624   FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
    625 }
    626 
    627 void MessagePumpForIO::DidProcessIOEvent() {
    628   FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
    629 }
    630 
    631 // static
    632 ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler,
    633                                          bool has_valid_io_context) {
    634   ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
    635 
    636   // |IOHandler| is at least pointer-size aligned, so the lowest two bits are
    637   // always cleared. We use the lowest bit to distinguish completion keys with
    638   // and without the associated |IOContext|.
    639   DCHECK((key & 1) == 0);
    640 
    641   // Mark the completion key as context-less.
    642   if (!has_valid_io_context)
    643     key = key | 1;
    644   return key;
    645 }
    646 
    647 // static
    648 MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler(
    649     ULONG_PTR key,
    650     bool* has_valid_io_context) {
    651   *has_valid_io_context = ((key & 1) == 0);
    652   return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1));
    653 }
    654 
    655 }  // namespace base
    656