Home | History | Annotate | Download | only in message_loop
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
      6 #define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
      7 
      8 #include <windows.h>
      9 
     10 #include <list>
     11 
     12 #include "base/base_export.h"
     13 #include "base/basictypes.h"
     14 #include "base/message_loop/message_pump.h"
     15 #include "base/message_loop/message_pump_dispatcher.h"
     16 #include "base/message_loop/message_pump_observer.h"
     17 #include "base/observer_list.h"
     18 #include "base/time/time.h"
     19 #include "base/win/scoped_handle.h"
     20 
     21 namespace base {
     22 
     23 // MessagePumpWin serves as the base for specialized versions of the MessagePump
     24 // for Windows. It provides basic functionality like handling of observers and
     25 // controlling the lifetime of the message pump.
     26 class BASE_EXPORT MessagePumpWin : public MessagePump {
     27  public:
     28   MessagePumpWin() : have_work_(0), state_(NULL) {}
     29   virtual ~MessagePumpWin() {}
     30 
     31   // Add an Observer, which will start receiving notifications immediately.
     32   void AddObserver(MessagePumpObserver* observer);
     33 
     34   // Remove an Observer.  It is safe to call this method while an Observer is
     35   // receiving a notification callback.
     36   void RemoveObserver(MessagePumpObserver* observer);
     37 
     38   // Give a chance to code processing additional messages to notify the
     39   // message loop observers that another message has been processed.
     40   void WillProcessMessage(const MSG& msg);
     41   void DidProcessMessage(const MSG& msg);
     42 
     43   // Like MessagePump::Run, but MSG objects are routed through dispatcher.
     44   void RunWithDispatcher(Delegate* delegate, MessagePumpDispatcher* dispatcher);
     45 
     46   // MessagePump methods:
     47   virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
     48   virtual void Quit();
     49 
     50  protected:
     51   struct RunState {
     52     Delegate* delegate;
     53     MessagePumpDispatcher* dispatcher;
     54 
     55     // Used to flag that the current Run() invocation should return ASAP.
     56     bool should_quit;
     57 
     58     // Used to count how many Run() invocations are on the stack.
     59     int run_depth;
     60   };
     61 
     62   virtual void DoRunLoop() = 0;
     63   int GetCurrentDelay() const;
     64 
     65   ObserverList<MessagePumpObserver> observers_;
     66 
     67   // The time at which delayed work should run.
     68   TimeTicks delayed_work_time_;
     69 
     70   // A boolean value used to indicate if there is a kMsgDoWork message pending
     71   // in the Windows Message queue.  There is at most one such message, and it
     72   // can drive execution of tasks when a native message pump is running.
     73   LONG have_work_;
     74 
     75   // State for the current invocation of Run.
     76   RunState* state_;
     77 };
     78 
     79 //-----------------------------------------------------------------------------
     80 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a
     81 // MessageLoop instantiated with TYPE_UI.
     82 //
     83 // MessagePumpForUI implements a "traditional" Windows message pump. It contains
     84 // a nearly infinite loop that peeks out messages, and then dispatches them.
     85 // Intermixed with those peeks are callouts to DoWork for pending tasks, and
     86 // DoDelayedWork for pending timers. When there are no events to be serviced,
     87 // this pump goes into a wait state. In most cases, this message pump handles
     88 // all processing.
     89 //
     90 // However, when a task, or windows event, invokes on the stack a native dialog
     91 // box or such, that window typically provides a bare bones (native?) message
     92 // pump.  That bare-bones message pump generally supports little more than a
     93 // peek of the Windows message queue, followed by a dispatch of the peeked
     94 // message.  MessageLoop extends that bare-bones message pump to also service
     95 // Tasks, at the cost of some complexity.
     96 //
     97 // The basic structure of the extension (refered to as a sub-pump) is that a
     98 // special message, kMsgHaveWork, is repeatedly injected into the Windows
     99 // Message queue.  Each time the kMsgHaveWork message is peeked, checks are
    100 // made for an extended set of events, including the availability of Tasks to
    101 // run.
    102 //
    103 // After running a task, the special message kMsgHaveWork is again posted to
    104 // the Windows Message queue, ensuring a future time slice for processing a
    105 // future event.  To prevent flooding the Windows Message queue, care is taken
    106 // to be sure that at most one kMsgHaveWork message is EVER pending in the
    107 // Window's Message queue.
    108 //
    109 // There are a few additional complexities in this system where, when there are
    110 // no Tasks to run, this otherwise infinite stream of messages which drives the
    111 // sub-pump is halted.  The pump is automatically re-started when Tasks are
    112 // queued.
    113 //
    114 // A second complexity is that the presence of this stream of posted tasks may
    115 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
    116 // Such paint and timer events always give priority to a posted message, such as
    117 // kMsgHaveWork messages.  As a result, care is taken to do some peeking in
    118 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
    119 // is peeked, and before a replacement kMsgHaveWork is posted).
    120 //
    121 // NOTE: Although it may seem odd that messages are used to start and stop this
    122 // flow (as opposed to signaling objects, etc.), it should be understood that
    123 // the native message pump will *only* respond to messages.  As a result, it is
    124 // an excellent choice.  It is also helpful that the starter messages that are
    125 // placed in the queue when new task arrive also awakens DoRunLoop.
    126 //
    127 class BASE_EXPORT MessagePumpForUI : public MessagePumpWin {
    128  public:
    129   // The application-defined code passed to the hook procedure.
    130   static const int kMessageFilterCode = 0x5001;
    131 
    132   MessagePumpForUI();
    133   virtual ~MessagePumpForUI();
    134 
    135   // MessagePump methods:
    136   virtual void ScheduleWork();
    137   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
    138 
    139  private:
    140   static LRESULT CALLBACK WndProcThunk(HWND window_handle,
    141                                        UINT message,
    142                                        WPARAM wparam,
    143                                        LPARAM lparam);
    144   virtual void DoRunLoop();
    145   void InitMessageWnd();
    146   void WaitForWork();
    147   void HandleWorkMessage();
    148   void HandleTimerMessage();
    149   bool ProcessNextWindowsMessage();
    150   bool ProcessMessageHelper(const MSG& msg);
    151   bool ProcessPumpReplacementMessage();
    152 
    153   // Atom representing the registered window class.
    154   ATOM atom_;
    155 
    156   // A hidden message-only window.
    157   HWND message_hwnd_;
    158 };
    159 
    160 //-----------------------------------------------------------------------------
    161 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a
    162 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
    163 // deal with Windows mesagges, and instead has a Run loop based on Completion
    164 // Ports so it is better suited for IO operations.
    165 //
    166 class BASE_EXPORT MessagePumpForIO : public MessagePumpWin {
    167  public:
    168   struct IOContext;
    169 
    170   // Clients interested in receiving OS notifications when asynchronous IO
    171   // operations complete should implement this interface and register themselves
    172   // with the message pump.
    173   //
    174   // Typical use #1:
    175   //   // Use only when there are no user's buffers involved on the actual IO,
    176   //   // so that all the cleanup can be done by the message pump.
    177   //   class MyFile : public IOHandler {
    178   //     MyFile() {
    179   //       ...
    180   //       context_ = new IOContext;
    181   //       context_->handler = this;
    182   //       message_pump->RegisterIOHandler(file_, this);
    183   //     }
    184   //     ~MyFile() {
    185   //       if (pending_) {
    186   //         // By setting the handler to NULL, we're asking for this context
    187   //         // to be deleted when received, without calling back to us.
    188   //         context_->handler = NULL;
    189   //       } else {
    190   //         delete context_;
    191   //      }
    192   //     }
    193   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    194   //                                DWORD error) {
    195   //         pending_ = false;
    196   //     }
    197   //     void DoSomeIo() {
    198   //       ...
    199   //       // The only buffer required for this operation is the overlapped
    200   //       // structure.
    201   //       ConnectNamedPipe(file_, &context_->overlapped);
    202   //       pending_ = true;
    203   //     }
    204   //     bool pending_;
    205   //     IOContext* context_;
    206   //     HANDLE file_;
    207   //   };
    208   //
    209   // Typical use #2:
    210   //   class MyFile : public IOHandler {
    211   //     MyFile() {
    212   //       ...
    213   //       message_pump->RegisterIOHandler(file_, this);
    214   //     }
    215   //     // Plus some code to make sure that this destructor is not called
    216   //     // while there are pending IO operations.
    217   //     ~MyFile() {
    218   //     }
    219   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    220   //                                DWORD error) {
    221   //       ...
    222   //       delete context;
    223   //     }
    224   //     void DoSomeIo() {
    225   //       ...
    226   //       IOContext* context = new IOContext;
    227   //       // This is not used for anything. It just prevents the context from
    228   //       // being considered "abandoned".
    229   //       context->handler = this;
    230   //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
    231   //     }
    232   //     HANDLE file_;
    233   //   };
    234   //
    235   // Typical use #3:
    236   // Same as the previous example, except that in order to deal with the
    237   // requirement stated for the destructor, the class calls WaitForIOCompletion
    238   // from the destructor to block until all IO finishes.
    239   //     ~MyFile() {
    240   //       while(pending_)
    241   //         message_pump->WaitForIOCompletion(INFINITE, this);
    242   //     }
    243   //
    244   class IOHandler {
    245    public:
    246     virtual ~IOHandler() {}
    247     // This will be called once the pending IO operation associated with
    248     // |context| completes. |error| is the Win32 error code of the IO operation
    249     // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
    250     // on error.
    251     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    252                                DWORD error) = 0;
    253   };
    254 
    255   // An IOObserver is an object that receives IO notifications from the
    256   // MessagePump.
    257   //
    258   // NOTE: An IOObserver implementation should be extremely fast!
    259   class IOObserver {
    260    public:
    261     IOObserver() {}
    262 
    263     virtual void WillProcessIOEvent() = 0;
    264     virtual void DidProcessIOEvent() = 0;
    265 
    266    protected:
    267     virtual ~IOObserver() {}
    268   };
    269 
    270   // The extended context that should be used as the base structure on every
    271   // overlapped IO operation. |handler| must be set to the registered IOHandler
    272   // for the given file when the operation is started, and it can be set to NULL
    273   // before the operation completes to indicate that the handler should not be
    274   // called anymore, and instead, the IOContext should be deleted when the OS
    275   // notifies the completion of this operation. Please remember that any buffers
    276   // involved with an IO operation should be around until the callback is
    277   // received, so this technique can only be used for IO that do not involve
    278   // additional buffers (other than the overlapped structure itself).
    279   struct IOContext {
    280     OVERLAPPED overlapped;
    281     IOHandler* handler;
    282   };
    283 
    284   MessagePumpForIO();
    285   virtual ~MessagePumpForIO() {}
    286 
    287   // MessagePump methods:
    288   virtual void ScheduleWork();
    289   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
    290 
    291   // Register the handler to be used when asynchronous IO for the given file
    292   // completes. The registration persists as long as |file_handle| is valid, so
    293   // |handler| must be valid as long as there is pending IO for the given file.
    294   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
    295 
    296   // Register the handler to be used to process job events. The registration
    297   // persists as long as the job object is live, so |handler| must be valid
    298   // until the job object is destroyed. Returns true if the registration
    299   // succeeded, and false otherwise.
    300   bool RegisterJobObject(HANDLE job_handle, IOHandler* handler);
    301 
    302   // Waits for the next IO completion that should be processed by |filter|, for
    303   // up to |timeout| milliseconds. Return true if any IO operation completed,
    304   // regardless of the involved handler, and false if the timeout expired. If
    305   // the completion port received any message and the involved IO handler
    306   // matches |filter|, the callback is called before returning from this code;
    307   // if the handler is not the one that we are looking for, the callback will
    308   // be postponed for another time, so reentrancy problems can be avoided.
    309   // External use of this method should be reserved for the rare case when the
    310   // caller is willing to allow pausing regular task dispatching on this thread.
    311   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
    312 
    313   void AddIOObserver(IOObserver* obs);
    314   void RemoveIOObserver(IOObserver* obs);
    315 
    316  private:
    317   struct IOItem {
    318     IOHandler* handler;
    319     IOContext* context;
    320     DWORD bytes_transfered;
    321     DWORD error;
    322 
    323     // In some cases |context| can be a non-pointer value casted to a pointer.
    324     // |has_valid_io_context| is true if |context| is a valid IOContext
    325     // pointer, and false otherwise.
    326     bool has_valid_io_context;
    327   };
    328 
    329   virtual void DoRunLoop();
    330   void WaitForWork();
    331   bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
    332   bool GetIOItem(DWORD timeout, IOItem* item);
    333   bool ProcessInternalIOItem(const IOItem& item);
    334   void WillProcessIOEvent();
    335   void DidProcessIOEvent();
    336 
    337   // Converts an IOHandler pointer to a completion port key.
    338   // |has_valid_io_context| specifies whether completion packets posted to
    339   // |handler| will have valid OVERLAPPED pointers.
    340   static ULONG_PTR HandlerToKey(IOHandler* handler, bool has_valid_io_context);
    341 
    342   // Converts a completion port key to an IOHandler pointer.
    343   static IOHandler* KeyToHandler(ULONG_PTR key, bool* has_valid_io_context);
    344 
    345   // The completion port associated with this thread.
    346   win::ScopedHandle port_;
    347   // This list will be empty almost always. It stores IO completions that have
    348   // not been delivered yet because somebody was doing cleanup.
    349   std::list<IOItem> completed_io_;
    350 
    351   ObserverList<IOObserver> io_observers_;
    352 };
    353 
    354 }  // namespace base
    355 
    356 #endif  // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
    357