Home | History | Annotate | Download | only in Sema
      1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines analysis_warnings::[Policy,Executor].
     11 // Together they are used by Sema to issue warnings based on inexpensive
     12 // static analysis algorithms in libAnalysis.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "clang/Sema/AnalysisBasedWarnings.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/EvaluatedExprVisitor.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/ExprObjC.h"
     22 #include "clang/AST/ParentMap.h"
     23 #include "clang/AST/RecursiveASTVisitor.h"
     24 #include "clang/AST/StmtCXX.h"
     25 #include "clang/AST/StmtObjC.h"
     26 #include "clang/AST/StmtVisitor.h"
     27 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
     28 #include "clang/Analysis/Analyses/Consumed.h"
     29 #include "clang/Analysis/Analyses/ReachableCode.h"
     30 #include "clang/Analysis/Analyses/ThreadSafety.h"
     31 #include "clang/Analysis/Analyses/UninitializedValues.h"
     32 #include "clang/Analysis/AnalysisContext.h"
     33 #include "clang/Analysis/CFG.h"
     34 #include "clang/Analysis/CFGStmtMap.h"
     35 #include "clang/Basic/SourceLocation.h"
     36 #include "clang/Basic/SourceManager.h"
     37 #include "clang/Lex/Lexer.h"
     38 #include "clang/Lex/Preprocessor.h"
     39 #include "clang/Sema/ScopeInfo.h"
     40 #include "clang/Sema/SemaInternal.h"
     41 #include "llvm/ADT/ArrayRef.h"
     42 #include "llvm/ADT/BitVector.h"
     43 #include "llvm/ADT/FoldingSet.h"
     44 #include "llvm/ADT/ImmutableMap.h"
     45 #include "llvm/ADT/MapVector.h"
     46 #include "llvm/ADT/PostOrderIterator.h"
     47 #include "llvm/ADT/SmallString.h"
     48 #include "llvm/ADT/SmallVector.h"
     49 #include "llvm/ADT/StringRef.h"
     50 #include "llvm/Support/Casting.h"
     51 #include <algorithm>
     52 #include <deque>
     53 #include <iterator>
     54 #include <vector>
     55 
     56 using namespace clang;
     57 
     58 //===----------------------------------------------------------------------===//
     59 // Unreachable code analysis.
     60 //===----------------------------------------------------------------------===//
     61 
     62 namespace {
     63   class UnreachableCodeHandler : public reachable_code::Callback {
     64     Sema &S;
     65   public:
     66     UnreachableCodeHandler(Sema &s) : S(s) {}
     67 
     68     void HandleUnreachable(reachable_code::UnreachableKind UK,
     69                            SourceLocation L,
     70                            SourceRange SilenceableCondVal,
     71                            SourceRange R1,
     72                            SourceRange R2) override {
     73       unsigned diag = diag::warn_unreachable;
     74       switch (UK) {
     75         case reachable_code::UK_Break:
     76           diag = diag::warn_unreachable_break;
     77           break;
     78         case reachable_code::UK_Return:
     79           diag = diag::warn_unreachable_return;
     80           break;
     81         case reachable_code::UK_Loop_Increment:
     82           diag = diag::warn_unreachable_loop_increment;
     83           break;
     84         case reachable_code::UK_Other:
     85           break;
     86       }
     87 
     88       S.Diag(L, diag) << R1 << R2;
     89 
     90       SourceLocation Open = SilenceableCondVal.getBegin();
     91       if (Open.isValid()) {
     92         SourceLocation Close = SilenceableCondVal.getEnd();
     93         Close = S.getLocForEndOfToken(Close);
     94         if (Close.isValid()) {
     95           S.Diag(Open, diag::note_unreachable_silence)
     96             << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
     97             << FixItHint::CreateInsertion(Close, ")");
     98         }
     99       }
    100     }
    101   };
    102 }
    103 
    104 /// CheckUnreachable - Check for unreachable code.
    105 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
    106   // As a heuristic prune all diagnostics not in the main file.  Currently
    107   // the majority of warnings in headers are false positives.  These
    108   // are largely caused by configuration state, e.g. preprocessor
    109   // defined code, etc.
    110   //
    111   // Note that this is also a performance optimization.  Analyzing
    112   // headers many times can be expensive.
    113   if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
    114     return;
    115 
    116   UnreachableCodeHandler UC(S);
    117   reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
    118 }
    119 
    120 /// \brief Warn on logical operator errors in CFGBuilder
    121 class LogicalErrorHandler : public CFGCallback {
    122   Sema &S;
    123 
    124 public:
    125   LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
    126 
    127   static bool HasMacroID(const Expr *E) {
    128     if (E->getExprLoc().isMacroID())
    129       return true;
    130 
    131     // Recurse to children.
    132     for (ConstStmtRange SubStmts = E->children(); SubStmts; ++SubStmts)
    133       if (*SubStmts)
    134         if (const Expr *SubExpr = dyn_cast<Expr>(*SubStmts))
    135           if (HasMacroID(SubExpr))
    136             return true;
    137 
    138     return false;
    139   }
    140 
    141   void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {
    142     if (HasMacroID(B))
    143       return;
    144 
    145     SourceRange DiagRange = B->getSourceRange();
    146     S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
    147         << DiagRange << isAlwaysTrue;
    148   }
    149 
    150   void compareBitwiseEquality(const BinaryOperator *B, bool isAlwaysTrue) {
    151     if (HasMacroID(B))
    152       return;
    153 
    154     SourceRange DiagRange = B->getSourceRange();
    155     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
    156         << DiagRange << isAlwaysTrue;
    157   }
    158 };
    159 
    160 
    161 //===----------------------------------------------------------------------===//
    162 // Check for infinite self-recursion in functions
    163 //===----------------------------------------------------------------------===//
    164 
    165 // All blocks are in one of three states.  States are ordered so that blocks
    166 // can only move to higher states.
    167 enum RecursiveState {
    168   FoundNoPath,
    169   FoundPath,
    170   FoundPathWithNoRecursiveCall
    171 };
    172 
    173 static void checkForFunctionCall(Sema &S, const FunctionDecl *FD,
    174                                  CFGBlock &Block, unsigned ExitID,
    175                                  llvm::SmallVectorImpl<RecursiveState> &States,
    176                                  RecursiveState State) {
    177   unsigned ID = Block.getBlockID();
    178 
    179   // A block's state can only move to a higher state.
    180   if (States[ID] >= State)
    181     return;
    182 
    183   States[ID] = State;
    184 
    185   // Found a path to the exit node without a recursive call.
    186   if (ID == ExitID && State == FoundPathWithNoRecursiveCall)
    187     return;
    188 
    189   if (State == FoundPathWithNoRecursiveCall) {
    190     // If the current state is FoundPathWithNoRecursiveCall, the successors
    191     // will be either FoundPathWithNoRecursiveCall or FoundPath.  To determine
    192     // which, process all the Stmt's in this block to find any recursive calls.
    193     for (const auto &B : Block) {
    194       if (B.getKind() != CFGElement::Statement)
    195         continue;
    196 
    197       const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
    198       if (CE && CE->getCalleeDecl() &&
    199           CE->getCalleeDecl()->getCanonicalDecl() == FD) {
    200 
    201         // Skip function calls which are qualified with a templated class.
    202         if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(
    203                 CE->getCallee()->IgnoreParenImpCasts())) {
    204           if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
    205             if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
    206                 isa<TemplateSpecializationType>(NNS->getAsType())) {
    207                continue;
    208             }
    209           }
    210         }
    211 
    212         if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) {
    213           if (isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
    214               !MCE->getMethodDecl()->isVirtual()) {
    215             State = FoundPath;
    216             break;
    217           }
    218         } else {
    219           State = FoundPath;
    220           break;
    221         }
    222       }
    223     }
    224   }
    225 
    226   for (CFGBlock::succ_iterator I = Block.succ_begin(), E = Block.succ_end();
    227        I != E; ++I)
    228     if (*I)
    229       checkForFunctionCall(S, FD, **I, ExitID, States, State);
    230 }
    231 
    232 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
    233                                    const Stmt *Body,
    234                                    AnalysisDeclContext &AC) {
    235   FD = FD->getCanonicalDecl();
    236 
    237   // Only run on non-templated functions and non-templated members of
    238   // templated classes.
    239   if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
    240       FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
    241     return;
    242 
    243   CFG *cfg = AC.getCFG();
    244   if (!cfg) return;
    245 
    246   // If the exit block is unreachable, skip processing the function.
    247   if (cfg->getExit().pred_empty())
    248     return;
    249 
    250   // Mark all nodes as FoundNoPath, then begin processing the entry block.
    251   llvm::SmallVector<RecursiveState, 16> states(cfg->getNumBlockIDs(),
    252                                                FoundNoPath);
    253   checkForFunctionCall(S, FD, cfg->getEntry(), cfg->getExit().getBlockID(),
    254                        states, FoundPathWithNoRecursiveCall);
    255 
    256   // Check that the exit block is reachable.  This prevents triggering the
    257   // warning on functions that do not terminate.
    258   if (states[cfg->getExit().getBlockID()] == FoundPath)
    259     S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
    260 }
    261 
    262 //===----------------------------------------------------------------------===//
    263 // Check for missing return value.
    264 //===----------------------------------------------------------------------===//
    265 
    266 enum ControlFlowKind {
    267   UnknownFallThrough,
    268   NeverFallThrough,
    269   MaybeFallThrough,
    270   AlwaysFallThrough,
    271   NeverFallThroughOrReturn
    272 };
    273 
    274 /// CheckFallThrough - Check that we don't fall off the end of a
    275 /// Statement that should return a value.
    276 ///
    277 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
    278 /// MaybeFallThrough iff we might or might not fall off the end,
    279 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
    280 /// return.  We assume NeverFallThrough iff we never fall off the end of the
    281 /// statement but we may return.  We assume that functions not marked noreturn
    282 /// will return.
    283 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
    284   CFG *cfg = AC.getCFG();
    285   if (!cfg) return UnknownFallThrough;
    286 
    287   // The CFG leaves in dead things, and we don't want the dead code paths to
    288   // confuse us, so we mark all live things first.
    289   llvm::BitVector live(cfg->getNumBlockIDs());
    290   unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
    291                                                           live);
    292 
    293   bool AddEHEdges = AC.getAddEHEdges();
    294   if (!AddEHEdges && count != cfg->getNumBlockIDs())
    295     // When there are things remaining dead, and we didn't add EH edges
    296     // from CallExprs to the catch clauses, we have to go back and
    297     // mark them as live.
    298     for (const auto *B : *cfg) {
    299       if (!live[B->getBlockID()]) {
    300         if (B->pred_begin() == B->pred_end()) {
    301           if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
    302             // When not adding EH edges from calls, catch clauses
    303             // can otherwise seem dead.  Avoid noting them as dead.
    304             count += reachable_code::ScanReachableFromBlock(B, live);
    305           continue;
    306         }
    307       }
    308     }
    309 
    310   // Now we know what is live, we check the live precessors of the exit block
    311   // and look for fall through paths, being careful to ignore normal returns,
    312   // and exceptional paths.
    313   bool HasLiveReturn = false;
    314   bool HasFakeEdge = false;
    315   bool HasPlainEdge = false;
    316   bool HasAbnormalEdge = false;
    317 
    318   // Ignore default cases that aren't likely to be reachable because all
    319   // enums in a switch(X) have explicit case statements.
    320   CFGBlock::FilterOptions FO;
    321   FO.IgnoreDefaultsWithCoveredEnums = 1;
    322 
    323   for (CFGBlock::filtered_pred_iterator
    324 	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
    325     const CFGBlock& B = **I;
    326     if (!live[B.getBlockID()])
    327       continue;
    328 
    329     // Skip blocks which contain an element marked as no-return. They don't
    330     // represent actually viable edges into the exit block, so mark them as
    331     // abnormal.
    332     if (B.hasNoReturnElement()) {
    333       HasAbnormalEdge = true;
    334       continue;
    335     }
    336 
    337     // Destructors can appear after the 'return' in the CFG.  This is
    338     // normal.  We need to look pass the destructors for the return
    339     // statement (if it exists).
    340     CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
    341 
    342     for ( ; ri != re ; ++ri)
    343       if (ri->getAs<CFGStmt>())
    344         break;
    345 
    346     // No more CFGElements in the block?
    347     if (ri == re) {
    348       if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
    349         HasAbnormalEdge = true;
    350         continue;
    351       }
    352       // A labeled empty statement, or the entry block...
    353       HasPlainEdge = true;
    354       continue;
    355     }
    356 
    357     CFGStmt CS = ri->castAs<CFGStmt>();
    358     const Stmt *S = CS.getStmt();
    359     if (isa<ReturnStmt>(S)) {
    360       HasLiveReturn = true;
    361       continue;
    362     }
    363     if (isa<ObjCAtThrowStmt>(S)) {
    364       HasFakeEdge = true;
    365       continue;
    366     }
    367     if (isa<CXXThrowExpr>(S)) {
    368       HasFakeEdge = true;
    369       continue;
    370     }
    371     if (isa<MSAsmStmt>(S)) {
    372       // TODO: Verify this is correct.
    373       HasFakeEdge = true;
    374       HasLiveReturn = true;
    375       continue;
    376     }
    377     if (isa<CXXTryStmt>(S)) {
    378       HasAbnormalEdge = true;
    379       continue;
    380     }
    381     if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
    382         == B.succ_end()) {
    383       HasAbnormalEdge = true;
    384       continue;
    385     }
    386 
    387     HasPlainEdge = true;
    388   }
    389   if (!HasPlainEdge) {
    390     if (HasLiveReturn)
    391       return NeverFallThrough;
    392     return NeverFallThroughOrReturn;
    393   }
    394   if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
    395     return MaybeFallThrough;
    396   // This says AlwaysFallThrough for calls to functions that are not marked
    397   // noreturn, that don't return.  If people would like this warning to be more
    398   // accurate, such functions should be marked as noreturn.
    399   return AlwaysFallThrough;
    400 }
    401 
    402 namespace {
    403 
    404 struct CheckFallThroughDiagnostics {
    405   unsigned diag_MaybeFallThrough_HasNoReturn;
    406   unsigned diag_MaybeFallThrough_ReturnsNonVoid;
    407   unsigned diag_AlwaysFallThrough_HasNoReturn;
    408   unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
    409   unsigned diag_NeverFallThroughOrReturn;
    410   enum { Function, Block, Lambda } funMode;
    411   SourceLocation FuncLoc;
    412 
    413   static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
    414     CheckFallThroughDiagnostics D;
    415     D.FuncLoc = Func->getLocation();
    416     D.diag_MaybeFallThrough_HasNoReturn =
    417       diag::warn_falloff_noreturn_function;
    418     D.diag_MaybeFallThrough_ReturnsNonVoid =
    419       diag::warn_maybe_falloff_nonvoid_function;
    420     D.diag_AlwaysFallThrough_HasNoReturn =
    421       diag::warn_falloff_noreturn_function;
    422     D.diag_AlwaysFallThrough_ReturnsNonVoid =
    423       diag::warn_falloff_nonvoid_function;
    424 
    425     // Don't suggest that virtual functions be marked "noreturn", since they
    426     // might be overridden by non-noreturn functions.
    427     bool isVirtualMethod = false;
    428     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
    429       isVirtualMethod = Method->isVirtual();
    430 
    431     // Don't suggest that template instantiations be marked "noreturn"
    432     bool isTemplateInstantiation = false;
    433     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
    434       isTemplateInstantiation = Function->isTemplateInstantiation();
    435 
    436     if (!isVirtualMethod && !isTemplateInstantiation)
    437       D.diag_NeverFallThroughOrReturn =
    438         diag::warn_suggest_noreturn_function;
    439     else
    440       D.diag_NeverFallThroughOrReturn = 0;
    441 
    442     D.funMode = Function;
    443     return D;
    444   }
    445 
    446   static CheckFallThroughDiagnostics MakeForBlock() {
    447     CheckFallThroughDiagnostics D;
    448     D.diag_MaybeFallThrough_HasNoReturn =
    449       diag::err_noreturn_block_has_return_expr;
    450     D.diag_MaybeFallThrough_ReturnsNonVoid =
    451       diag::err_maybe_falloff_nonvoid_block;
    452     D.diag_AlwaysFallThrough_HasNoReturn =
    453       diag::err_noreturn_block_has_return_expr;
    454     D.diag_AlwaysFallThrough_ReturnsNonVoid =
    455       diag::err_falloff_nonvoid_block;
    456     D.diag_NeverFallThroughOrReturn = 0;
    457     D.funMode = Block;
    458     return D;
    459   }
    460 
    461   static CheckFallThroughDiagnostics MakeForLambda() {
    462     CheckFallThroughDiagnostics D;
    463     D.diag_MaybeFallThrough_HasNoReturn =
    464       diag::err_noreturn_lambda_has_return_expr;
    465     D.diag_MaybeFallThrough_ReturnsNonVoid =
    466       diag::warn_maybe_falloff_nonvoid_lambda;
    467     D.diag_AlwaysFallThrough_HasNoReturn =
    468       diag::err_noreturn_lambda_has_return_expr;
    469     D.diag_AlwaysFallThrough_ReturnsNonVoid =
    470       diag::warn_falloff_nonvoid_lambda;
    471     D.diag_NeverFallThroughOrReturn = 0;
    472     D.funMode = Lambda;
    473     return D;
    474   }
    475 
    476   bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
    477                         bool HasNoReturn) const {
    478     if (funMode == Function) {
    479       return (ReturnsVoid ||
    480               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
    481                           FuncLoc)) &&
    482              (!HasNoReturn ||
    483               D.isIgnored(diag::warn_noreturn_function_has_return_expr,
    484                           FuncLoc)) &&
    485              (!ReturnsVoid ||
    486               D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
    487     }
    488 
    489     // For blocks / lambdas.
    490     return ReturnsVoid && !HasNoReturn;
    491   }
    492 };
    493 
    494 }
    495 
    496 /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
    497 /// function that should return a value.  Check that we don't fall off the end
    498 /// of a noreturn function.  We assume that functions and blocks not marked
    499 /// noreturn will return.
    500 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
    501                                     const BlockExpr *blkExpr,
    502                                     const CheckFallThroughDiagnostics& CD,
    503                                     AnalysisDeclContext &AC) {
    504 
    505   bool ReturnsVoid = false;
    506   bool HasNoReturn = false;
    507 
    508   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    509     ReturnsVoid = FD->getReturnType()->isVoidType();
    510     HasNoReturn = FD->isNoReturn();
    511   }
    512   else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    513     ReturnsVoid = MD->getReturnType()->isVoidType();
    514     HasNoReturn = MD->hasAttr<NoReturnAttr>();
    515   }
    516   else if (isa<BlockDecl>(D)) {
    517     QualType BlockTy = blkExpr->getType();
    518     if (const FunctionType *FT =
    519           BlockTy->getPointeeType()->getAs<FunctionType>()) {
    520       if (FT->getReturnType()->isVoidType())
    521         ReturnsVoid = true;
    522       if (FT->getNoReturnAttr())
    523         HasNoReturn = true;
    524     }
    525   }
    526 
    527   DiagnosticsEngine &Diags = S.getDiagnostics();
    528 
    529   // Short circuit for compilation speed.
    530   if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
    531       return;
    532 
    533   // FIXME: Function try block
    534   if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
    535     switch (CheckFallThrough(AC)) {
    536       case UnknownFallThrough:
    537         break;
    538 
    539       case MaybeFallThrough:
    540         if (HasNoReturn)
    541           S.Diag(Compound->getRBracLoc(),
    542                  CD.diag_MaybeFallThrough_HasNoReturn);
    543         else if (!ReturnsVoid)
    544           S.Diag(Compound->getRBracLoc(),
    545                  CD.diag_MaybeFallThrough_ReturnsNonVoid);
    546         break;
    547       case AlwaysFallThrough:
    548         if (HasNoReturn)
    549           S.Diag(Compound->getRBracLoc(),
    550                  CD.diag_AlwaysFallThrough_HasNoReturn);
    551         else if (!ReturnsVoid)
    552           S.Diag(Compound->getRBracLoc(),
    553                  CD.diag_AlwaysFallThrough_ReturnsNonVoid);
    554         break;
    555       case NeverFallThroughOrReturn:
    556         if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
    557           if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    558             S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
    559               << 0 << FD;
    560           } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    561             S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
    562               << 1 << MD;
    563           } else {
    564             S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
    565           }
    566         }
    567         break;
    568       case NeverFallThrough:
    569         break;
    570     }
    571   }
    572 }
    573 
    574 //===----------------------------------------------------------------------===//
    575 // -Wuninitialized
    576 //===----------------------------------------------------------------------===//
    577 
    578 namespace {
    579 /// ContainsReference - A visitor class to search for references to
    580 /// a particular declaration (the needle) within any evaluated component of an
    581 /// expression (recursively).
    582 class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
    583   bool FoundReference;
    584   const DeclRefExpr *Needle;
    585 
    586 public:
    587   ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
    588     : EvaluatedExprVisitor<ContainsReference>(Context),
    589       FoundReference(false), Needle(Needle) {}
    590 
    591   void VisitExpr(Expr *E) {
    592     // Stop evaluating if we already have a reference.
    593     if (FoundReference)
    594       return;
    595 
    596     EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
    597   }
    598 
    599   void VisitDeclRefExpr(DeclRefExpr *E) {
    600     if (E == Needle)
    601       FoundReference = true;
    602     else
    603       EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
    604   }
    605 
    606   bool doesContainReference() const { return FoundReference; }
    607 };
    608 }
    609 
    610 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
    611   QualType VariableTy = VD->getType().getCanonicalType();
    612   if (VariableTy->isBlockPointerType() &&
    613       !VD->hasAttr<BlocksAttr>()) {
    614     S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
    615         << VD->getDeclName()
    616         << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
    617     return true;
    618   }
    619 
    620   // Don't issue a fixit if there is already an initializer.
    621   if (VD->getInit())
    622     return false;
    623 
    624   // Don't suggest a fixit inside macros.
    625   if (VD->getLocEnd().isMacroID())
    626     return false;
    627 
    628   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
    629 
    630   // Suggest possible initialization (if any).
    631   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
    632   if (Init.empty())
    633     return false;
    634 
    635   S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
    636     << FixItHint::CreateInsertion(Loc, Init);
    637   return true;
    638 }
    639 
    640 /// Create a fixit to remove an if-like statement, on the assumption that its
    641 /// condition is CondVal.
    642 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
    643                           const Stmt *Else, bool CondVal,
    644                           FixItHint &Fixit1, FixItHint &Fixit2) {
    645   if (CondVal) {
    646     // If condition is always true, remove all but the 'then'.
    647     Fixit1 = FixItHint::CreateRemoval(
    648         CharSourceRange::getCharRange(If->getLocStart(),
    649                                       Then->getLocStart()));
    650     if (Else) {
    651       SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
    652           Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
    653       Fixit2 = FixItHint::CreateRemoval(
    654           SourceRange(ElseKwLoc, Else->getLocEnd()));
    655     }
    656   } else {
    657     // If condition is always false, remove all but the 'else'.
    658     if (Else)
    659       Fixit1 = FixItHint::CreateRemoval(
    660           CharSourceRange::getCharRange(If->getLocStart(),
    661                                         Else->getLocStart()));
    662     else
    663       Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
    664   }
    665 }
    666 
    667 /// DiagUninitUse -- Helper function to produce a diagnostic for an
    668 /// uninitialized use of a variable.
    669 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
    670                           bool IsCapturedByBlock) {
    671   bool Diagnosed = false;
    672 
    673   switch (Use.getKind()) {
    674   case UninitUse::Always:
    675     S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
    676         << VD->getDeclName() << IsCapturedByBlock
    677         << Use.getUser()->getSourceRange();
    678     return;
    679 
    680   case UninitUse::AfterDecl:
    681   case UninitUse::AfterCall:
    682     S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
    683       << VD->getDeclName() << IsCapturedByBlock
    684       << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
    685       << const_cast<DeclContext*>(VD->getLexicalDeclContext())
    686       << VD->getSourceRange();
    687     S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
    688       << IsCapturedByBlock << Use.getUser()->getSourceRange();
    689     return;
    690 
    691   case UninitUse::Maybe:
    692   case UninitUse::Sometimes:
    693     // Carry on to report sometimes-uninitialized branches, if possible,
    694     // or a 'may be used uninitialized' diagnostic otherwise.
    695     break;
    696   }
    697 
    698   // Diagnose each branch which leads to a sometimes-uninitialized use.
    699   for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
    700        I != E; ++I) {
    701     assert(Use.getKind() == UninitUse::Sometimes);
    702 
    703     const Expr *User = Use.getUser();
    704     const Stmt *Term = I->Terminator;
    705 
    706     // Information used when building the diagnostic.
    707     unsigned DiagKind;
    708     StringRef Str;
    709     SourceRange Range;
    710 
    711     // FixIts to suppress the diagnostic by removing the dead condition.
    712     // For all binary terminators, branch 0 is taken if the condition is true,
    713     // and branch 1 is taken if the condition is false.
    714     int RemoveDiagKind = -1;
    715     const char *FixitStr =
    716         S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
    717                                   : (I->Output ? "1" : "0");
    718     FixItHint Fixit1, Fixit2;
    719 
    720     switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
    721     default:
    722       // Don't know how to report this. Just fall back to 'may be used
    723       // uninitialized'. FIXME: Can this happen?
    724       continue;
    725 
    726     // "condition is true / condition is false".
    727     case Stmt::IfStmtClass: {
    728       const IfStmt *IS = cast<IfStmt>(Term);
    729       DiagKind = 0;
    730       Str = "if";
    731       Range = IS->getCond()->getSourceRange();
    732       RemoveDiagKind = 0;
    733       CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
    734                     I->Output, Fixit1, Fixit2);
    735       break;
    736     }
    737     case Stmt::ConditionalOperatorClass: {
    738       const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
    739       DiagKind = 0;
    740       Str = "?:";
    741       Range = CO->getCond()->getSourceRange();
    742       RemoveDiagKind = 0;
    743       CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
    744                     I->Output, Fixit1, Fixit2);
    745       break;
    746     }
    747     case Stmt::BinaryOperatorClass: {
    748       const BinaryOperator *BO = cast<BinaryOperator>(Term);
    749       if (!BO->isLogicalOp())
    750         continue;
    751       DiagKind = 0;
    752       Str = BO->getOpcodeStr();
    753       Range = BO->getLHS()->getSourceRange();
    754       RemoveDiagKind = 0;
    755       if ((BO->getOpcode() == BO_LAnd && I->Output) ||
    756           (BO->getOpcode() == BO_LOr && !I->Output))
    757         // true && y -> y, false || y -> y.
    758         Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
    759                                                       BO->getOperatorLoc()));
    760       else
    761         // false && y -> false, true || y -> true.
    762         Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
    763       break;
    764     }
    765 
    766     // "loop is entered / loop is exited".
    767     case Stmt::WhileStmtClass:
    768       DiagKind = 1;
    769       Str = "while";
    770       Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
    771       RemoveDiagKind = 1;
    772       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
    773       break;
    774     case Stmt::ForStmtClass:
    775       DiagKind = 1;
    776       Str = "for";
    777       Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
    778       RemoveDiagKind = 1;
    779       if (I->Output)
    780         Fixit1 = FixItHint::CreateRemoval(Range);
    781       else
    782         Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
    783       break;
    784     case Stmt::CXXForRangeStmtClass:
    785       if (I->Output == 1) {
    786         // The use occurs if a range-based for loop's body never executes.
    787         // That may be impossible, and there's no syntactic fix for this,
    788         // so treat it as a 'may be uninitialized' case.
    789         continue;
    790       }
    791       DiagKind = 1;
    792       Str = "for";
    793       Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
    794       break;
    795 
    796     // "condition is true / loop is exited".
    797     case Stmt::DoStmtClass:
    798       DiagKind = 2;
    799       Str = "do";
    800       Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
    801       RemoveDiagKind = 1;
    802       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
    803       break;
    804 
    805     // "switch case is taken".
    806     case Stmt::CaseStmtClass:
    807       DiagKind = 3;
    808       Str = "case";
    809       Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
    810       break;
    811     case Stmt::DefaultStmtClass:
    812       DiagKind = 3;
    813       Str = "default";
    814       Range = cast<DefaultStmt>(Term)->getDefaultLoc();
    815       break;
    816     }
    817 
    818     S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
    819       << VD->getDeclName() << IsCapturedByBlock << DiagKind
    820       << Str << I->Output << Range;
    821     S.Diag(User->getLocStart(), diag::note_uninit_var_use)
    822       << IsCapturedByBlock << User->getSourceRange();
    823     if (RemoveDiagKind != -1)
    824       S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
    825         << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
    826 
    827     Diagnosed = true;
    828   }
    829 
    830   if (!Diagnosed)
    831     S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
    832         << VD->getDeclName() << IsCapturedByBlock
    833         << Use.getUser()->getSourceRange();
    834 }
    835 
    836 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
    837 /// uninitialized variable. This manages the different forms of diagnostic
    838 /// emitted for particular types of uses. Returns true if the use was diagnosed
    839 /// as a warning. If a particular use is one we omit warnings for, returns
    840 /// false.
    841 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
    842                                      const UninitUse &Use,
    843                                      bool alwaysReportSelfInit = false) {
    844 
    845   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
    846     // Inspect the initializer of the variable declaration which is
    847     // being referenced prior to its initialization. We emit
    848     // specialized diagnostics for self-initialization, and we
    849     // specifically avoid warning about self references which take the
    850     // form of:
    851     //
    852     //   int x = x;
    853     //
    854     // This is used to indicate to GCC that 'x' is intentionally left
    855     // uninitialized. Proven code paths which access 'x' in
    856     // an uninitialized state after this will still warn.
    857     if (const Expr *Initializer = VD->getInit()) {
    858       if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
    859         return false;
    860 
    861       ContainsReference CR(S.Context, DRE);
    862       CR.Visit(const_cast<Expr*>(Initializer));
    863       if (CR.doesContainReference()) {
    864         S.Diag(DRE->getLocStart(),
    865                diag::warn_uninit_self_reference_in_init)
    866           << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
    867         return true;
    868       }
    869     }
    870 
    871     DiagUninitUse(S, VD, Use, false);
    872   } else {
    873     const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
    874     if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
    875       S.Diag(BE->getLocStart(),
    876              diag::warn_uninit_byref_blockvar_captured_by_block)
    877         << VD->getDeclName();
    878     else
    879       DiagUninitUse(S, VD, Use, true);
    880   }
    881 
    882   // Report where the variable was declared when the use wasn't within
    883   // the initializer of that declaration & we didn't already suggest
    884   // an initialization fixit.
    885   if (!SuggestInitializationFixit(S, VD))
    886     S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
    887       << VD->getDeclName();
    888 
    889   return true;
    890 }
    891 
    892 namespace {
    893   class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
    894   public:
    895     FallthroughMapper(Sema &S)
    896       : FoundSwitchStatements(false),
    897         S(S) {
    898     }
    899 
    900     bool foundSwitchStatements() const { return FoundSwitchStatements; }
    901 
    902     void markFallthroughVisited(const AttributedStmt *Stmt) {
    903       bool Found = FallthroughStmts.erase(Stmt);
    904       assert(Found);
    905       (void)Found;
    906     }
    907 
    908     typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
    909 
    910     const AttrStmts &getFallthroughStmts() const {
    911       return FallthroughStmts;
    912     }
    913 
    914     void fillReachableBlocks(CFG *Cfg) {
    915       assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
    916       std::deque<const CFGBlock *> BlockQueue;
    917 
    918       ReachableBlocks.insert(&Cfg->getEntry());
    919       BlockQueue.push_back(&Cfg->getEntry());
    920       // Mark all case blocks reachable to avoid problems with switching on
    921       // constants, covered enums, etc.
    922       // These blocks can contain fall-through annotations, and we don't want to
    923       // issue a warn_fallthrough_attr_unreachable for them.
    924       for (const auto *B : *Cfg) {
    925         const Stmt *L = B->getLabel();
    926         if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B))
    927           BlockQueue.push_back(B);
    928       }
    929 
    930       while (!BlockQueue.empty()) {
    931         const CFGBlock *P = BlockQueue.front();
    932         BlockQueue.pop_front();
    933         for (CFGBlock::const_succ_iterator I = P->succ_begin(),
    934                                            E = P->succ_end();
    935              I != E; ++I) {
    936           if (*I && ReachableBlocks.insert(*I))
    937             BlockQueue.push_back(*I);
    938         }
    939       }
    940     }
    941 
    942     bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
    943       assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
    944 
    945       int UnannotatedCnt = 0;
    946       AnnotatedCnt = 0;
    947 
    948       std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
    949       while (!BlockQueue.empty()) {
    950         const CFGBlock *P = BlockQueue.front();
    951         BlockQueue.pop_front();
    952         if (!P) continue;
    953 
    954         const Stmt *Term = P->getTerminator();
    955         if (Term && isa<SwitchStmt>(Term))
    956           continue; // Switch statement, good.
    957 
    958         const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
    959         if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
    960           continue; // Previous case label has no statements, good.
    961 
    962         const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
    963         if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
    964           continue; // Case label is preceded with a normal label, good.
    965 
    966         if (!ReachableBlocks.count(P)) {
    967           for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
    968                                                 ElemEnd = P->rend();
    969                ElemIt != ElemEnd; ++ElemIt) {
    970             if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
    971               if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
    972                 S.Diag(AS->getLocStart(),
    973                        diag::warn_fallthrough_attr_unreachable);
    974                 markFallthroughVisited(AS);
    975                 ++AnnotatedCnt;
    976                 break;
    977               }
    978               // Don't care about other unreachable statements.
    979             }
    980           }
    981           // If there are no unreachable statements, this may be a special
    982           // case in CFG:
    983           // case X: {
    984           //    A a;  // A has a destructor.
    985           //    break;
    986           // }
    987           // // <<<< This place is represented by a 'hanging' CFG block.
    988           // case Y:
    989           continue;
    990         }
    991 
    992         const Stmt *LastStmt = getLastStmt(*P);
    993         if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
    994           markFallthroughVisited(AS);
    995           ++AnnotatedCnt;
    996           continue; // Fallthrough annotation, good.
    997         }
    998 
    999         if (!LastStmt) { // This block contains no executable statements.
   1000           // Traverse its predecessors.
   1001           std::copy(P->pred_begin(), P->pred_end(),
   1002                     std::back_inserter(BlockQueue));
   1003           continue;
   1004         }
   1005 
   1006         ++UnannotatedCnt;
   1007       }
   1008       return !!UnannotatedCnt;
   1009     }
   1010 
   1011     // RecursiveASTVisitor setup.
   1012     bool shouldWalkTypesOfTypeLocs() const { return false; }
   1013 
   1014     bool VisitAttributedStmt(AttributedStmt *S) {
   1015       if (asFallThroughAttr(S))
   1016         FallthroughStmts.insert(S);
   1017       return true;
   1018     }
   1019 
   1020     bool VisitSwitchStmt(SwitchStmt *S) {
   1021       FoundSwitchStatements = true;
   1022       return true;
   1023     }
   1024 
   1025     // We don't want to traverse local type declarations. We analyze their
   1026     // methods separately.
   1027     bool TraverseDecl(Decl *D) { return true; }
   1028 
   1029     // We analyze lambda bodies separately. Skip them here.
   1030     bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
   1031 
   1032   private:
   1033 
   1034     static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
   1035       if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
   1036         if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
   1037           return AS;
   1038       }
   1039       return nullptr;
   1040     }
   1041 
   1042     static const Stmt *getLastStmt(const CFGBlock &B) {
   1043       if (const Stmt *Term = B.getTerminator())
   1044         return Term;
   1045       for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
   1046                                             ElemEnd = B.rend();
   1047                                             ElemIt != ElemEnd; ++ElemIt) {
   1048         if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
   1049           return CS->getStmt();
   1050       }
   1051       // Workaround to detect a statement thrown out by CFGBuilder:
   1052       //   case X: {} case Y:
   1053       //   case X: ; case Y:
   1054       if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
   1055         if (!isa<SwitchCase>(SW->getSubStmt()))
   1056           return SW->getSubStmt();
   1057 
   1058       return nullptr;
   1059     }
   1060 
   1061     bool FoundSwitchStatements;
   1062     AttrStmts FallthroughStmts;
   1063     Sema &S;
   1064     llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
   1065   };
   1066 }
   1067 
   1068 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
   1069                                             bool PerFunction) {
   1070   // Only perform this analysis when using C++11.  There is no good workflow
   1071   // for this warning when not using C++11.  There is no good way to silence
   1072   // the warning (no attribute is available) unless we are using C++11's support
   1073   // for generalized attributes.  Once could use pragmas to silence the warning,
   1074   // but as a general solution that is gross and not in the spirit of this
   1075   // warning.
   1076   //
   1077   // NOTE: This an intermediate solution.  There are on-going discussions on
   1078   // how to properly support this warning outside of C++11 with an annotation.
   1079   if (!AC.getASTContext().getLangOpts().CPlusPlus11)
   1080     return;
   1081 
   1082   FallthroughMapper FM(S);
   1083   FM.TraverseStmt(AC.getBody());
   1084 
   1085   if (!FM.foundSwitchStatements())
   1086     return;
   1087 
   1088   if (PerFunction && FM.getFallthroughStmts().empty())
   1089     return;
   1090 
   1091   CFG *Cfg = AC.getCFG();
   1092 
   1093   if (!Cfg)
   1094     return;
   1095 
   1096   FM.fillReachableBlocks(Cfg);
   1097 
   1098   for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
   1099     const CFGBlock *B = *I;
   1100     const Stmt *Label = B->getLabel();
   1101 
   1102     if (!Label || !isa<SwitchCase>(Label))
   1103       continue;
   1104 
   1105     int AnnotatedCnt;
   1106 
   1107     if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
   1108       continue;
   1109 
   1110     S.Diag(Label->getLocStart(),
   1111         PerFunction ? diag::warn_unannotated_fallthrough_per_function
   1112                     : diag::warn_unannotated_fallthrough);
   1113 
   1114     if (!AnnotatedCnt) {
   1115       SourceLocation L = Label->getLocStart();
   1116       if (L.isMacroID())
   1117         continue;
   1118       if (S.getLangOpts().CPlusPlus11) {
   1119         const Stmt *Term = B->getTerminator();
   1120         // Skip empty cases.
   1121         while (B->empty() && !Term && B->succ_size() == 1) {
   1122           B = *B->succ_begin();
   1123           Term = B->getTerminator();
   1124         }
   1125         if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
   1126           Preprocessor &PP = S.getPreprocessor();
   1127           TokenValue Tokens[] = {
   1128             tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
   1129             tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
   1130             tok::r_square, tok::r_square
   1131           };
   1132           StringRef AnnotationSpelling = "[[clang::fallthrough]]";
   1133           StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
   1134           if (!MacroName.empty())
   1135             AnnotationSpelling = MacroName;
   1136           SmallString<64> TextToInsert(AnnotationSpelling);
   1137           TextToInsert += "; ";
   1138           S.Diag(L, diag::note_insert_fallthrough_fixit) <<
   1139               AnnotationSpelling <<
   1140               FixItHint::CreateInsertion(L, TextToInsert);
   1141         }
   1142       }
   1143       S.Diag(L, diag::note_insert_break_fixit) <<
   1144         FixItHint::CreateInsertion(L, "break; ");
   1145     }
   1146   }
   1147 
   1148   for (const auto *F : FM.getFallthroughStmts())
   1149     S.Diag(F->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
   1150 }
   1151 
   1152 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
   1153                      const Stmt *S) {
   1154   assert(S);
   1155 
   1156   do {
   1157     switch (S->getStmtClass()) {
   1158     case Stmt::ForStmtClass:
   1159     case Stmt::WhileStmtClass:
   1160     case Stmt::CXXForRangeStmtClass:
   1161     case Stmt::ObjCForCollectionStmtClass:
   1162       return true;
   1163     case Stmt::DoStmtClass: {
   1164       const Expr *Cond = cast<DoStmt>(S)->getCond();
   1165       llvm::APSInt Val;
   1166       if (!Cond->EvaluateAsInt(Val, Ctx))
   1167         return true;
   1168       return Val.getBoolValue();
   1169     }
   1170     default:
   1171       break;
   1172     }
   1173   } while ((S = PM.getParent(S)));
   1174 
   1175   return false;
   1176 }
   1177 
   1178 
   1179 static void diagnoseRepeatedUseOfWeak(Sema &S,
   1180                                       const sema::FunctionScopeInfo *CurFn,
   1181                                       const Decl *D,
   1182                                       const ParentMap &PM) {
   1183   typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
   1184   typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
   1185   typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
   1186   typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
   1187   StmtUsesPair;
   1188 
   1189   ASTContext &Ctx = S.getASTContext();
   1190 
   1191   const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
   1192 
   1193   // Extract all weak objects that are referenced more than once.
   1194   SmallVector<StmtUsesPair, 8> UsesByStmt;
   1195   for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
   1196        I != E; ++I) {
   1197     const WeakUseVector &Uses = I->second;
   1198 
   1199     // Find the first read of the weak object.
   1200     WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
   1201     for ( ; UI != UE; ++UI) {
   1202       if (UI->isUnsafe())
   1203         break;
   1204     }
   1205 
   1206     // If there were only writes to this object, don't warn.
   1207     if (UI == UE)
   1208       continue;
   1209 
   1210     // If there was only one read, followed by any number of writes, and the
   1211     // read is not within a loop, don't warn. Additionally, don't warn in a
   1212     // loop if the base object is a local variable -- local variables are often
   1213     // changed in loops.
   1214     if (UI == Uses.begin()) {
   1215       WeakUseVector::const_iterator UI2 = UI;
   1216       for (++UI2; UI2 != UE; ++UI2)
   1217         if (UI2->isUnsafe())
   1218           break;
   1219 
   1220       if (UI2 == UE) {
   1221         if (!isInLoop(Ctx, PM, UI->getUseExpr()))
   1222           continue;
   1223 
   1224         const WeakObjectProfileTy &Profile = I->first;
   1225         if (!Profile.isExactProfile())
   1226           continue;
   1227 
   1228         const NamedDecl *Base = Profile.getBase();
   1229         if (!Base)
   1230           Base = Profile.getProperty();
   1231         assert(Base && "A profile always has a base or property.");
   1232 
   1233         if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
   1234           if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
   1235             continue;
   1236       }
   1237     }
   1238 
   1239     UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
   1240   }
   1241 
   1242   if (UsesByStmt.empty())
   1243     return;
   1244 
   1245   // Sort by first use so that we emit the warnings in a deterministic order.
   1246   SourceManager &SM = S.getSourceManager();
   1247   std::sort(UsesByStmt.begin(), UsesByStmt.end(),
   1248             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
   1249     return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
   1250                                         RHS.first->getLocStart());
   1251   });
   1252 
   1253   // Classify the current code body for better warning text.
   1254   // This enum should stay in sync with the cases in
   1255   // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
   1256   // FIXME: Should we use a common classification enum and the same set of
   1257   // possibilities all throughout Sema?
   1258   enum {
   1259     Function,
   1260     Method,
   1261     Block,
   1262     Lambda
   1263   } FunctionKind;
   1264 
   1265   if (isa<sema::BlockScopeInfo>(CurFn))
   1266     FunctionKind = Block;
   1267   else if (isa<sema::LambdaScopeInfo>(CurFn))
   1268     FunctionKind = Lambda;
   1269   else if (isa<ObjCMethodDecl>(D))
   1270     FunctionKind = Method;
   1271   else
   1272     FunctionKind = Function;
   1273 
   1274   // Iterate through the sorted problems and emit warnings for each.
   1275   for (const auto &P : UsesByStmt) {
   1276     const Stmt *FirstRead = P.first;
   1277     const WeakObjectProfileTy &Key = P.second->first;
   1278     const WeakUseVector &Uses = P.second->second;
   1279 
   1280     // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
   1281     // may not contain enough information to determine that these are different
   1282     // properties. We can only be 100% sure of a repeated use in certain cases,
   1283     // and we adjust the diagnostic kind accordingly so that the less certain
   1284     // case can be turned off if it is too noisy.
   1285     unsigned DiagKind;
   1286     if (Key.isExactProfile())
   1287       DiagKind = diag::warn_arc_repeated_use_of_weak;
   1288     else
   1289       DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
   1290 
   1291     // Classify the weak object being accessed for better warning text.
   1292     // This enum should stay in sync with the cases in
   1293     // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
   1294     enum {
   1295       Variable,
   1296       Property,
   1297       ImplicitProperty,
   1298       Ivar
   1299     } ObjectKind;
   1300 
   1301     const NamedDecl *D = Key.getProperty();
   1302     if (isa<VarDecl>(D))
   1303       ObjectKind = Variable;
   1304     else if (isa<ObjCPropertyDecl>(D))
   1305       ObjectKind = Property;
   1306     else if (isa<ObjCMethodDecl>(D))
   1307       ObjectKind = ImplicitProperty;
   1308     else if (isa<ObjCIvarDecl>(D))
   1309       ObjectKind = Ivar;
   1310     else
   1311       llvm_unreachable("Unexpected weak object kind!");
   1312 
   1313     // Show the first time the object was read.
   1314     S.Diag(FirstRead->getLocStart(), DiagKind)
   1315       << int(ObjectKind) << D << int(FunctionKind)
   1316       << FirstRead->getSourceRange();
   1317 
   1318     // Print all the other accesses as notes.
   1319     for (const auto &Use : Uses) {
   1320       if (Use.getUseExpr() == FirstRead)
   1321         continue;
   1322       S.Diag(Use.getUseExpr()->getLocStart(),
   1323              diag::note_arc_weak_also_accessed_here)
   1324           << Use.getUseExpr()->getSourceRange();
   1325     }
   1326   }
   1327 }
   1328 
   1329 namespace {
   1330 class UninitValsDiagReporter : public UninitVariablesHandler {
   1331   Sema &S;
   1332   typedef SmallVector<UninitUse, 2> UsesVec;
   1333   typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
   1334   // Prefer using MapVector to DenseMap, so that iteration order will be
   1335   // the same as insertion order. This is needed to obtain a deterministic
   1336   // order of diagnostics when calling flushDiagnostics().
   1337   typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
   1338   UsesMap *uses;
   1339 
   1340 public:
   1341   UninitValsDiagReporter(Sema &S) : S(S), uses(nullptr) {}
   1342   ~UninitValsDiagReporter() {
   1343     flushDiagnostics();
   1344   }
   1345 
   1346   MappedType &getUses(const VarDecl *vd) {
   1347     if (!uses)
   1348       uses = new UsesMap();
   1349 
   1350     MappedType &V = (*uses)[vd];
   1351     if (!V.getPointer())
   1352       V.setPointer(new UsesVec());
   1353 
   1354     return V;
   1355   }
   1356 
   1357   void handleUseOfUninitVariable(const VarDecl *vd,
   1358                                  const UninitUse &use) override {
   1359     getUses(vd).getPointer()->push_back(use);
   1360   }
   1361 
   1362   void handleSelfInit(const VarDecl *vd) override {
   1363     getUses(vd).setInt(true);
   1364   }
   1365 
   1366   void flushDiagnostics() {
   1367     if (!uses)
   1368       return;
   1369 
   1370     for (const auto &P : *uses) {
   1371       const VarDecl *vd = P.first;
   1372       const MappedType &V = P.second;
   1373 
   1374       UsesVec *vec = V.getPointer();
   1375       bool hasSelfInit = V.getInt();
   1376 
   1377       // Specially handle the case where we have uses of an uninitialized
   1378       // variable, but the root cause is an idiomatic self-init.  We want
   1379       // to report the diagnostic at the self-init since that is the root cause.
   1380       if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
   1381         DiagnoseUninitializedUse(S, vd,
   1382                                  UninitUse(vd->getInit()->IgnoreParenCasts(),
   1383                                            /* isAlwaysUninit */ true),
   1384                                  /* alwaysReportSelfInit */ true);
   1385       else {
   1386         // Sort the uses by their SourceLocations.  While not strictly
   1387         // guaranteed to produce them in line/column order, this will provide
   1388         // a stable ordering.
   1389         std::sort(vec->begin(), vec->end(),
   1390                   [](const UninitUse &a, const UninitUse &b) {
   1391           // Prefer a more confident report over a less confident one.
   1392           if (a.getKind() != b.getKind())
   1393             return a.getKind() > b.getKind();
   1394           return a.getUser()->getLocStart() < b.getUser()->getLocStart();
   1395         });
   1396 
   1397         for (const auto &U : *vec) {
   1398           // If we have self-init, downgrade all uses to 'may be uninitialized'.
   1399           UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
   1400 
   1401           if (DiagnoseUninitializedUse(S, vd, Use))
   1402             // Skip further diagnostics for this variable. We try to warn only
   1403             // on the first point at which a variable is used uninitialized.
   1404             break;
   1405         }
   1406       }
   1407 
   1408       // Release the uses vector.
   1409       delete vec;
   1410     }
   1411     delete uses;
   1412   }
   1413 
   1414 private:
   1415   static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
   1416     return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
   1417       return U.getKind() == UninitUse::Always ||
   1418              U.getKind() == UninitUse::AfterCall ||
   1419              U.getKind() == UninitUse::AfterDecl;
   1420     });
   1421   }
   1422 };
   1423 }
   1424 
   1425 namespace clang {
   1426 namespace {
   1427 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
   1428 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
   1429 typedef std::list<DelayedDiag> DiagList;
   1430 
   1431 struct SortDiagBySourceLocation {
   1432   SourceManager &SM;
   1433   SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
   1434 
   1435   bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
   1436     // Although this call will be slow, this is only called when outputting
   1437     // multiple warnings.
   1438     return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
   1439   }
   1440 };
   1441 }}
   1442 
   1443 //===----------------------------------------------------------------------===//
   1444 // -Wthread-safety
   1445 //===----------------------------------------------------------------------===//
   1446 namespace clang {
   1447 namespace thread_safety {
   1448 namespace {
   1449 class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
   1450   Sema &S;
   1451   DiagList Warnings;
   1452   SourceLocation FunLocation, FunEndLocation;
   1453 
   1454   // Helper functions
   1455   void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
   1456                         SourceLocation Loc) {
   1457     // Gracefully handle rare cases when the analysis can't get a more
   1458     // precise source location.
   1459     if (!Loc.isValid())
   1460       Loc = FunLocation;
   1461     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
   1462     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1463   }
   1464 
   1465  public:
   1466   ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
   1467     : S(S), FunLocation(FL), FunEndLocation(FEL) {}
   1468 
   1469   /// \brief Emit all buffered diagnostics in order of sourcelocation.
   1470   /// We need to output diagnostics produced while iterating through
   1471   /// the lockset in deterministic order, so this function orders diagnostics
   1472   /// and outputs them.
   1473   void emitDiagnostics() {
   1474     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
   1475     for (const auto &Diag : Warnings) {
   1476       S.Diag(Diag.first.first, Diag.first.second);
   1477       for (const auto &Note : Diag.second)
   1478         S.Diag(Note.first, Note.second);
   1479     }
   1480   }
   1481 
   1482   void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
   1483     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
   1484                                          << Loc);
   1485     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1486   }
   1487   void handleUnmatchedUnlock(StringRef Kind, Name LockName,
   1488                              SourceLocation Loc) override {
   1489     warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
   1490   }
   1491   void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
   1492                                  LockKind Expected, LockKind Received,
   1493                                  SourceLocation Loc) override {
   1494     if (Loc.isInvalid())
   1495       Loc = FunLocation;
   1496     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
   1497                                          << Kind << LockName << Received
   1498                                          << Expected);
   1499     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1500   }
   1501   void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
   1502     warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
   1503   }
   1504 
   1505   void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
   1506                                  SourceLocation LocLocked,
   1507                                  SourceLocation LocEndOfScope,
   1508                                  LockErrorKind LEK) override {
   1509     unsigned DiagID = 0;
   1510     switch (LEK) {
   1511       case LEK_LockedSomePredecessors:
   1512         DiagID = diag::warn_lock_some_predecessors;
   1513         break;
   1514       case LEK_LockedSomeLoopIterations:
   1515         DiagID = diag::warn_expecting_lock_held_on_loop;
   1516         break;
   1517       case LEK_LockedAtEndOfFunction:
   1518         DiagID = diag::warn_no_unlock;
   1519         break;
   1520       case LEK_NotLockedAtEndOfFunction:
   1521         DiagID = diag::warn_expecting_locked;
   1522         break;
   1523     }
   1524     if (LocEndOfScope.isInvalid())
   1525       LocEndOfScope = FunEndLocation;
   1526 
   1527     PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
   1528                                                                << LockName);
   1529     if (LocLocked.isValid()) {
   1530       PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
   1531                                               << Kind);
   1532       Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
   1533       return;
   1534     }
   1535     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1536   }
   1537 
   1538   void handleExclusiveAndShared(StringRef Kind, Name LockName,
   1539                                 SourceLocation Loc1,
   1540                                 SourceLocation Loc2) override {
   1541     PartialDiagnosticAt Warning(Loc1,
   1542                                 S.PDiag(diag::warn_lock_exclusive_and_shared)
   1543                                     << Kind << LockName);
   1544     PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
   1545                                        << Kind << LockName);
   1546     Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
   1547   }
   1548 
   1549   void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
   1550                          ProtectedOperationKind POK, AccessKind AK,
   1551                          SourceLocation Loc) override {
   1552     assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
   1553            "Only works for variables");
   1554     unsigned DiagID = POK == POK_VarAccess?
   1555                         diag::warn_variable_requires_any_lock:
   1556                         diag::warn_var_deref_requires_any_lock;
   1557     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
   1558       << D->getNameAsString() << getLockKindFromAccessKind(AK));
   1559     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1560   }
   1561 
   1562   void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
   1563                           ProtectedOperationKind POK, Name LockName,
   1564                           LockKind LK, SourceLocation Loc,
   1565                           Name *PossibleMatch) override {
   1566     unsigned DiagID = 0;
   1567     if (PossibleMatch) {
   1568       switch (POK) {
   1569         case POK_VarAccess:
   1570           DiagID = diag::warn_variable_requires_lock_precise;
   1571           break;
   1572         case POK_VarDereference:
   1573           DiagID = diag::warn_var_deref_requires_lock_precise;
   1574           break;
   1575         case POK_FunctionCall:
   1576           DiagID = diag::warn_fun_requires_lock_precise;
   1577           break;
   1578       }
   1579       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
   1580                                                        << D->getNameAsString()
   1581                                                        << LockName << LK);
   1582       PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
   1583                                         << *PossibleMatch);
   1584       Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
   1585     } else {
   1586       switch (POK) {
   1587         case POK_VarAccess:
   1588           DiagID = diag::warn_variable_requires_lock;
   1589           break;
   1590         case POK_VarDereference:
   1591           DiagID = diag::warn_var_deref_requires_lock;
   1592           break;
   1593         case POK_FunctionCall:
   1594           DiagID = diag::warn_fun_requires_lock;
   1595           break;
   1596       }
   1597       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
   1598                                                        << D->getNameAsString()
   1599                                                        << LockName << LK);
   1600       Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1601     }
   1602   }
   1603 
   1604   void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
   1605                              SourceLocation Loc) override {
   1606     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
   1607                                          << Kind << FunName << LockName);
   1608     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1609   }
   1610 };
   1611 }
   1612 }
   1613 }
   1614 
   1615 //===----------------------------------------------------------------------===//
   1616 // -Wconsumed
   1617 //===----------------------------------------------------------------------===//
   1618 
   1619 namespace clang {
   1620 namespace consumed {
   1621 namespace {
   1622 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
   1623 
   1624   Sema &S;
   1625   DiagList Warnings;
   1626 
   1627 public:
   1628 
   1629   ConsumedWarningsHandler(Sema &S) : S(S) {}
   1630 
   1631   void emitDiagnostics() override {
   1632     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
   1633     for (const auto &Diag : Warnings) {
   1634       S.Diag(Diag.first.first, Diag.first.second);
   1635       for (const auto &Note : Diag.second)
   1636         S.Diag(Note.first, Note.second);
   1637     }
   1638   }
   1639 
   1640   void warnLoopStateMismatch(SourceLocation Loc,
   1641                              StringRef VariableName) override {
   1642     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
   1643       VariableName);
   1644 
   1645     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1646   }
   1647 
   1648   void warnParamReturnTypestateMismatch(SourceLocation Loc,
   1649                                         StringRef VariableName,
   1650                                         StringRef ExpectedState,
   1651                                         StringRef ObservedState) override {
   1652 
   1653     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1654       diag::warn_param_return_typestate_mismatch) << VariableName <<
   1655         ExpectedState << ObservedState);
   1656 
   1657     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1658   }
   1659 
   1660   void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
   1661                                   StringRef ObservedState) override {
   1662 
   1663     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1664       diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
   1665 
   1666     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1667   }
   1668 
   1669   void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
   1670                                               StringRef TypeName) override {
   1671     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1672       diag::warn_return_typestate_for_unconsumable_type) << TypeName);
   1673 
   1674     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1675   }
   1676 
   1677   void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
   1678                                    StringRef ObservedState) override {
   1679 
   1680     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1681       diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
   1682 
   1683     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1684   }
   1685 
   1686   void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
   1687                                    SourceLocation Loc) override {
   1688 
   1689     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1690       diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
   1691 
   1692     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1693   }
   1694 
   1695   void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
   1696                              StringRef State, SourceLocation Loc) override {
   1697 
   1698     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
   1699                                 MethodName << VariableName << State);
   1700 
   1701     Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
   1702   }
   1703 };
   1704 }}}
   1705 
   1706 //===----------------------------------------------------------------------===//
   1707 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
   1708 //  warnings on a function, method, or block.
   1709 //===----------------------------------------------------------------------===//
   1710 
   1711 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
   1712   enableCheckFallThrough = 1;
   1713   enableCheckUnreachable = 0;
   1714   enableThreadSafetyAnalysis = 0;
   1715   enableConsumedAnalysis = 0;
   1716 }
   1717 
   1718 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
   1719   return (unsigned)!D.isIgnored(diag, SourceLocation());
   1720 }
   1721 
   1722 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
   1723   : S(s),
   1724     NumFunctionsAnalyzed(0),
   1725     NumFunctionsWithBadCFGs(0),
   1726     NumCFGBlocks(0),
   1727     MaxCFGBlocksPerFunction(0),
   1728     NumUninitAnalysisFunctions(0),
   1729     NumUninitAnalysisVariables(0),
   1730     MaxUninitAnalysisVariablesPerFunction(0),
   1731     NumUninitAnalysisBlockVisits(0),
   1732     MaxUninitAnalysisBlockVisitsPerFunction(0) {
   1733 
   1734   using namespace diag;
   1735   DiagnosticsEngine &D = S.getDiagnostics();
   1736 
   1737   DefaultPolicy.enableCheckUnreachable =
   1738     isEnabled(D, warn_unreachable) ||
   1739     isEnabled(D, warn_unreachable_break) ||
   1740     isEnabled(D, warn_unreachable_return) ||
   1741     isEnabled(D, warn_unreachable_loop_increment);
   1742 
   1743   DefaultPolicy.enableThreadSafetyAnalysis =
   1744     isEnabled(D, warn_double_lock);
   1745 
   1746   DefaultPolicy.enableConsumedAnalysis =
   1747     isEnabled(D, warn_use_in_invalid_state);
   1748 }
   1749 
   1750 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
   1751   for (const auto &D : fscope->PossiblyUnreachableDiags)
   1752     S.Diag(D.Loc, D.PD);
   1753 }
   1754 
   1755 void clang::sema::
   1756 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
   1757                                      sema::FunctionScopeInfo *fscope,
   1758                                      const Decl *D, const BlockExpr *blkExpr) {
   1759 
   1760   // We avoid doing analysis-based warnings when there are errors for
   1761   // two reasons:
   1762   // (1) The CFGs often can't be constructed (if the body is invalid), so
   1763   //     don't bother trying.
   1764   // (2) The code already has problems; running the analysis just takes more
   1765   //     time.
   1766   DiagnosticsEngine &Diags = S.getDiagnostics();
   1767 
   1768   // Do not do any analysis for declarations in system headers if we are
   1769   // going to just ignore them.
   1770   if (Diags.getSuppressSystemWarnings() &&
   1771       S.SourceMgr.isInSystemHeader(D->getLocation()))
   1772     return;
   1773 
   1774   // For code in dependent contexts, we'll do this at instantiation time.
   1775   if (cast<DeclContext>(D)->isDependentContext())
   1776     return;
   1777 
   1778   if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
   1779     // Flush out any possibly unreachable diagnostics.
   1780     flushDiagnostics(S, fscope);
   1781     return;
   1782   }
   1783 
   1784   const Stmt *Body = D->getBody();
   1785   assert(Body);
   1786 
   1787   // Construct the analysis context with the specified CFG build options.
   1788   AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
   1789 
   1790   // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
   1791   // explosion for destructors that can result and the compile time hit.
   1792   AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
   1793   AC.getCFGBuildOptions().AddEHEdges = false;
   1794   AC.getCFGBuildOptions().AddInitializers = true;
   1795   AC.getCFGBuildOptions().AddImplicitDtors = true;
   1796   AC.getCFGBuildOptions().AddTemporaryDtors = true;
   1797   AC.getCFGBuildOptions().AddCXXNewAllocator = false;
   1798 
   1799   // Force that certain expressions appear as CFGElements in the CFG.  This
   1800   // is used to speed up various analyses.
   1801   // FIXME: This isn't the right factoring.  This is here for initial
   1802   // prototyping, but we need a way for analyses to say what expressions they
   1803   // expect to always be CFGElements and then fill in the BuildOptions
   1804   // appropriately.  This is essentially a layering violation.
   1805   if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
   1806       P.enableConsumedAnalysis) {
   1807     // Unreachable code analysis and thread safety require a linearized CFG.
   1808     AC.getCFGBuildOptions().setAllAlwaysAdd();
   1809   }
   1810   else {
   1811     AC.getCFGBuildOptions()
   1812       .setAlwaysAdd(Stmt::BinaryOperatorClass)
   1813       .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
   1814       .setAlwaysAdd(Stmt::BlockExprClass)
   1815       .setAlwaysAdd(Stmt::CStyleCastExprClass)
   1816       .setAlwaysAdd(Stmt::DeclRefExprClass)
   1817       .setAlwaysAdd(Stmt::ImplicitCastExprClass)
   1818       .setAlwaysAdd(Stmt::UnaryOperatorClass)
   1819       .setAlwaysAdd(Stmt::AttributedStmtClass);
   1820   }
   1821 
   1822   // Install the logical handler for -Wtautological-overlap-compare
   1823   std::unique_ptr<LogicalErrorHandler> LEH;
   1824   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
   1825                        D->getLocStart())) {
   1826     LEH.reset(new LogicalErrorHandler(S));
   1827     AC.getCFGBuildOptions().Observer = LEH.get();
   1828   }
   1829 
   1830   // Emit delayed diagnostics.
   1831   if (!fscope->PossiblyUnreachableDiags.empty()) {
   1832     bool analyzed = false;
   1833 
   1834     // Register the expressions with the CFGBuilder.
   1835     for (const auto &D : fscope->PossiblyUnreachableDiags) {
   1836       if (D.stmt)
   1837         AC.registerForcedBlockExpression(D.stmt);
   1838     }
   1839 
   1840     if (AC.getCFG()) {
   1841       analyzed = true;
   1842       for (const auto &D : fscope->PossiblyUnreachableDiags) {
   1843         bool processed = false;
   1844         if (D.stmt) {
   1845           const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
   1846           CFGReverseBlockReachabilityAnalysis *cra =
   1847               AC.getCFGReachablityAnalysis();
   1848           // FIXME: We should be able to assert that block is non-null, but
   1849           // the CFG analysis can skip potentially-evaluated expressions in
   1850           // edge cases; see test/Sema/vla-2.c.
   1851           if (block && cra) {
   1852             // Can this block be reached from the entrance?
   1853             if (cra->isReachable(&AC.getCFG()->getEntry(), block))
   1854               S.Diag(D.Loc, D.PD);
   1855             processed = true;
   1856           }
   1857         }
   1858         if (!processed) {
   1859           // Emit the warning anyway if we cannot map to a basic block.
   1860           S.Diag(D.Loc, D.PD);
   1861         }
   1862       }
   1863     }
   1864 
   1865     if (!analyzed)
   1866       flushDiagnostics(S, fscope);
   1867   }
   1868 
   1869 
   1870   // Warning: check missing 'return'
   1871   if (P.enableCheckFallThrough) {
   1872     const CheckFallThroughDiagnostics &CD =
   1873       (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
   1874        : (isa<CXXMethodDecl>(D) &&
   1875           cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
   1876           cast<CXXMethodDecl>(D)->getParent()->isLambda())
   1877             ? CheckFallThroughDiagnostics::MakeForLambda()
   1878             : CheckFallThroughDiagnostics::MakeForFunction(D));
   1879     CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
   1880   }
   1881 
   1882   // Warning: check for unreachable code
   1883   if (P.enableCheckUnreachable) {
   1884     // Only check for unreachable code on non-template instantiations.
   1885     // Different template instantiations can effectively change the control-flow
   1886     // and it is very difficult to prove that a snippet of code in a template
   1887     // is unreachable for all instantiations.
   1888     bool isTemplateInstantiation = false;
   1889     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
   1890       isTemplateInstantiation = Function->isTemplateInstantiation();
   1891     if (!isTemplateInstantiation)
   1892       CheckUnreachable(S, AC);
   1893   }
   1894 
   1895   // Check for thread safety violations
   1896   if (P.enableThreadSafetyAnalysis) {
   1897     SourceLocation FL = AC.getDecl()->getLocation();
   1898     SourceLocation FEL = AC.getDecl()->getLocEnd();
   1899     thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
   1900     if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
   1901       Reporter.setIssueBetaWarnings(true);
   1902 
   1903     thread_safety::runThreadSafetyAnalysis(AC, Reporter);
   1904     Reporter.emitDiagnostics();
   1905   }
   1906 
   1907   // Check for violations of consumed properties.
   1908   if (P.enableConsumedAnalysis) {
   1909     consumed::ConsumedWarningsHandler WarningHandler(S);
   1910     consumed::ConsumedAnalyzer Analyzer(WarningHandler);
   1911     Analyzer.run(AC);
   1912   }
   1913 
   1914   if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
   1915       !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
   1916       !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
   1917     if (CFG *cfg = AC.getCFG()) {
   1918       UninitValsDiagReporter reporter(S);
   1919       UninitVariablesAnalysisStats stats;
   1920       std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
   1921       runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
   1922                                         reporter, stats);
   1923 
   1924       if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
   1925         ++NumUninitAnalysisFunctions;
   1926         NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
   1927         NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
   1928         MaxUninitAnalysisVariablesPerFunction =
   1929             std::max(MaxUninitAnalysisVariablesPerFunction,
   1930                      stats.NumVariablesAnalyzed);
   1931         MaxUninitAnalysisBlockVisitsPerFunction =
   1932             std::max(MaxUninitAnalysisBlockVisitsPerFunction,
   1933                      stats.NumBlockVisits);
   1934       }
   1935     }
   1936   }
   1937 
   1938   bool FallThroughDiagFull =
   1939       !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
   1940   bool FallThroughDiagPerFunction = !Diags.isIgnored(
   1941       diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
   1942   if (FallThroughDiagFull || FallThroughDiagPerFunction) {
   1943     DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
   1944   }
   1945 
   1946   if (S.getLangOpts().ObjCARCWeak &&
   1947       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
   1948     diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
   1949 
   1950 
   1951   // Check for infinite self-recursion in functions
   1952   if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
   1953                        D->getLocStart())) {
   1954     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1955       checkRecursiveFunction(S, FD, Body, AC);
   1956     }
   1957   }
   1958 
   1959   // If none of the previous checks caused a CFG build, trigger one here
   1960   // for -Wtautological-overlap-compare
   1961   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
   1962                                D->getLocStart())) {
   1963     AC.getCFG();
   1964   }
   1965 
   1966   // Collect statistics about the CFG if it was built.
   1967   if (S.CollectStats && AC.isCFGBuilt()) {
   1968     ++NumFunctionsAnalyzed;
   1969     if (CFG *cfg = AC.getCFG()) {
   1970       // If we successfully built a CFG for this context, record some more
   1971       // detail information about it.
   1972       NumCFGBlocks += cfg->getNumBlockIDs();
   1973       MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
   1974                                          cfg->getNumBlockIDs());
   1975     } else {
   1976       ++NumFunctionsWithBadCFGs;
   1977     }
   1978   }
   1979 }
   1980 
   1981 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
   1982   llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
   1983 
   1984   unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
   1985   unsigned AvgCFGBlocksPerFunction =
   1986       !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
   1987   llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
   1988                << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
   1989                << "  " << NumCFGBlocks << " CFG blocks built.\n"
   1990                << "  " << AvgCFGBlocksPerFunction
   1991                << " average CFG blocks per function.\n"
   1992                << "  " << MaxCFGBlocksPerFunction
   1993                << " max CFG blocks per function.\n";
   1994 
   1995   unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
   1996       : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
   1997   unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
   1998       : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
   1999   llvm::errs() << NumUninitAnalysisFunctions
   2000                << " functions analyzed for uninitialiazed variables\n"
   2001                << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
   2002                << "  " << AvgUninitVariablesPerFunction
   2003                << " average variables per function.\n"
   2004                << "  " << MaxUninitAnalysisVariablesPerFunction
   2005                << " max variables per function.\n"
   2006                << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
   2007                << "  " << AvgUninitBlockVisitsPerFunction
   2008                << " average block visits per function.\n"
   2009                << "  " << MaxUninitAnalysisBlockVisitsPerFunction
   2010                << " max block visits per function.\n";
   2011 }
   2012