Home | History | Annotate | Download | only in Analysis
      1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
     11 // accesses. Currently, it is an (incomplete) implementation of the approach
     12 // described in
     13 //
     14 //            Practical Dependence Testing
     15 //            Goff, Kennedy, Tseng
     16 //            PLDI 1991
     17 //
     18 // There's a single entry point that analyzes the dependence between a pair
     19 // of memory references in a function, returning either NULL, for no dependence,
     20 // or a more-or-less detailed description of the dependence between them.
     21 //
     22 // Currently, the implementation cannot propagate constraints between
     23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
     24 // Both of these are conservative weaknesses;
     25 // that is, not a source of correctness problems.
     26 //
     27 // The implementation depends on the GEP instruction to differentiate
     28 // subscripts. Since Clang linearizes some array subscripts, the dependence
     29 // analysis is using SCEV->delinearize to recover the representation of multiple
     30 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
     31 // delinearization is controlled by the flag -da-delinearize.
     32 //
     33 // We should pay some careful attention to the possibility of integer overflow
     34 // in the implementation of the various tests. This could happen with Add,
     35 // Subtract, or Multiply, with both APInt's and SCEV's.
     36 //
     37 // Some non-linear subscript pairs can be handled by the GCD test
     38 // (and perhaps other tests).
     39 // Should explore how often these things occur.
     40 //
     41 // Finally, it seems like certain test cases expose weaknesses in the SCEV
     42 // simplification, especially in the handling of sign and zero extensions.
     43 // It could be useful to spend time exploring these.
     44 //
     45 // Please note that this is work in progress and the interface is subject to
     46 // change.
     47 //
     48 //===----------------------------------------------------------------------===//
     49 //                                                                            //
     50 //                   In memory of Ken Kennedy, 1945 - 2007                    //
     51 //                                                                            //
     52 //===----------------------------------------------------------------------===//
     53 
     54 #include "llvm/Analysis/DependenceAnalysis.h"
     55 #include "llvm/ADT/Statistic.h"
     56 #include "llvm/Analysis/AliasAnalysis.h"
     57 #include "llvm/Analysis/LoopInfo.h"
     58 #include "llvm/Analysis/ScalarEvolution.h"
     59 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     60 #include "llvm/Analysis/ValueTracking.h"
     61 #include "llvm/IR/InstIterator.h"
     62 #include "llvm/IR/Operator.h"
     63 #include "llvm/Support/CommandLine.h"
     64 #include "llvm/Support/Debug.h"
     65 #include "llvm/Support/ErrorHandling.h"
     66 #include "llvm/Support/raw_ostream.h"
     67 
     68 using namespace llvm;
     69 
     70 #define DEBUG_TYPE "da"
     71 
     72 //===----------------------------------------------------------------------===//
     73 // statistics
     74 
     75 STATISTIC(TotalArrayPairs, "Array pairs tested");
     76 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
     77 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
     78 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
     79 STATISTIC(ZIVapplications, "ZIV applications");
     80 STATISTIC(ZIVindependence, "ZIV independence");
     81 STATISTIC(StrongSIVapplications, "Strong SIV applications");
     82 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
     83 STATISTIC(StrongSIVindependence, "Strong SIV independence");
     84 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
     85 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
     86 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
     87 STATISTIC(ExactSIVapplications, "Exact SIV applications");
     88 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
     89 STATISTIC(ExactSIVindependence, "Exact SIV independence");
     90 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
     91 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
     92 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
     93 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
     94 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
     95 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
     96 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
     97 STATISTIC(DeltaApplications, "Delta applications");
     98 STATISTIC(DeltaSuccesses, "Delta successes");
     99 STATISTIC(DeltaIndependence, "Delta independence");
    100 STATISTIC(DeltaPropagations, "Delta propagations");
    101 STATISTIC(GCDapplications, "GCD applications");
    102 STATISTIC(GCDsuccesses, "GCD successes");
    103 STATISTIC(GCDindependence, "GCD independence");
    104 STATISTIC(BanerjeeApplications, "Banerjee applications");
    105 STATISTIC(BanerjeeIndependence, "Banerjee independence");
    106 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
    107 
    108 static cl::opt<bool>
    109 Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
    110             cl::desc("Try to delinearize array references."));
    111 
    112 //===----------------------------------------------------------------------===//
    113 // basics
    114 
    115 INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da",
    116                       "Dependence Analysis", true, true)
    117 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    118 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    119 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    120 INITIALIZE_PASS_END(DependenceAnalysis, "da",
    121                     "Dependence Analysis", true, true)
    122 
    123 char DependenceAnalysis::ID = 0;
    124 
    125 
    126 FunctionPass *llvm::createDependenceAnalysisPass() {
    127   return new DependenceAnalysis();
    128 }
    129 
    130 
    131 bool DependenceAnalysis::runOnFunction(Function &F) {
    132   this->F = &F;
    133   AA = &getAnalysis<AliasAnalysis>();
    134   SE = &getAnalysis<ScalarEvolution>();
    135   LI = &getAnalysis<LoopInfo>();
    136   return false;
    137 }
    138 
    139 
    140 void DependenceAnalysis::releaseMemory() {
    141 }
    142 
    143 
    144 void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    145   AU.setPreservesAll();
    146   AU.addRequiredTransitive<AliasAnalysis>();
    147   AU.addRequiredTransitive<ScalarEvolution>();
    148   AU.addRequiredTransitive<LoopInfo>();
    149 }
    150 
    151 
    152 // Used to test the dependence analyzer.
    153 // Looks through the function, noting loads and stores.
    154 // Calls depends() on every possible pair and prints out the result.
    155 // Ignores all other instructions.
    156 static
    157 void dumpExampleDependence(raw_ostream &OS, Function *F,
    158                            DependenceAnalysis *DA) {
    159   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
    160        SrcI != SrcE; ++SrcI) {
    161     if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
    162       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
    163            DstI != DstE; ++DstI) {
    164         if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
    165           OS << "da analyze - ";
    166           if (Dependence *D = DA->depends(&*SrcI, &*DstI, true)) {
    167             D->dump(OS);
    168             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
    169               if (D->isSplitable(Level)) {
    170                 OS << "da analyze - split level = " << Level;
    171                 OS << ", iteration = " << *DA->getSplitIteration(D, Level);
    172                 OS << "!\n";
    173               }
    174             }
    175             delete D;
    176           }
    177           else
    178             OS << "none!\n";
    179         }
    180       }
    181     }
    182   }
    183 }
    184 
    185 
    186 void DependenceAnalysis::print(raw_ostream &OS, const Module*) const {
    187   dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
    188 }
    189 
    190 //===----------------------------------------------------------------------===//
    191 // Dependence methods
    192 
    193 // Returns true if this is an input dependence.
    194 bool Dependence::isInput() const {
    195   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
    196 }
    197 
    198 
    199 // Returns true if this is an output dependence.
    200 bool Dependence::isOutput() const {
    201   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
    202 }
    203 
    204 
    205 // Returns true if this is an flow (aka true)  dependence.
    206 bool Dependence::isFlow() const {
    207   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
    208 }
    209 
    210 
    211 // Returns true if this is an anti dependence.
    212 bool Dependence::isAnti() const {
    213   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
    214 }
    215 
    216 
    217 // Returns true if a particular level is scalar; that is,
    218 // if no subscript in the source or destination mention the induction
    219 // variable associated with the loop at this level.
    220 // Leave this out of line, so it will serve as a virtual method anchor
    221 bool Dependence::isScalar(unsigned level) const {
    222   return false;
    223 }
    224 
    225 
    226 //===----------------------------------------------------------------------===//
    227 // FullDependence methods
    228 
    229 FullDependence::FullDependence(Instruction *Source,
    230                                Instruction *Destination,
    231                                bool PossiblyLoopIndependent,
    232                                unsigned CommonLevels) :
    233   Dependence(Source, Destination),
    234   Levels(CommonLevels),
    235   LoopIndependent(PossiblyLoopIndependent) {
    236   Consistent = true;
    237   DV = CommonLevels ? new DVEntry[CommonLevels] : nullptr;
    238 }
    239 
    240 // The rest are simple getters that hide the implementation.
    241 
    242 // getDirection - Returns the direction associated with a particular level.
    243 unsigned FullDependence::getDirection(unsigned Level) const {
    244   assert(0 < Level && Level <= Levels && "Level out of range");
    245   return DV[Level - 1].Direction;
    246 }
    247 
    248 
    249 // Returns the distance (or NULL) associated with a particular level.
    250 const SCEV *FullDependence::getDistance(unsigned Level) const {
    251   assert(0 < Level && Level <= Levels && "Level out of range");
    252   return DV[Level - 1].Distance;
    253 }
    254 
    255 
    256 // Returns true if a particular level is scalar; that is,
    257 // if no subscript in the source or destination mention the induction
    258 // variable associated with the loop at this level.
    259 bool FullDependence::isScalar(unsigned Level) const {
    260   assert(0 < Level && Level <= Levels && "Level out of range");
    261   return DV[Level - 1].Scalar;
    262 }
    263 
    264 
    265 // Returns true if peeling the first iteration from this loop
    266 // will break this dependence.
    267 bool FullDependence::isPeelFirst(unsigned Level) const {
    268   assert(0 < Level && Level <= Levels && "Level out of range");
    269   return DV[Level - 1].PeelFirst;
    270 }
    271 
    272 
    273 // Returns true if peeling the last iteration from this loop
    274 // will break this dependence.
    275 bool FullDependence::isPeelLast(unsigned Level) const {
    276   assert(0 < Level && Level <= Levels && "Level out of range");
    277   return DV[Level - 1].PeelLast;
    278 }
    279 
    280 
    281 // Returns true if splitting this loop will break the dependence.
    282 bool FullDependence::isSplitable(unsigned Level) const {
    283   assert(0 < Level && Level <= Levels && "Level out of range");
    284   return DV[Level - 1].Splitable;
    285 }
    286 
    287 
    288 //===----------------------------------------------------------------------===//
    289 // DependenceAnalysis::Constraint methods
    290 
    291 // If constraint is a point <X, Y>, returns X.
    292 // Otherwise assert.
    293 const SCEV *DependenceAnalysis::Constraint::getX() const {
    294   assert(Kind == Point && "Kind should be Point");
    295   return A;
    296 }
    297 
    298 
    299 // If constraint is a point <X, Y>, returns Y.
    300 // Otherwise assert.
    301 const SCEV *DependenceAnalysis::Constraint::getY() const {
    302   assert(Kind == Point && "Kind should be Point");
    303   return B;
    304 }
    305 
    306 
    307 // If constraint is a line AX + BY = C, returns A.
    308 // Otherwise assert.
    309 const SCEV *DependenceAnalysis::Constraint::getA() const {
    310   assert((Kind == Line || Kind == Distance) &&
    311          "Kind should be Line (or Distance)");
    312   return A;
    313 }
    314 
    315 
    316 // If constraint is a line AX + BY = C, returns B.
    317 // Otherwise assert.
    318 const SCEV *DependenceAnalysis::Constraint::getB() const {
    319   assert((Kind == Line || Kind == Distance) &&
    320          "Kind should be Line (or Distance)");
    321   return B;
    322 }
    323 
    324 
    325 // If constraint is a line AX + BY = C, returns C.
    326 // Otherwise assert.
    327 const SCEV *DependenceAnalysis::Constraint::getC() const {
    328   assert((Kind == Line || Kind == Distance) &&
    329          "Kind should be Line (or Distance)");
    330   return C;
    331 }
    332 
    333 
    334 // If constraint is a distance, returns D.
    335 // Otherwise assert.
    336 const SCEV *DependenceAnalysis::Constraint::getD() const {
    337   assert(Kind == Distance && "Kind should be Distance");
    338   return SE->getNegativeSCEV(C);
    339 }
    340 
    341 
    342 // Returns the loop associated with this constraint.
    343 const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
    344   assert((Kind == Distance || Kind == Line || Kind == Point) &&
    345          "Kind should be Distance, Line, or Point");
    346   return AssociatedLoop;
    347 }
    348 
    349 
    350 void DependenceAnalysis::Constraint::setPoint(const SCEV *X,
    351                                               const SCEV *Y,
    352                                               const Loop *CurLoop) {
    353   Kind = Point;
    354   A = X;
    355   B = Y;
    356   AssociatedLoop = CurLoop;
    357 }
    358 
    359 
    360 void DependenceAnalysis::Constraint::setLine(const SCEV *AA,
    361                                              const SCEV *BB,
    362                                              const SCEV *CC,
    363                                              const Loop *CurLoop) {
    364   Kind = Line;
    365   A = AA;
    366   B = BB;
    367   C = CC;
    368   AssociatedLoop = CurLoop;
    369 }
    370 
    371 
    372 void DependenceAnalysis::Constraint::setDistance(const SCEV *D,
    373                                                  const Loop *CurLoop) {
    374   Kind = Distance;
    375   A = SE->getConstant(D->getType(), 1);
    376   B = SE->getNegativeSCEV(A);
    377   C = SE->getNegativeSCEV(D);
    378   AssociatedLoop = CurLoop;
    379 }
    380 
    381 
    382 void DependenceAnalysis::Constraint::setEmpty() {
    383   Kind = Empty;
    384 }
    385 
    386 
    387 void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
    388   SE = NewSE;
    389   Kind = Any;
    390 }
    391 
    392 
    393 // For debugging purposes. Dumps the constraint out to OS.
    394 void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const {
    395   if (isEmpty())
    396     OS << " Empty\n";
    397   else if (isAny())
    398     OS << " Any\n";
    399   else if (isPoint())
    400     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
    401   else if (isDistance())
    402     OS << " Distance is " << *getD() <<
    403       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
    404   else if (isLine())
    405     OS << " Line is " << *getA() << "*X + " <<
    406       *getB() << "*Y = " << *getC() << "\n";
    407   else
    408     llvm_unreachable("unknown constraint type in Constraint::dump");
    409 }
    410 
    411 
    412 // Updates X with the intersection
    413 // of the Constraints X and Y. Returns true if X has changed.
    414 // Corresponds to Figure 4 from the paper
    415 //
    416 //            Practical Dependence Testing
    417 //            Goff, Kennedy, Tseng
    418 //            PLDI 1991
    419 bool DependenceAnalysis::intersectConstraints(Constraint *X,
    420                                               const Constraint *Y) {
    421   ++DeltaApplications;
    422   DEBUG(dbgs() << "\tintersect constraints\n");
    423   DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
    424   DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
    425   assert(!Y->isPoint() && "Y must not be a Point");
    426   if (X->isAny()) {
    427     if (Y->isAny())
    428       return false;
    429     *X = *Y;
    430     return true;
    431   }
    432   if (X->isEmpty())
    433     return false;
    434   if (Y->isEmpty()) {
    435     X->setEmpty();
    436     return true;
    437   }
    438 
    439   if (X->isDistance() && Y->isDistance()) {
    440     DEBUG(dbgs() << "\t    intersect 2 distances\n");
    441     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
    442       return false;
    443     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
    444       X->setEmpty();
    445       ++DeltaSuccesses;
    446       return true;
    447     }
    448     // Hmmm, interesting situation.
    449     // I guess if either is constant, keep it and ignore the other.
    450     if (isa<SCEVConstant>(Y->getD())) {
    451       *X = *Y;
    452       return true;
    453     }
    454     return false;
    455   }
    456 
    457   // At this point, the pseudo-code in Figure 4 of the paper
    458   // checks if (X->isPoint() && Y->isPoint()).
    459   // This case can't occur in our implementation,
    460   // since a Point can only arise as the result of intersecting
    461   // two Line constraints, and the right-hand value, Y, is never
    462   // the result of an intersection.
    463   assert(!(X->isPoint() && Y->isPoint()) &&
    464          "We shouldn't ever see X->isPoint() && Y->isPoint()");
    465 
    466   if (X->isLine() && Y->isLine()) {
    467     DEBUG(dbgs() << "\t    intersect 2 lines\n");
    468     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
    469     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
    470     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
    471       // slopes are equal, so lines are parallel
    472       DEBUG(dbgs() << "\t\tsame slope\n");
    473       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
    474       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
    475       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
    476         return false;
    477       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
    478         X->setEmpty();
    479         ++DeltaSuccesses;
    480         return true;
    481       }
    482       return false;
    483     }
    484     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
    485       // slopes differ, so lines intersect
    486       DEBUG(dbgs() << "\t\tdifferent slopes\n");
    487       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
    488       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
    489       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
    490       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
    491       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
    492       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
    493       const SCEVConstant *C1A2_C2A1 =
    494         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
    495       const SCEVConstant *C1B2_C2B1 =
    496         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
    497       const SCEVConstant *A1B2_A2B1 =
    498         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
    499       const SCEVConstant *A2B1_A1B2 =
    500         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
    501       if (!C1B2_C2B1 || !C1A2_C2A1 ||
    502           !A1B2_A2B1 || !A2B1_A1B2)
    503         return false;
    504       APInt Xtop = C1B2_C2B1->getValue()->getValue();
    505       APInt Xbot = A1B2_A2B1->getValue()->getValue();
    506       APInt Ytop = C1A2_C2A1->getValue()->getValue();
    507       APInt Ybot = A2B1_A1B2->getValue()->getValue();
    508       DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
    509       DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
    510       DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
    511       DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
    512       APInt Xq = Xtop; // these need to be initialized, even
    513       APInt Xr = Xtop; // though they're just going to be overwritten
    514       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
    515       APInt Yq = Ytop;
    516       APInt Yr = Ytop;
    517       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
    518       if (Xr != 0 || Yr != 0) {
    519         X->setEmpty();
    520         ++DeltaSuccesses;
    521         return true;
    522       }
    523       DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
    524       if (Xq.slt(0) || Yq.slt(0)) {
    525         X->setEmpty();
    526         ++DeltaSuccesses;
    527         return true;
    528       }
    529       if (const SCEVConstant *CUB =
    530           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
    531         APInt UpperBound = CUB->getValue()->getValue();
    532         DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
    533         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
    534           X->setEmpty();
    535           ++DeltaSuccesses;
    536           return true;
    537         }
    538       }
    539       X->setPoint(SE->getConstant(Xq),
    540                   SE->getConstant(Yq),
    541                   X->getAssociatedLoop());
    542       ++DeltaSuccesses;
    543       return true;
    544     }
    545     return false;
    546   }
    547 
    548   // if (X->isLine() && Y->isPoint()) This case can't occur.
    549   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
    550 
    551   if (X->isPoint() && Y->isLine()) {
    552     DEBUG(dbgs() << "\t    intersect Point and Line\n");
    553     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
    554     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
    555     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
    556     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
    557       return false;
    558     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
    559       X->setEmpty();
    560       ++DeltaSuccesses;
    561       return true;
    562     }
    563     return false;
    564   }
    565 
    566   llvm_unreachable("shouldn't reach the end of Constraint intersection");
    567   return false;
    568 }
    569 
    570 
    571 //===----------------------------------------------------------------------===//
    572 // DependenceAnalysis methods
    573 
    574 // For debugging purposes. Dumps a dependence to OS.
    575 void Dependence::dump(raw_ostream &OS) const {
    576   bool Splitable = false;
    577   if (isConfused())
    578     OS << "confused";
    579   else {
    580     if (isConsistent())
    581       OS << "consistent ";
    582     if (isFlow())
    583       OS << "flow";
    584     else if (isOutput())
    585       OS << "output";
    586     else if (isAnti())
    587       OS << "anti";
    588     else if (isInput())
    589       OS << "input";
    590     unsigned Levels = getLevels();
    591     OS << " [";
    592     for (unsigned II = 1; II <= Levels; ++II) {
    593       if (isSplitable(II))
    594         Splitable = true;
    595       if (isPeelFirst(II))
    596         OS << 'p';
    597       const SCEV *Distance = getDistance(II);
    598       if (Distance)
    599         OS << *Distance;
    600       else if (isScalar(II))
    601         OS << "S";
    602       else {
    603         unsigned Direction = getDirection(II);
    604         if (Direction == DVEntry::ALL)
    605           OS << "*";
    606         else {
    607           if (Direction & DVEntry::LT)
    608             OS << "<";
    609           if (Direction & DVEntry::EQ)
    610             OS << "=";
    611           if (Direction & DVEntry::GT)
    612             OS << ">";
    613         }
    614       }
    615       if (isPeelLast(II))
    616         OS << 'p';
    617       if (II < Levels)
    618         OS << " ";
    619     }
    620     if (isLoopIndependent())
    621       OS << "|<";
    622     OS << "]";
    623     if (Splitable)
    624       OS << " splitable";
    625   }
    626   OS << "!\n";
    627 }
    628 
    629 
    630 
    631 static
    632 AliasAnalysis::AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
    633                                                   const Value *A,
    634                                                   const Value *B) {
    635   const Value *AObj = GetUnderlyingObject(A);
    636   const Value *BObj = GetUnderlyingObject(B);
    637   return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()),
    638                    BObj, AA->getTypeStoreSize(BObj->getType()));
    639 }
    640 
    641 
    642 // Returns true if the load or store can be analyzed. Atomic and volatile
    643 // operations have properties which this analysis does not understand.
    644 static
    645 bool isLoadOrStore(const Instruction *I) {
    646   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    647     return LI->isUnordered();
    648   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
    649     return SI->isUnordered();
    650   return false;
    651 }
    652 
    653 
    654 static
    655 Value *getPointerOperand(Instruction *I) {
    656   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    657     return LI->getPointerOperand();
    658   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    659     return SI->getPointerOperand();
    660   llvm_unreachable("Value is not load or store instruction");
    661   return nullptr;
    662 }
    663 
    664 
    665 // Examines the loop nesting of the Src and Dst
    666 // instructions and establishes their shared loops. Sets the variables
    667 // CommonLevels, SrcLevels, and MaxLevels.
    668 // The source and destination instructions needn't be contained in the same
    669 // loop. The routine establishNestingLevels finds the level of most deeply
    670 // nested loop that contains them both, CommonLevels. An instruction that's
    671 // not contained in a loop is at level = 0. MaxLevels is equal to the level
    672 // of the source plus the level of the destination, minus CommonLevels.
    673 // This lets us allocate vectors MaxLevels in length, with room for every
    674 // distinct loop referenced in both the source and destination subscripts.
    675 // The variable SrcLevels is the nesting depth of the source instruction.
    676 // It's used to help calculate distinct loops referenced by the destination.
    677 // Here's the map from loops to levels:
    678 //            0 - unused
    679 //            1 - outermost common loop
    680 //          ... - other common loops
    681 // CommonLevels - innermost common loop
    682 //          ... - loops containing Src but not Dst
    683 //    SrcLevels - innermost loop containing Src but not Dst
    684 //          ... - loops containing Dst but not Src
    685 //    MaxLevels - innermost loops containing Dst but not Src
    686 // Consider the follow code fragment:
    687 //   for (a = ...) {
    688 //     for (b = ...) {
    689 //       for (c = ...) {
    690 //         for (d = ...) {
    691 //           A[] = ...;
    692 //         }
    693 //       }
    694 //       for (e = ...) {
    695 //         for (f = ...) {
    696 //           for (g = ...) {
    697 //             ... = A[];
    698 //           }
    699 //         }
    700 //       }
    701 //     }
    702 //   }
    703 // If we're looking at the possibility of a dependence between the store
    704 // to A (the Src) and the load from A (the Dst), we'll note that they
    705 // have 2 loops in common, so CommonLevels will equal 2 and the direction
    706 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
    707 // A map from loop names to loop numbers would look like
    708 //     a - 1
    709 //     b - 2 = CommonLevels
    710 //     c - 3
    711 //     d - 4 = SrcLevels
    712 //     e - 5
    713 //     f - 6
    714 //     g - 7 = MaxLevels
    715 void DependenceAnalysis::establishNestingLevels(const Instruction *Src,
    716                                                 const Instruction *Dst) {
    717   const BasicBlock *SrcBlock = Src->getParent();
    718   const BasicBlock *DstBlock = Dst->getParent();
    719   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
    720   unsigned DstLevel = LI->getLoopDepth(DstBlock);
    721   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
    722   const Loop *DstLoop = LI->getLoopFor(DstBlock);
    723   SrcLevels = SrcLevel;
    724   MaxLevels = SrcLevel + DstLevel;
    725   while (SrcLevel > DstLevel) {
    726     SrcLoop = SrcLoop->getParentLoop();
    727     SrcLevel--;
    728   }
    729   while (DstLevel > SrcLevel) {
    730     DstLoop = DstLoop->getParentLoop();
    731     DstLevel--;
    732   }
    733   while (SrcLoop != DstLoop) {
    734     SrcLoop = SrcLoop->getParentLoop();
    735     DstLoop = DstLoop->getParentLoop();
    736     SrcLevel--;
    737   }
    738   CommonLevels = SrcLevel;
    739   MaxLevels -= CommonLevels;
    740 }
    741 
    742 
    743 // Given one of the loops containing the source, return
    744 // its level index in our numbering scheme.
    745 unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
    746   return SrcLoop->getLoopDepth();
    747 }
    748 
    749 
    750 // Given one of the loops containing the destination,
    751 // return its level index in our numbering scheme.
    752 unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
    753   unsigned D = DstLoop->getLoopDepth();
    754   if (D > CommonLevels)
    755     return D - CommonLevels + SrcLevels;
    756   else
    757     return D;
    758 }
    759 
    760 
    761 // Returns true if Expression is loop invariant in LoopNest.
    762 bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
    763                                          const Loop *LoopNest) const {
    764   if (!LoopNest)
    765     return true;
    766   return SE->isLoopInvariant(Expression, LoopNest) &&
    767     isLoopInvariant(Expression, LoopNest->getParentLoop());
    768 }
    769 
    770 
    771 
    772 // Finds the set of loops from the LoopNest that
    773 // have a level <= CommonLevels and are referred to by the SCEV Expression.
    774 void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
    775                                             const Loop *LoopNest,
    776                                             SmallBitVector &Loops) const {
    777   while (LoopNest) {
    778     unsigned Level = LoopNest->getLoopDepth();
    779     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
    780       Loops.set(Level);
    781     LoopNest = LoopNest->getParentLoop();
    782   }
    783 }
    784 
    785 
    786 // removeMatchingExtensions - Examines a subscript pair.
    787 // If the source and destination are identically sign (or zero)
    788 // extended, it strips off the extension in an effect to simplify
    789 // the actual analysis.
    790 void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
    791   const SCEV *Src = Pair->Src;
    792   const SCEV *Dst = Pair->Dst;
    793   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
    794       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
    795     const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
    796     const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
    797     if (SrcCast->getType() == DstCast->getType()) {
    798       Pair->Src = SrcCast->getOperand();
    799       Pair->Dst = DstCast->getOperand();
    800     }
    801   }
    802 }
    803 
    804 
    805 // Examine the scev and return true iff it's linear.
    806 // Collect any loops mentioned in the set of "Loops".
    807 bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
    808                                            const Loop *LoopNest,
    809                                            SmallBitVector &Loops) {
    810   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
    811   if (!AddRec)
    812     return isLoopInvariant(Src, LoopNest);
    813   const SCEV *Start = AddRec->getStart();
    814   const SCEV *Step = AddRec->getStepRecurrence(*SE);
    815   if (!isLoopInvariant(Step, LoopNest))
    816     return false;
    817   Loops.set(mapSrcLoop(AddRec->getLoop()));
    818   return checkSrcSubscript(Start, LoopNest, Loops);
    819 }
    820 
    821 
    822 
    823 // Examine the scev and return true iff it's linear.
    824 // Collect any loops mentioned in the set of "Loops".
    825 bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
    826                                            const Loop *LoopNest,
    827                                            SmallBitVector &Loops) {
    828   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
    829   if (!AddRec)
    830     return isLoopInvariant(Dst, LoopNest);
    831   const SCEV *Start = AddRec->getStart();
    832   const SCEV *Step = AddRec->getStepRecurrence(*SE);
    833   if (!isLoopInvariant(Step, LoopNest))
    834     return false;
    835   Loops.set(mapDstLoop(AddRec->getLoop()));
    836   return checkDstSubscript(Start, LoopNest, Loops);
    837 }
    838 
    839 
    840 // Examines the subscript pair (the Src and Dst SCEVs)
    841 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
    842 // Collects the associated loops in a set.
    843 DependenceAnalysis::Subscript::ClassificationKind
    844 DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
    845                                  const SCEV *Dst, const Loop *DstLoopNest,
    846                                  SmallBitVector &Loops) {
    847   SmallBitVector SrcLoops(MaxLevels + 1);
    848   SmallBitVector DstLoops(MaxLevels + 1);
    849   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
    850     return Subscript::NonLinear;
    851   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
    852     return Subscript::NonLinear;
    853   Loops = SrcLoops;
    854   Loops |= DstLoops;
    855   unsigned N = Loops.count();
    856   if (N == 0)
    857     return Subscript::ZIV;
    858   if (N == 1)
    859     return Subscript::SIV;
    860   if (N == 2 && (SrcLoops.count() == 0 ||
    861                  DstLoops.count() == 0 ||
    862                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
    863     return Subscript::RDIV;
    864   return Subscript::MIV;
    865 }
    866 
    867 
    868 // A wrapper around SCEV::isKnownPredicate.
    869 // Looks for cases where we're interested in comparing for equality.
    870 // If both X and Y have been identically sign or zero extended,
    871 // it strips off the (confusing) extensions before invoking
    872 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
    873 // will be similarly updated.
    874 //
    875 // If SCEV::isKnownPredicate can't prove the predicate,
    876 // we try simple subtraction, which seems to help in some cases
    877 // involving symbolics.
    878 bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
    879                                           const SCEV *X,
    880                                           const SCEV *Y) const {
    881   if (Pred == CmpInst::ICMP_EQ ||
    882       Pred == CmpInst::ICMP_NE) {
    883     if ((isa<SCEVSignExtendExpr>(X) &&
    884          isa<SCEVSignExtendExpr>(Y)) ||
    885         (isa<SCEVZeroExtendExpr>(X) &&
    886          isa<SCEVZeroExtendExpr>(Y))) {
    887       const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
    888       const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
    889       const SCEV *Xop = CX->getOperand();
    890       const SCEV *Yop = CY->getOperand();
    891       if (Xop->getType() == Yop->getType()) {
    892         X = Xop;
    893         Y = Yop;
    894       }
    895     }
    896   }
    897   if (SE->isKnownPredicate(Pred, X, Y))
    898     return true;
    899   // If SE->isKnownPredicate can't prove the condition,
    900   // we try the brute-force approach of subtracting
    901   // and testing the difference.
    902   // By testing with SE->isKnownPredicate first, we avoid
    903   // the possibility of overflow when the arguments are constants.
    904   const SCEV *Delta = SE->getMinusSCEV(X, Y);
    905   switch (Pred) {
    906   case CmpInst::ICMP_EQ:
    907     return Delta->isZero();
    908   case CmpInst::ICMP_NE:
    909     return SE->isKnownNonZero(Delta);
    910   case CmpInst::ICMP_SGE:
    911     return SE->isKnownNonNegative(Delta);
    912   case CmpInst::ICMP_SLE:
    913     return SE->isKnownNonPositive(Delta);
    914   case CmpInst::ICMP_SGT:
    915     return SE->isKnownPositive(Delta);
    916   case CmpInst::ICMP_SLT:
    917     return SE->isKnownNegative(Delta);
    918   default:
    919     llvm_unreachable("unexpected predicate in isKnownPredicate");
    920   }
    921 }
    922 
    923 
    924 // All subscripts are all the same type.
    925 // Loop bound may be smaller (e.g., a char).
    926 // Should zero extend loop bound, since it's always >= 0.
    927 // This routine collects upper bound and extends if needed.
    928 // Return null if no bound available.
    929 const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
    930                                                   Type *T) const {
    931   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
    932     const SCEV *UB = SE->getBackedgeTakenCount(L);
    933     return SE->getNoopOrZeroExtend(UB, T);
    934   }
    935   return nullptr;
    936 }
    937 
    938 
    939 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
    940 // If the cast fails, returns NULL.
    941 const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
    942                                                                   Type *T
    943                                                                   ) const {
    944   if (const SCEV *UB = collectUpperBound(L, T))
    945     return dyn_cast<SCEVConstant>(UB);
    946   return nullptr;
    947 }
    948 
    949 
    950 // testZIV -
    951 // When we have a pair of subscripts of the form [c1] and [c2],
    952 // where c1 and c2 are both loop invariant, we attack it using
    953 // the ZIV test. Basically, we test by comparing the two values,
    954 // but there are actually three possible results:
    955 // 1) the values are equal, so there's a dependence
    956 // 2) the values are different, so there's no dependence
    957 // 3) the values might be equal, so we have to assume a dependence.
    958 //
    959 // Return true if dependence disproved.
    960 bool DependenceAnalysis::testZIV(const SCEV *Src,
    961                                  const SCEV *Dst,
    962                                  FullDependence &Result) const {
    963   DEBUG(dbgs() << "    src = " << *Src << "\n");
    964   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
    965   ++ZIVapplications;
    966   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
    967     DEBUG(dbgs() << "    provably dependent\n");
    968     return false; // provably dependent
    969   }
    970   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
    971     DEBUG(dbgs() << "    provably independent\n");
    972     ++ZIVindependence;
    973     return true; // provably independent
    974   }
    975   DEBUG(dbgs() << "    possibly dependent\n");
    976   Result.Consistent = false;
    977   return false; // possibly dependent
    978 }
    979 
    980 
    981 // strongSIVtest -
    982 // From the paper, Practical Dependence Testing, Section 4.2.1
    983 //
    984 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
    985 // where i is an induction variable, c1 and c2 are loop invariant,
    986 //  and a is a constant, we can solve it exactly using the Strong SIV test.
    987 //
    988 // Can prove independence. Failing that, can compute distance (and direction).
    989 // In the presence of symbolic terms, we can sometimes make progress.
    990 //
    991 // If there's a dependence,
    992 //
    993 //    c1 + a*i = c2 + a*i'
    994 //
    995 // The dependence distance is
    996 //
    997 //    d = i' - i = (c1 - c2)/a
    998 //
    999 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
   1000 // loop's upper bound. If a dependence exists, the dependence direction is
   1001 // defined as
   1002 //
   1003 //                { < if d > 0
   1004 //    direction = { = if d = 0
   1005 //                { > if d < 0
   1006 //
   1007 // Return true if dependence disproved.
   1008 bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
   1009                                        const SCEV *SrcConst,
   1010                                        const SCEV *DstConst,
   1011                                        const Loop *CurLoop,
   1012                                        unsigned Level,
   1013                                        FullDependence &Result,
   1014                                        Constraint &NewConstraint) const {
   1015   DEBUG(dbgs() << "\tStrong SIV test\n");
   1016   DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
   1017   DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
   1018   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
   1019   DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
   1020   DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
   1021   DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
   1022   ++StrongSIVapplications;
   1023   assert(0 < Level && Level <= CommonLevels && "level out of range");
   1024   Level--;
   1025 
   1026   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
   1027   DEBUG(dbgs() << "\t    Delta = " << *Delta);
   1028   DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
   1029 
   1030   // check that |Delta| < iteration count
   1031   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1032     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
   1033     DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
   1034     const SCEV *AbsDelta =
   1035       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
   1036     const SCEV *AbsCoeff =
   1037       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
   1038     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
   1039     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
   1040       // Distance greater than trip count - no dependence
   1041       ++StrongSIVindependence;
   1042       ++StrongSIVsuccesses;
   1043       return true;
   1044     }
   1045   }
   1046 
   1047   // Can we compute distance?
   1048   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
   1049     APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue();
   1050     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue();
   1051     APInt Distance  = ConstDelta; // these need to be initialized
   1052     APInt Remainder = ConstDelta;
   1053     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
   1054     DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
   1055     DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1056     // Make sure Coeff divides Delta exactly
   1057     if (Remainder != 0) {
   1058       // Coeff doesn't divide Distance, no dependence
   1059       ++StrongSIVindependence;
   1060       ++StrongSIVsuccesses;
   1061       return true;
   1062     }
   1063     Result.DV[Level].Distance = SE->getConstant(Distance);
   1064     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
   1065     if (Distance.sgt(0))
   1066       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
   1067     else if (Distance.slt(0))
   1068       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
   1069     else
   1070       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
   1071     ++StrongSIVsuccesses;
   1072   }
   1073   else if (Delta->isZero()) {
   1074     // since 0/X == 0
   1075     Result.DV[Level].Distance = Delta;
   1076     NewConstraint.setDistance(Delta, CurLoop);
   1077     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
   1078     ++StrongSIVsuccesses;
   1079   }
   1080   else {
   1081     if (Coeff->isOne()) {
   1082       DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
   1083       Result.DV[Level].Distance = Delta; // since X/1 == X
   1084       NewConstraint.setDistance(Delta, CurLoop);
   1085     }
   1086     else {
   1087       Result.Consistent = false;
   1088       NewConstraint.setLine(Coeff,
   1089                             SE->getNegativeSCEV(Coeff),
   1090                             SE->getNegativeSCEV(Delta), CurLoop);
   1091     }
   1092 
   1093     // maybe we can get a useful direction
   1094     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
   1095     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
   1096     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
   1097     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
   1098     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
   1099     // The double negatives above are confusing.
   1100     // It helps to read !SE->isKnownNonZero(Delta)
   1101     // as "Delta might be Zero"
   1102     unsigned NewDirection = Dependence::DVEntry::NONE;
   1103     if ((DeltaMaybePositive && CoeffMaybePositive) ||
   1104         (DeltaMaybeNegative && CoeffMaybeNegative))
   1105       NewDirection = Dependence::DVEntry::LT;
   1106     if (DeltaMaybeZero)
   1107       NewDirection |= Dependence::DVEntry::EQ;
   1108     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
   1109         (DeltaMaybePositive && CoeffMaybeNegative))
   1110       NewDirection |= Dependence::DVEntry::GT;
   1111     if (NewDirection < Result.DV[Level].Direction)
   1112       ++StrongSIVsuccesses;
   1113     Result.DV[Level].Direction &= NewDirection;
   1114   }
   1115   return false;
   1116 }
   1117 
   1118 
   1119 // weakCrossingSIVtest -
   1120 // From the paper, Practical Dependence Testing, Section 4.2.2
   1121 //
   1122 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
   1123 // where i is an induction variable, c1 and c2 are loop invariant,
   1124 // and a is a constant, we can solve it exactly using the
   1125 // Weak-Crossing SIV test.
   1126 //
   1127 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
   1128 // the two lines, where i = i', yielding
   1129 //
   1130 //    c1 + a*i = c2 - a*i
   1131 //    2a*i = c2 - c1
   1132 //    i = (c2 - c1)/2a
   1133 //
   1134 // If i < 0, there is no dependence.
   1135 // If i > upperbound, there is no dependence.
   1136 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
   1137 // If i = upperbound, there's a dependence with distance = 0.
   1138 // If i is integral, there's a dependence (all directions).
   1139 // If the non-integer part = 1/2, there's a dependence (<> directions).
   1140 // Otherwise, there's no dependence.
   1141 //
   1142 // Can prove independence. Failing that,
   1143 // can sometimes refine the directions.
   1144 // Can determine iteration for splitting.
   1145 //
   1146 // Return true if dependence disproved.
   1147 bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
   1148                                              const SCEV *SrcConst,
   1149                                              const SCEV *DstConst,
   1150                                              const Loop *CurLoop,
   1151                                              unsigned Level,
   1152                                              FullDependence &Result,
   1153                                              Constraint &NewConstraint,
   1154                                              const SCEV *&SplitIter) const {
   1155   DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
   1156   DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
   1157   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1158   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1159   ++WeakCrossingSIVapplications;
   1160   assert(0 < Level && Level <= CommonLevels && "Level out of range");
   1161   Level--;
   1162   Result.Consistent = false;
   1163   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1164   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1165   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
   1166   if (Delta->isZero()) {
   1167     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
   1168     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
   1169     ++WeakCrossingSIVsuccesses;
   1170     if (!Result.DV[Level].Direction) {
   1171       ++WeakCrossingSIVindependence;
   1172       return true;
   1173     }
   1174     Result.DV[Level].Distance = Delta; // = 0
   1175     return false;
   1176   }
   1177   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
   1178   if (!ConstCoeff)
   1179     return false;
   1180 
   1181   Result.DV[Level].Splitable = true;
   1182   if (SE->isKnownNegative(ConstCoeff)) {
   1183     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
   1184     assert(ConstCoeff &&
   1185            "dynamic cast of negative of ConstCoeff should yield constant");
   1186     Delta = SE->getNegativeSCEV(Delta);
   1187   }
   1188   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
   1189 
   1190   // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
   1191   SplitIter =
   1192     SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0),
   1193                                     Delta),
   1194                     SE->getMulExpr(SE->getConstant(Delta->getType(), 2),
   1195                                    ConstCoeff));
   1196   DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
   1197 
   1198   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1199   if (!ConstDelta)
   1200     return false;
   1201 
   1202   // We're certain that ConstCoeff > 0; therefore,
   1203   // if Delta < 0, then no dependence.
   1204   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1205   DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
   1206   if (SE->isKnownNegative(Delta)) {
   1207     // No dependence, Delta < 0
   1208     ++WeakCrossingSIVindependence;
   1209     ++WeakCrossingSIVsuccesses;
   1210     return true;
   1211   }
   1212 
   1213   // We're certain that Delta > 0 and ConstCoeff > 0.
   1214   // Check Delta/(2*ConstCoeff) against upper loop bound
   1215   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1216     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1217     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
   1218     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
   1219                                     ConstantTwo);
   1220     DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
   1221     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
   1222       // Delta too big, no dependence
   1223       ++WeakCrossingSIVindependence;
   1224       ++WeakCrossingSIVsuccesses;
   1225       return true;
   1226     }
   1227     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
   1228       // i = i' = UB
   1229       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
   1230       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
   1231       ++WeakCrossingSIVsuccesses;
   1232       if (!Result.DV[Level].Direction) {
   1233         ++WeakCrossingSIVindependence;
   1234         return true;
   1235       }
   1236       Result.DV[Level].Splitable = false;
   1237       Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0);
   1238       return false;
   1239     }
   1240   }
   1241 
   1242   // check that Coeff divides Delta
   1243   APInt APDelta = ConstDelta->getValue()->getValue();
   1244   APInt APCoeff = ConstCoeff->getValue()->getValue();
   1245   APInt Distance = APDelta; // these need to be initialzed
   1246   APInt Remainder = APDelta;
   1247   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
   1248   DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1249   if (Remainder != 0) {
   1250     // Coeff doesn't divide Delta, no dependence
   1251     ++WeakCrossingSIVindependence;
   1252     ++WeakCrossingSIVsuccesses;
   1253     return true;
   1254   }
   1255   DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
   1256 
   1257   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
   1258   APInt Two = APInt(Distance.getBitWidth(), 2, true);
   1259   Remainder = Distance.srem(Two);
   1260   DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1261   if (Remainder != 0) {
   1262     // Equal direction isn't possible
   1263     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
   1264     ++WeakCrossingSIVsuccesses;
   1265   }
   1266   return false;
   1267 }
   1268 
   1269 
   1270 // Kirch's algorithm, from
   1271 //
   1272 //        Optimizing Supercompilers for Supercomputers
   1273 //        Michael Wolfe
   1274 //        MIT Press, 1989
   1275 //
   1276 // Program 2.1, page 29.
   1277 // Computes the GCD of AM and BM.
   1278 // Also finds a solution to the equation ax - by = gcd(a, b).
   1279 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
   1280 static
   1281 bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
   1282              APInt &G, APInt &X, APInt &Y) {
   1283   APInt A0(Bits, 1, true), A1(Bits, 0, true);
   1284   APInt B0(Bits, 0, true), B1(Bits, 1, true);
   1285   APInt G0 = AM.abs();
   1286   APInt G1 = BM.abs();
   1287   APInt Q = G0; // these need to be initialized
   1288   APInt R = G0;
   1289   APInt::sdivrem(G0, G1, Q, R);
   1290   while (R != 0) {
   1291     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
   1292     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
   1293     G0 = G1; G1 = R;
   1294     APInt::sdivrem(G0, G1, Q, R);
   1295   }
   1296   G = G1;
   1297   DEBUG(dbgs() << "\t    GCD = " << G << "\n");
   1298   X = AM.slt(0) ? -A1 : A1;
   1299   Y = BM.slt(0) ? B1 : -B1;
   1300 
   1301   // make sure gcd divides Delta
   1302   R = Delta.srem(G);
   1303   if (R != 0)
   1304     return true; // gcd doesn't divide Delta, no dependence
   1305   Q = Delta.sdiv(G);
   1306   X *= Q;
   1307   Y *= Q;
   1308   return false;
   1309 }
   1310 
   1311 
   1312 static
   1313 APInt floorOfQuotient(APInt A, APInt B) {
   1314   APInt Q = A; // these need to be initialized
   1315   APInt R = A;
   1316   APInt::sdivrem(A, B, Q, R);
   1317   if (R == 0)
   1318     return Q;
   1319   if ((A.sgt(0) && B.sgt(0)) ||
   1320       (A.slt(0) && B.slt(0)))
   1321     return Q;
   1322   else
   1323     return Q - 1;
   1324 }
   1325 
   1326 
   1327 static
   1328 APInt ceilingOfQuotient(APInt A, APInt B) {
   1329   APInt Q = A; // these need to be initialized
   1330   APInt R = A;
   1331   APInt::sdivrem(A, B, Q, R);
   1332   if (R == 0)
   1333     return Q;
   1334   if ((A.sgt(0) && B.sgt(0)) ||
   1335       (A.slt(0) && B.slt(0)))
   1336     return Q + 1;
   1337   else
   1338     return Q;
   1339 }
   1340 
   1341 
   1342 static
   1343 APInt maxAPInt(APInt A, APInt B) {
   1344   return A.sgt(B) ? A : B;
   1345 }
   1346 
   1347 
   1348 static
   1349 APInt minAPInt(APInt A, APInt B) {
   1350   return A.slt(B) ? A : B;
   1351 }
   1352 
   1353 
   1354 // exactSIVtest -
   1355 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
   1356 // where i is an induction variable, c1 and c2 are loop invariant, and a1
   1357 // and a2 are constant, we can solve it exactly using an algorithm developed
   1358 // by Banerjee and Wolfe. See Section 2.5.3 in
   1359 //
   1360 //        Optimizing Supercompilers for Supercomputers
   1361 //        Michael Wolfe
   1362 //        MIT Press, 1989
   1363 //
   1364 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
   1365 // so use them if possible. They're also a bit better with symbolics and,
   1366 // in the case of the strong SIV test, can compute Distances.
   1367 //
   1368 // Return true if dependence disproved.
   1369 bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
   1370                                       const SCEV *DstCoeff,
   1371                                       const SCEV *SrcConst,
   1372                                       const SCEV *DstConst,
   1373                                       const Loop *CurLoop,
   1374                                       unsigned Level,
   1375                                       FullDependence &Result,
   1376                                       Constraint &NewConstraint) const {
   1377   DEBUG(dbgs() << "\tExact SIV test\n");
   1378   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
   1379   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
   1380   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1381   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1382   ++ExactSIVapplications;
   1383   assert(0 < Level && Level <= CommonLevels && "Level out of range");
   1384   Level--;
   1385   Result.Consistent = false;
   1386   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1387   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1388   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
   1389                         Delta, CurLoop);
   1390   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1391   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1392   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1393   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
   1394     return false;
   1395 
   1396   // find gcd
   1397   APInt G, X, Y;
   1398   APInt AM = ConstSrcCoeff->getValue()->getValue();
   1399   APInt BM = ConstDstCoeff->getValue()->getValue();
   1400   unsigned Bits = AM.getBitWidth();
   1401   if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
   1402     // gcd doesn't divide Delta, no dependence
   1403     ++ExactSIVindependence;
   1404     ++ExactSIVsuccesses;
   1405     return true;
   1406   }
   1407 
   1408   DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
   1409 
   1410   // since SCEV construction normalizes, LM = 0
   1411   APInt UM(Bits, 1, true);
   1412   bool UMvalid = false;
   1413   // UM is perhaps unavailable, let's check
   1414   if (const SCEVConstant *CUB =
   1415       collectConstantUpperBound(CurLoop, Delta->getType())) {
   1416     UM = CUB->getValue()->getValue();
   1417     DEBUG(dbgs() << "\t    UM = " << UM << "\n");
   1418     UMvalid = true;
   1419   }
   1420 
   1421   APInt TU(APInt::getSignedMaxValue(Bits));
   1422   APInt TL(APInt::getSignedMinValue(Bits));
   1423 
   1424   // test(BM/G, LM-X) and test(-BM/G, X-UM)
   1425   APInt TMUL = BM.sdiv(G);
   1426   if (TMUL.sgt(0)) {
   1427     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
   1428     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1429     if (UMvalid) {
   1430       TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
   1431       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1432     }
   1433   }
   1434   else {
   1435     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
   1436     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1437     if (UMvalid) {
   1438       TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
   1439       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1440     }
   1441   }
   1442 
   1443   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
   1444   TMUL = AM.sdiv(G);
   1445   if (TMUL.sgt(0)) {
   1446     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
   1447     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1448     if (UMvalid) {
   1449       TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
   1450       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1451     }
   1452   }
   1453   else {
   1454     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
   1455     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1456     if (UMvalid) {
   1457       TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
   1458       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1459     }
   1460   }
   1461   if (TL.sgt(TU)) {
   1462     ++ExactSIVindependence;
   1463     ++ExactSIVsuccesses;
   1464     return true;
   1465   }
   1466 
   1467   // explore directions
   1468   unsigned NewDirection = Dependence::DVEntry::NONE;
   1469 
   1470   // less than
   1471   APInt SaveTU(TU); // save these
   1472   APInt SaveTL(TL);
   1473   DEBUG(dbgs() << "\t    exploring LT direction\n");
   1474   TMUL = AM - BM;
   1475   if (TMUL.sgt(0)) {
   1476     TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
   1477     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1478   }
   1479   else {
   1480     TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
   1481     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1482   }
   1483   if (TL.sle(TU)) {
   1484     NewDirection |= Dependence::DVEntry::LT;
   1485     ++ExactSIVsuccesses;
   1486   }
   1487 
   1488   // equal
   1489   TU = SaveTU; // restore
   1490   TL = SaveTL;
   1491   DEBUG(dbgs() << "\t    exploring EQ direction\n");
   1492   if (TMUL.sgt(0)) {
   1493     TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
   1494     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1495   }
   1496   else {
   1497     TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
   1498     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1499   }
   1500   TMUL = BM - AM;
   1501   if (TMUL.sgt(0)) {
   1502     TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
   1503     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1504   }
   1505   else {
   1506     TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
   1507     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1508   }
   1509   if (TL.sle(TU)) {
   1510     NewDirection |= Dependence::DVEntry::EQ;
   1511     ++ExactSIVsuccesses;
   1512   }
   1513 
   1514   // greater than
   1515   TU = SaveTU; // restore
   1516   TL = SaveTL;
   1517   DEBUG(dbgs() << "\t    exploring GT direction\n");
   1518   if (TMUL.sgt(0)) {
   1519     TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
   1520     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1521   }
   1522   else {
   1523     TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
   1524     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1525   }
   1526   if (TL.sle(TU)) {
   1527     NewDirection |= Dependence::DVEntry::GT;
   1528     ++ExactSIVsuccesses;
   1529   }
   1530 
   1531   // finished
   1532   Result.DV[Level].Direction &= NewDirection;
   1533   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
   1534     ++ExactSIVindependence;
   1535   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
   1536 }
   1537 
   1538 
   1539 
   1540 // Return true if the divisor evenly divides the dividend.
   1541 static
   1542 bool isRemainderZero(const SCEVConstant *Dividend,
   1543                      const SCEVConstant *Divisor) {
   1544   APInt ConstDividend = Dividend->getValue()->getValue();
   1545   APInt ConstDivisor = Divisor->getValue()->getValue();
   1546   return ConstDividend.srem(ConstDivisor) == 0;
   1547 }
   1548 
   1549 
   1550 // weakZeroSrcSIVtest -
   1551 // From the paper, Practical Dependence Testing, Section 4.2.2
   1552 //
   1553 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
   1554 // where i is an induction variable, c1 and c2 are loop invariant,
   1555 // and a is a constant, we can solve it exactly using the
   1556 // Weak-Zero SIV test.
   1557 //
   1558 // Given
   1559 //
   1560 //    c1 = c2 + a*i
   1561 //
   1562 // we get
   1563 //
   1564 //    (c1 - c2)/a = i
   1565 //
   1566 // If i is not an integer, there's no dependence.
   1567 // If i < 0 or > UB, there's no dependence.
   1568 // If i = 0, the direction is <= and peeling the
   1569 // 1st iteration will break the dependence.
   1570 // If i = UB, the direction is >= and peeling the
   1571 // last iteration will break the dependence.
   1572 // Otherwise, the direction is *.
   1573 //
   1574 // Can prove independence. Failing that, we can sometimes refine
   1575 // the directions. Can sometimes show that first or last
   1576 // iteration carries all the dependences (so worth peeling).
   1577 //
   1578 // (see also weakZeroDstSIVtest)
   1579 //
   1580 // Return true if dependence disproved.
   1581 bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
   1582                                             const SCEV *SrcConst,
   1583                                             const SCEV *DstConst,
   1584                                             const Loop *CurLoop,
   1585                                             unsigned Level,
   1586                                             FullDependence &Result,
   1587                                             Constraint &NewConstraint) const {
   1588   // For the WeakSIV test, it's possible the loop isn't common to
   1589   // the Src and Dst loops. If it isn't, then there's no need to
   1590   // record a direction.
   1591   DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
   1592   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
   1593   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1594   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1595   ++WeakZeroSIVapplications;
   1596   assert(0 < Level && Level <= MaxLevels && "Level out of range");
   1597   Level--;
   1598   Result.Consistent = false;
   1599   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
   1600   NewConstraint.setLine(SE->getConstant(Delta->getType(), 0),
   1601                         DstCoeff, Delta, CurLoop);
   1602   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1603   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
   1604     if (Level < CommonLevels) {
   1605       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
   1606       Result.DV[Level].PeelFirst = true;
   1607       ++WeakZeroSIVsuccesses;
   1608     }
   1609     return false; // dependences caused by first iteration
   1610   }
   1611   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1612   if (!ConstCoeff)
   1613     return false;
   1614   const SCEV *AbsCoeff =
   1615     SE->isKnownNegative(ConstCoeff) ?
   1616     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
   1617   const SCEV *NewDelta =
   1618     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
   1619 
   1620   // check that Delta/SrcCoeff < iteration count
   1621   // really check NewDelta < count*AbsCoeff
   1622   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1623     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1624     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
   1625     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
   1626       ++WeakZeroSIVindependence;
   1627       ++WeakZeroSIVsuccesses;
   1628       return true;
   1629     }
   1630     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
   1631       // dependences caused by last iteration
   1632       if (Level < CommonLevels) {
   1633         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
   1634         Result.DV[Level].PeelLast = true;
   1635         ++WeakZeroSIVsuccesses;
   1636       }
   1637       return false;
   1638     }
   1639   }
   1640 
   1641   // check that Delta/SrcCoeff >= 0
   1642   // really check that NewDelta >= 0
   1643   if (SE->isKnownNegative(NewDelta)) {
   1644     // No dependence, newDelta < 0
   1645     ++WeakZeroSIVindependence;
   1646     ++WeakZeroSIVsuccesses;
   1647     return true;
   1648   }
   1649 
   1650   // if SrcCoeff doesn't divide Delta, then no dependence
   1651   if (isa<SCEVConstant>(Delta) &&
   1652       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
   1653     ++WeakZeroSIVindependence;
   1654     ++WeakZeroSIVsuccesses;
   1655     return true;
   1656   }
   1657   return false;
   1658 }
   1659 
   1660 
   1661 // weakZeroDstSIVtest -
   1662 // From the paper, Practical Dependence Testing, Section 4.2.2
   1663 //
   1664 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
   1665 // where i is an induction variable, c1 and c2 are loop invariant,
   1666 // and a is a constant, we can solve it exactly using the
   1667 // Weak-Zero SIV test.
   1668 //
   1669 // Given
   1670 //
   1671 //    c1 + a*i = c2
   1672 //
   1673 // we get
   1674 //
   1675 //    i = (c2 - c1)/a
   1676 //
   1677 // If i is not an integer, there's no dependence.
   1678 // If i < 0 or > UB, there's no dependence.
   1679 // If i = 0, the direction is <= and peeling the
   1680 // 1st iteration will break the dependence.
   1681 // If i = UB, the direction is >= and peeling the
   1682 // last iteration will break the dependence.
   1683 // Otherwise, the direction is *.
   1684 //
   1685 // Can prove independence. Failing that, we can sometimes refine
   1686 // the directions. Can sometimes show that first or last
   1687 // iteration carries all the dependences (so worth peeling).
   1688 //
   1689 // (see also weakZeroSrcSIVtest)
   1690 //
   1691 // Return true if dependence disproved.
   1692 bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
   1693                                             const SCEV *SrcConst,
   1694                                             const SCEV *DstConst,
   1695                                             const Loop *CurLoop,
   1696                                             unsigned Level,
   1697                                             FullDependence &Result,
   1698                                             Constraint &NewConstraint) const {
   1699   // For the WeakSIV test, it's possible the loop isn't common to the
   1700   // Src and Dst loops. If it isn't, then there's no need to record a direction.
   1701   DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
   1702   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
   1703   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1704   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1705   ++WeakZeroSIVapplications;
   1706   assert(0 < Level && Level <= SrcLevels && "Level out of range");
   1707   Level--;
   1708   Result.Consistent = false;
   1709   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1710   NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0),
   1711                         Delta, CurLoop);
   1712   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1713   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
   1714     if (Level < CommonLevels) {
   1715       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
   1716       Result.DV[Level].PeelFirst = true;
   1717       ++WeakZeroSIVsuccesses;
   1718     }
   1719     return false; // dependences caused by first iteration
   1720   }
   1721   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1722   if (!ConstCoeff)
   1723     return false;
   1724   const SCEV *AbsCoeff =
   1725     SE->isKnownNegative(ConstCoeff) ?
   1726     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
   1727   const SCEV *NewDelta =
   1728     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
   1729 
   1730   // check that Delta/SrcCoeff < iteration count
   1731   // really check NewDelta < count*AbsCoeff
   1732   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1733     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1734     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
   1735     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
   1736       ++WeakZeroSIVindependence;
   1737       ++WeakZeroSIVsuccesses;
   1738       return true;
   1739     }
   1740     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
   1741       // dependences caused by last iteration
   1742       if (Level < CommonLevels) {
   1743         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
   1744         Result.DV[Level].PeelLast = true;
   1745         ++WeakZeroSIVsuccesses;
   1746       }
   1747       return false;
   1748     }
   1749   }
   1750 
   1751   // check that Delta/SrcCoeff >= 0
   1752   // really check that NewDelta >= 0
   1753   if (SE->isKnownNegative(NewDelta)) {
   1754     // No dependence, newDelta < 0
   1755     ++WeakZeroSIVindependence;
   1756     ++WeakZeroSIVsuccesses;
   1757     return true;
   1758   }
   1759 
   1760   // if SrcCoeff doesn't divide Delta, then no dependence
   1761   if (isa<SCEVConstant>(Delta) &&
   1762       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
   1763     ++WeakZeroSIVindependence;
   1764     ++WeakZeroSIVsuccesses;
   1765     return true;
   1766   }
   1767   return false;
   1768 }
   1769 
   1770 
   1771 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
   1772 // Things of the form [c1 + a*i] and [c2 + b*j],
   1773 // where i and j are induction variable, c1 and c2 are loop invariant,
   1774 // and a and b are constants.
   1775 // Returns true if any possible dependence is disproved.
   1776 // Marks the result as inconsistent.
   1777 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
   1778 bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
   1779                                        const SCEV *DstCoeff,
   1780                                        const SCEV *SrcConst,
   1781                                        const SCEV *DstConst,
   1782                                        const Loop *SrcLoop,
   1783                                        const Loop *DstLoop,
   1784                                        FullDependence &Result) const {
   1785   DEBUG(dbgs() << "\tExact RDIV test\n");
   1786   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
   1787   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
   1788   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1789   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1790   ++ExactRDIVapplications;
   1791   Result.Consistent = false;
   1792   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1793   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1794   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1795   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1796   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1797   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
   1798     return false;
   1799 
   1800   // find gcd
   1801   APInt G, X, Y;
   1802   APInt AM = ConstSrcCoeff->getValue()->getValue();
   1803   APInt BM = ConstDstCoeff->getValue()->getValue();
   1804   unsigned Bits = AM.getBitWidth();
   1805   if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
   1806     // gcd doesn't divide Delta, no dependence
   1807     ++ExactRDIVindependence;
   1808     return true;
   1809   }
   1810 
   1811   DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
   1812 
   1813   // since SCEV construction seems to normalize, LM = 0
   1814   APInt SrcUM(Bits, 1, true);
   1815   bool SrcUMvalid = false;
   1816   // SrcUM is perhaps unavailable, let's check
   1817   if (const SCEVConstant *UpperBound =
   1818       collectConstantUpperBound(SrcLoop, Delta->getType())) {
   1819     SrcUM = UpperBound->getValue()->getValue();
   1820     DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
   1821     SrcUMvalid = true;
   1822   }
   1823 
   1824   APInt DstUM(Bits, 1, true);
   1825   bool DstUMvalid = false;
   1826   // UM is perhaps unavailable, let's check
   1827   if (const SCEVConstant *UpperBound =
   1828       collectConstantUpperBound(DstLoop, Delta->getType())) {
   1829     DstUM = UpperBound->getValue()->getValue();
   1830     DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
   1831     DstUMvalid = true;
   1832   }
   1833 
   1834   APInt TU(APInt::getSignedMaxValue(Bits));
   1835   APInt TL(APInt::getSignedMinValue(Bits));
   1836 
   1837   // test(BM/G, LM-X) and test(-BM/G, X-UM)
   1838   APInt TMUL = BM.sdiv(G);
   1839   if (TMUL.sgt(0)) {
   1840     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
   1841     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1842     if (SrcUMvalid) {
   1843       TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
   1844       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1845     }
   1846   }
   1847   else {
   1848     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
   1849     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1850     if (SrcUMvalid) {
   1851       TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
   1852       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1853     }
   1854   }
   1855 
   1856   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
   1857   TMUL = AM.sdiv(G);
   1858   if (TMUL.sgt(0)) {
   1859     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
   1860     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1861     if (DstUMvalid) {
   1862       TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
   1863       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1864     }
   1865   }
   1866   else {
   1867     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
   1868     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1869     if (DstUMvalid) {
   1870       TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
   1871       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1872     }
   1873   }
   1874   if (TL.sgt(TU))
   1875     ++ExactRDIVindependence;
   1876   return TL.sgt(TU);
   1877 }
   1878 
   1879 
   1880 // symbolicRDIVtest -
   1881 // In Section 4.5 of the Practical Dependence Testing paper,the authors
   1882 // introduce a special case of Banerjee's Inequalities (also called the
   1883 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
   1884 // particularly cases with symbolics. Since it's only able to disprove
   1885 // dependence (not compute distances or directions), we'll use it as a
   1886 // fall back for the other tests.
   1887 //
   1888 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
   1889 // where i and j are induction variables and c1 and c2 are loop invariants,
   1890 // we can use the symbolic tests to disprove some dependences, serving as a
   1891 // backup for the RDIV test. Note that i and j can be the same variable,
   1892 // letting this test serve as a backup for the various SIV tests.
   1893 //
   1894 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
   1895 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
   1896 // loop bounds for the i and j loops, respectively. So, ...
   1897 //
   1898 // c1 + a1*i = c2 + a2*j
   1899 // a1*i - a2*j = c2 - c1
   1900 //
   1901 // To test for a dependence, we compute c2 - c1 and make sure it's in the
   1902 // range of the maximum and minimum possible values of a1*i - a2*j.
   1903 // Considering the signs of a1 and a2, we have 4 possible cases:
   1904 //
   1905 // 1) If a1 >= 0 and a2 >= 0, then
   1906 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
   1907 //              -a2*N2 <= c2 - c1 <= a1*N1
   1908 //
   1909 // 2) If a1 >= 0 and a2 <= 0, then
   1910 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
   1911 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
   1912 //
   1913 // 3) If a1 <= 0 and a2 >= 0, then
   1914 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
   1915 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
   1916 //
   1917 // 4) If a1 <= 0 and a2 <= 0, then
   1918 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
   1919 //        a1*N1         <= c2 - c1 <=       -a2*N2
   1920 //
   1921 // return true if dependence disproved
   1922 bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
   1923                                           const SCEV *A2,
   1924                                           const SCEV *C1,
   1925                                           const SCEV *C2,
   1926                                           const Loop *Loop1,
   1927                                           const Loop *Loop2) const {
   1928   ++SymbolicRDIVapplications;
   1929   DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
   1930   DEBUG(dbgs() << "\t    A1 = " << *A1);
   1931   DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
   1932   DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
   1933   DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
   1934   DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
   1935   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
   1936   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
   1937   DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
   1938   DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
   1939   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
   1940   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
   1941   DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
   1942   DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
   1943   if (SE->isKnownNonNegative(A1)) {
   1944     if (SE->isKnownNonNegative(A2)) {
   1945       // A1 >= 0 && A2 >= 0
   1946       if (N1) {
   1947         // make sure that c2 - c1 <= a1*N1
   1948         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   1949         DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
   1950         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
   1951           ++SymbolicRDIVindependence;
   1952           return true;
   1953         }
   1954       }
   1955       if (N2) {
   1956         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
   1957         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   1958         DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
   1959         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
   1960           ++SymbolicRDIVindependence;
   1961           return true;
   1962         }
   1963       }
   1964     }
   1965     else if (SE->isKnownNonPositive(A2)) {
   1966       // a1 >= 0 && a2 <= 0
   1967       if (N1 && N2) {
   1968         // make sure that c2 - c1 <= a1*N1 - a2*N2
   1969         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   1970         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   1971         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
   1972         DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
   1973         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
   1974           ++SymbolicRDIVindependence;
   1975           return true;
   1976         }
   1977       }
   1978       // make sure that 0 <= c2 - c1
   1979       if (SE->isKnownNegative(C2_C1)) {
   1980         ++SymbolicRDIVindependence;
   1981         return true;
   1982       }
   1983     }
   1984   }
   1985   else if (SE->isKnownNonPositive(A1)) {
   1986     if (SE->isKnownNonNegative(A2)) {
   1987       // a1 <= 0 && a2 >= 0
   1988       if (N1 && N2) {
   1989         // make sure that a1*N1 - a2*N2 <= c2 - c1
   1990         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   1991         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   1992         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
   1993         DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
   1994         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
   1995           ++SymbolicRDIVindependence;
   1996           return true;
   1997         }
   1998       }
   1999       // make sure that c2 - c1 <= 0
   2000       if (SE->isKnownPositive(C2_C1)) {
   2001         ++SymbolicRDIVindependence;
   2002         return true;
   2003       }
   2004     }
   2005     else if (SE->isKnownNonPositive(A2)) {
   2006       // a1 <= 0 && a2 <= 0
   2007       if (N1) {
   2008         // make sure that a1*N1 <= c2 - c1
   2009         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2010         DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
   2011         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
   2012           ++SymbolicRDIVindependence;
   2013           return true;
   2014         }
   2015       }
   2016       if (N2) {
   2017         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
   2018         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2019         DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
   2020         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
   2021           ++SymbolicRDIVindependence;
   2022           return true;
   2023         }
   2024       }
   2025     }
   2026   }
   2027   return false;
   2028 }
   2029 
   2030 
   2031 // testSIV -
   2032 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
   2033 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
   2034 // a2 are constant, we attack it with an SIV test. While they can all be
   2035 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
   2036 // they apply; they're cheaper and sometimes more precise.
   2037 //
   2038 // Return true if dependence disproved.
   2039 bool DependenceAnalysis::testSIV(const SCEV *Src,
   2040                                  const SCEV *Dst,
   2041                                  unsigned &Level,
   2042                                  FullDependence &Result,
   2043                                  Constraint &NewConstraint,
   2044                                  const SCEV *&SplitIter) const {
   2045   DEBUG(dbgs() << "    src = " << *Src << "\n");
   2046   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2047   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
   2048   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
   2049   if (SrcAddRec && DstAddRec) {
   2050     const SCEV *SrcConst = SrcAddRec->getStart();
   2051     const SCEV *DstConst = DstAddRec->getStart();
   2052     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2053     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2054     const Loop *CurLoop = SrcAddRec->getLoop();
   2055     assert(CurLoop == DstAddRec->getLoop() &&
   2056            "both loops in SIV should be same");
   2057     Level = mapSrcLoop(CurLoop);
   2058     bool disproven;
   2059     if (SrcCoeff == DstCoeff)
   2060       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2061                                 Level, Result, NewConstraint);
   2062     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
   2063       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2064                                       Level, Result, NewConstraint, SplitIter);
   2065     else
   2066       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
   2067                                Level, Result, NewConstraint);
   2068     return disproven ||
   2069       gcdMIVtest(Src, Dst, Result) ||
   2070       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
   2071   }
   2072   if (SrcAddRec) {
   2073     const SCEV *SrcConst = SrcAddRec->getStart();
   2074     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2075     const SCEV *DstConst = Dst;
   2076     const Loop *CurLoop = SrcAddRec->getLoop();
   2077     Level = mapSrcLoop(CurLoop);
   2078     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2079                               Level, Result, NewConstraint) ||
   2080       gcdMIVtest(Src, Dst, Result);
   2081   }
   2082   if (DstAddRec) {
   2083     const SCEV *DstConst = DstAddRec->getStart();
   2084     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2085     const SCEV *SrcConst = Src;
   2086     const Loop *CurLoop = DstAddRec->getLoop();
   2087     Level = mapDstLoop(CurLoop);
   2088     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
   2089                               CurLoop, Level, Result, NewConstraint) ||
   2090       gcdMIVtest(Src, Dst, Result);
   2091   }
   2092   llvm_unreachable("SIV test expected at least one AddRec");
   2093   return false;
   2094 }
   2095 
   2096 
   2097 // testRDIV -
   2098 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
   2099 // where i and j are induction variables, c1 and c2 are loop invariant,
   2100 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
   2101 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
   2102 // It doesn't make sense to talk about distance or direction in this case,
   2103 // so there's no point in making special versions of the Strong SIV test or
   2104 // the Weak-crossing SIV test.
   2105 //
   2106 // With minor algebra, this test can also be used for things like
   2107 // [c1 + a1*i + a2*j][c2].
   2108 //
   2109 // Return true if dependence disproved.
   2110 bool DependenceAnalysis::testRDIV(const SCEV *Src,
   2111                                   const SCEV *Dst,
   2112                                   FullDependence &Result) const {
   2113   // we have 3 possible situations here:
   2114   //   1) [a*i + b] and [c*j + d]
   2115   //   2) [a*i + c*j + b] and [d]
   2116   //   3) [b] and [a*i + c*j + d]
   2117   // We need to find what we've got and get organized
   2118 
   2119   const SCEV *SrcConst, *DstConst;
   2120   const SCEV *SrcCoeff, *DstCoeff;
   2121   const Loop *SrcLoop, *DstLoop;
   2122 
   2123   DEBUG(dbgs() << "    src = " << *Src << "\n");
   2124   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2125   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
   2126   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
   2127   if (SrcAddRec && DstAddRec) {
   2128     SrcConst = SrcAddRec->getStart();
   2129     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2130     SrcLoop = SrcAddRec->getLoop();
   2131     DstConst = DstAddRec->getStart();
   2132     DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2133     DstLoop = DstAddRec->getLoop();
   2134   }
   2135   else if (SrcAddRec) {
   2136     if (const SCEVAddRecExpr *tmpAddRec =
   2137         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
   2138       SrcConst = tmpAddRec->getStart();
   2139       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
   2140       SrcLoop = tmpAddRec->getLoop();
   2141       DstConst = Dst;
   2142       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
   2143       DstLoop = SrcAddRec->getLoop();
   2144     }
   2145     else
   2146       llvm_unreachable("RDIV reached by surprising SCEVs");
   2147   }
   2148   else if (DstAddRec) {
   2149     if (const SCEVAddRecExpr *tmpAddRec =
   2150         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
   2151       DstConst = tmpAddRec->getStart();
   2152       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
   2153       DstLoop = tmpAddRec->getLoop();
   2154       SrcConst = Src;
   2155       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
   2156       SrcLoop = DstAddRec->getLoop();
   2157     }
   2158     else
   2159       llvm_unreachable("RDIV reached by surprising SCEVs");
   2160   }
   2161   else
   2162     llvm_unreachable("RDIV expected at least one AddRec");
   2163   return exactRDIVtest(SrcCoeff, DstCoeff,
   2164                        SrcConst, DstConst,
   2165                        SrcLoop, DstLoop,
   2166                        Result) ||
   2167     gcdMIVtest(Src, Dst, Result) ||
   2168     symbolicRDIVtest(SrcCoeff, DstCoeff,
   2169                      SrcConst, DstConst,
   2170                      SrcLoop, DstLoop);
   2171 }
   2172 
   2173 
   2174 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
   2175 // Return true if dependence disproved.
   2176 // Can sometimes refine direction vectors.
   2177 bool DependenceAnalysis::testMIV(const SCEV *Src,
   2178                                  const SCEV *Dst,
   2179                                  const SmallBitVector &Loops,
   2180                                  FullDependence &Result) const {
   2181   DEBUG(dbgs() << "    src = " << *Src << "\n");
   2182   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2183   Result.Consistent = false;
   2184   return gcdMIVtest(Src, Dst, Result) ||
   2185     banerjeeMIVtest(Src, Dst, Loops, Result);
   2186 }
   2187 
   2188 
   2189 // Given a product, e.g., 10*X*Y, returns the first constant operand,
   2190 // in this case 10. If there is no constant part, returns NULL.
   2191 static
   2192 const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
   2193   for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
   2194     if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
   2195       return Constant;
   2196   }
   2197   return nullptr;
   2198 }
   2199 
   2200 
   2201 //===----------------------------------------------------------------------===//
   2202 // gcdMIVtest -
   2203 // Tests an MIV subscript pair for dependence.
   2204 // Returns true if any possible dependence is disproved.
   2205 // Marks the result as inconsistent.
   2206 // Can sometimes disprove the equal direction for 1 or more loops,
   2207 // as discussed in Michael Wolfe's book,
   2208 // High Performance Compilers for Parallel Computing, page 235.
   2209 //
   2210 // We spend some effort (code!) to handle cases like
   2211 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
   2212 // but M and N are just loop-invariant variables.
   2213 // This should help us handle linearized subscripts;
   2214 // also makes this test a useful backup to the various SIV tests.
   2215 //
   2216 // It occurs to me that the presence of loop-invariant variables
   2217 // changes the nature of the test from "greatest common divisor"
   2218 // to "a common divisor".
   2219 bool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
   2220                                     const SCEV *Dst,
   2221                                     FullDependence &Result) const {
   2222   DEBUG(dbgs() << "starting gcd\n");
   2223   ++GCDapplications;
   2224   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
   2225   APInt RunningGCD = APInt::getNullValue(BitWidth);
   2226 
   2227   // Examine Src coefficients.
   2228   // Compute running GCD and record source constant.
   2229   // Because we're looking for the constant at the end of the chain,
   2230   // we can't quit the loop just because the GCD == 1.
   2231   const SCEV *Coefficients = Src;
   2232   while (const SCEVAddRecExpr *AddRec =
   2233          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2234     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2235     const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
   2236     if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
   2237       // If the coefficient is the product of a constant and other stuff,
   2238       // we can use the constant in the GCD computation.
   2239       Constant = getConstantPart(Product);
   2240     if (!Constant)
   2241       return false;
   2242     APInt ConstCoeff = Constant->getValue()->getValue();
   2243     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2244     Coefficients = AddRec->getStart();
   2245   }
   2246   const SCEV *SrcConst = Coefficients;
   2247 
   2248   // Examine Dst coefficients.
   2249   // Compute running GCD and record destination constant.
   2250   // Because we're looking for the constant at the end of the chain,
   2251   // we can't quit the loop just because the GCD == 1.
   2252   Coefficients = Dst;
   2253   while (const SCEVAddRecExpr *AddRec =
   2254          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2255     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2256     const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
   2257     if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
   2258       // If the coefficient is the product of a constant and other stuff,
   2259       // we can use the constant in the GCD computation.
   2260       Constant = getConstantPart(Product);
   2261     if (!Constant)
   2262       return false;
   2263     APInt ConstCoeff = Constant->getValue()->getValue();
   2264     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2265     Coefficients = AddRec->getStart();
   2266   }
   2267   const SCEV *DstConst = Coefficients;
   2268 
   2269   APInt ExtraGCD = APInt::getNullValue(BitWidth);
   2270   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   2271   DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
   2272   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
   2273   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
   2274     // If Delta is a sum of products, we may be able to make further progress.
   2275     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
   2276       const SCEV *Operand = Sum->getOperand(Op);
   2277       if (isa<SCEVConstant>(Operand)) {
   2278         assert(!Constant && "Surprised to find multiple constants");
   2279         Constant = cast<SCEVConstant>(Operand);
   2280       }
   2281       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
   2282         // Search for constant operand to participate in GCD;
   2283         // If none found; return false.
   2284         const SCEVConstant *ConstOp = getConstantPart(Product);
   2285         if (!ConstOp)
   2286           return false;
   2287         APInt ConstOpValue = ConstOp->getValue()->getValue();
   2288         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
   2289                                                    ConstOpValue.abs());
   2290       }
   2291       else
   2292         return false;
   2293     }
   2294   }
   2295   if (!Constant)
   2296     return false;
   2297   APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue();
   2298   DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
   2299   if (ConstDelta == 0)
   2300     return false;
   2301   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
   2302   DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
   2303   APInt Remainder = ConstDelta.srem(RunningGCD);
   2304   if (Remainder != 0) {
   2305     ++GCDindependence;
   2306     return true;
   2307   }
   2308 
   2309   // Try to disprove equal directions.
   2310   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
   2311   // the code above can't disprove the dependence because the GCD = 1.
   2312   // So we consider what happen if i = i' and what happens if j = j'.
   2313   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
   2314   // which is infeasible, so we can disallow the = direction for the i level.
   2315   // Setting j = j' doesn't help matters, so we end up with a direction vector
   2316   // of [<>, *]
   2317   //
   2318   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
   2319   // we need to remember that the constant part is 5 and the RunningGCD should
   2320   // be initialized to ExtraGCD = 30.
   2321   DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
   2322 
   2323   bool Improved = false;
   2324   Coefficients = Src;
   2325   while (const SCEVAddRecExpr *AddRec =
   2326          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2327     Coefficients = AddRec->getStart();
   2328     const Loop *CurLoop = AddRec->getLoop();
   2329     RunningGCD = ExtraGCD;
   2330     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
   2331     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
   2332     const SCEV *Inner = Src;
   2333     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
   2334       AddRec = cast<SCEVAddRecExpr>(Inner);
   2335       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2336       if (CurLoop == AddRec->getLoop())
   2337         ; // SrcCoeff == Coeff
   2338       else {
   2339         if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
   2340           // If the coefficient is the product of a constant and other stuff,
   2341           // we can use the constant in the GCD computation.
   2342           Constant = getConstantPart(Product);
   2343         else
   2344           Constant = cast<SCEVConstant>(Coeff);
   2345         APInt ConstCoeff = Constant->getValue()->getValue();
   2346         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2347       }
   2348       Inner = AddRec->getStart();
   2349     }
   2350     Inner = Dst;
   2351     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
   2352       AddRec = cast<SCEVAddRecExpr>(Inner);
   2353       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2354       if (CurLoop == AddRec->getLoop())
   2355         DstCoeff = Coeff;
   2356       else {
   2357         if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
   2358           // If the coefficient is the product of a constant and other stuff,
   2359           // we can use the constant in the GCD computation.
   2360           Constant = getConstantPart(Product);
   2361         else
   2362           Constant = cast<SCEVConstant>(Coeff);
   2363         APInt ConstCoeff = Constant->getValue()->getValue();
   2364         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2365       }
   2366       Inner = AddRec->getStart();
   2367     }
   2368     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
   2369     if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
   2370       // If the coefficient is the product of a constant and other stuff,
   2371       // we can use the constant in the GCD computation.
   2372       Constant = getConstantPart(Product);
   2373     else if (isa<SCEVConstant>(Delta))
   2374       Constant = cast<SCEVConstant>(Delta);
   2375     else {
   2376       // The difference of the two coefficients might not be a product
   2377       // or constant, in which case we give up on this direction.
   2378       continue;
   2379     }
   2380     APInt ConstCoeff = Constant->getValue()->getValue();
   2381     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2382     DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
   2383     if (RunningGCD != 0) {
   2384       Remainder = ConstDelta.srem(RunningGCD);
   2385       DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
   2386       if (Remainder != 0) {
   2387         unsigned Level = mapSrcLoop(CurLoop);
   2388         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
   2389         Improved = true;
   2390       }
   2391     }
   2392   }
   2393   if (Improved)
   2394     ++GCDsuccesses;
   2395   DEBUG(dbgs() << "all done\n");
   2396   return false;
   2397 }
   2398 
   2399 
   2400 //===----------------------------------------------------------------------===//
   2401 // banerjeeMIVtest -
   2402 // Use Banerjee's Inequalities to test an MIV subscript pair.
   2403 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
   2404 // Generally follows the discussion in Section 2.5.2 of
   2405 //
   2406 //    Optimizing Supercompilers for Supercomputers
   2407 //    Michael Wolfe
   2408 //
   2409 // The inequalities given on page 25 are simplified in that loops are
   2410 // normalized so that the lower bound is always 0 and the stride is always 1.
   2411 // For example, Wolfe gives
   2412 //
   2413 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2414 //
   2415 // where A_k is the coefficient of the kth index in the source subscript,
   2416 // B_k is the coefficient of the kth index in the destination subscript,
   2417 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
   2418 // index, and N_k is the stride of the kth index. Since all loops are normalized
   2419 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
   2420 // equation to
   2421 //
   2422 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
   2423 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
   2424 //
   2425 // Similar simplifications are possible for the other equations.
   2426 //
   2427 // When we can't determine the number of iterations for a loop,
   2428 // we use NULL as an indicator for the worst case, infinity.
   2429 // When computing the upper bound, NULL denotes +inf;
   2430 // for the lower bound, NULL denotes -inf.
   2431 //
   2432 // Return true if dependence disproved.
   2433 bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
   2434                                          const SCEV *Dst,
   2435                                          const SmallBitVector &Loops,
   2436                                          FullDependence &Result) const {
   2437   DEBUG(dbgs() << "starting Banerjee\n");
   2438   ++BanerjeeApplications;
   2439   DEBUG(dbgs() << "    Src = " << *Src << '\n');
   2440   const SCEV *A0;
   2441   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
   2442   DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
   2443   const SCEV *B0;
   2444   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
   2445   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
   2446   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
   2447   DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
   2448 
   2449   // Compute bounds for all the * directions.
   2450   DEBUG(dbgs() << "\tBounds[*]\n");
   2451   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2452     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
   2453     Bound[K].Direction = Dependence::DVEntry::ALL;
   2454     Bound[K].DirSet = Dependence::DVEntry::NONE;
   2455     findBoundsALL(A, B, Bound, K);
   2456 #ifndef NDEBUG
   2457     DEBUG(dbgs() << "\t    " << K << '\t');
   2458     if (Bound[K].Lower[Dependence::DVEntry::ALL])
   2459       DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
   2460     else
   2461       DEBUG(dbgs() << "-inf\t");
   2462     if (Bound[K].Upper[Dependence::DVEntry::ALL])
   2463       DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
   2464     else
   2465       DEBUG(dbgs() << "+inf\n");
   2466 #endif
   2467   }
   2468 
   2469   // Test the *, *, *, ... case.
   2470   bool Disproved = false;
   2471   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
   2472     // Explore the direction vector hierarchy.
   2473     unsigned DepthExpanded = 0;
   2474     unsigned NewDeps = exploreDirections(1, A, B, Bound,
   2475                                          Loops, DepthExpanded, Delta);
   2476     if (NewDeps > 0) {
   2477       bool Improved = false;
   2478       for (unsigned K = 1; K <= CommonLevels; ++K) {
   2479         if (Loops[K]) {
   2480           unsigned Old = Result.DV[K - 1].Direction;
   2481           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
   2482           Improved |= Old != Result.DV[K - 1].Direction;
   2483           if (!Result.DV[K - 1].Direction) {
   2484             Improved = false;
   2485             Disproved = true;
   2486             break;
   2487           }
   2488         }
   2489       }
   2490       if (Improved)
   2491         ++BanerjeeSuccesses;
   2492     }
   2493     else {
   2494       ++BanerjeeIndependence;
   2495       Disproved = true;
   2496     }
   2497   }
   2498   else {
   2499     ++BanerjeeIndependence;
   2500     Disproved = true;
   2501   }
   2502   delete [] Bound;
   2503   delete [] A;
   2504   delete [] B;
   2505   return Disproved;
   2506 }
   2507 
   2508 
   2509 // Hierarchically expands the direction vector
   2510 // search space, combining the directions of discovered dependences
   2511 // in the DirSet field of Bound. Returns the number of distinct
   2512 // dependences discovered. If the dependence is disproved,
   2513 // it will return 0.
   2514 unsigned DependenceAnalysis::exploreDirections(unsigned Level,
   2515                                                CoefficientInfo *A,
   2516                                                CoefficientInfo *B,
   2517                                                BoundInfo *Bound,
   2518                                                const SmallBitVector &Loops,
   2519                                                unsigned &DepthExpanded,
   2520                                                const SCEV *Delta) const {
   2521   if (Level > CommonLevels) {
   2522     // record result
   2523     DEBUG(dbgs() << "\t[");
   2524     for (unsigned K = 1; K <= CommonLevels; ++K) {
   2525       if (Loops[K]) {
   2526         Bound[K].DirSet |= Bound[K].Direction;
   2527 #ifndef NDEBUG
   2528         switch (Bound[K].Direction) {
   2529         case Dependence::DVEntry::LT:
   2530           DEBUG(dbgs() << " <");
   2531           break;
   2532         case Dependence::DVEntry::EQ:
   2533           DEBUG(dbgs() << " =");
   2534           break;
   2535         case Dependence::DVEntry::GT:
   2536           DEBUG(dbgs() << " >");
   2537           break;
   2538         case Dependence::DVEntry::ALL:
   2539           DEBUG(dbgs() << " *");
   2540           break;
   2541         default:
   2542           llvm_unreachable("unexpected Bound[K].Direction");
   2543         }
   2544 #endif
   2545       }
   2546     }
   2547     DEBUG(dbgs() << " ]\n");
   2548     return 1;
   2549   }
   2550   if (Loops[Level]) {
   2551     if (Level > DepthExpanded) {
   2552       DepthExpanded = Level;
   2553       // compute bounds for <, =, > at current level
   2554       findBoundsLT(A, B, Bound, Level);
   2555       findBoundsGT(A, B, Bound, Level);
   2556       findBoundsEQ(A, B, Bound, Level);
   2557 #ifndef NDEBUG
   2558       DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
   2559       DEBUG(dbgs() << "\t    <\t");
   2560       if (Bound[Level].Lower[Dependence::DVEntry::LT])
   2561         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
   2562       else
   2563         DEBUG(dbgs() << "-inf\t");
   2564       if (Bound[Level].Upper[Dependence::DVEntry::LT])
   2565         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
   2566       else
   2567         DEBUG(dbgs() << "+inf\n");
   2568       DEBUG(dbgs() << "\t    =\t");
   2569       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
   2570         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
   2571       else
   2572         DEBUG(dbgs() << "-inf\t");
   2573       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
   2574         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
   2575       else
   2576         DEBUG(dbgs() << "+inf\n");
   2577       DEBUG(dbgs() << "\t    >\t");
   2578       if (Bound[Level].Lower[Dependence::DVEntry::GT])
   2579         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
   2580       else
   2581         DEBUG(dbgs() << "-inf\t");
   2582       if (Bound[Level].Upper[Dependence::DVEntry::GT])
   2583         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
   2584       else
   2585         DEBUG(dbgs() << "+inf\n");
   2586 #endif
   2587     }
   2588 
   2589     unsigned NewDeps = 0;
   2590 
   2591     // test bounds for <, *, *, ...
   2592     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
   2593       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2594                                    Loops, DepthExpanded, Delta);
   2595 
   2596     // Test bounds for =, *, *, ...
   2597     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
   2598       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2599                                    Loops, DepthExpanded, Delta);
   2600 
   2601     // test bounds for >, *, *, ...
   2602     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
   2603       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2604                                    Loops, DepthExpanded, Delta);
   2605 
   2606     Bound[Level].Direction = Dependence::DVEntry::ALL;
   2607     return NewDeps;
   2608   }
   2609   else
   2610     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
   2611 }
   2612 
   2613 
   2614 // Returns true iff the current bounds are plausible.
   2615 bool DependenceAnalysis::testBounds(unsigned char DirKind,
   2616                                     unsigned Level,
   2617                                     BoundInfo *Bound,
   2618                                     const SCEV *Delta) const {
   2619   Bound[Level].Direction = DirKind;
   2620   if (const SCEV *LowerBound = getLowerBound(Bound))
   2621     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
   2622       return false;
   2623   if (const SCEV *UpperBound = getUpperBound(Bound))
   2624     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
   2625       return false;
   2626   return true;
   2627 }
   2628 
   2629 
   2630 // Computes the upper and lower bounds for level K
   2631 // using the * direction. Records them in Bound.
   2632 // Wolfe gives the equations
   2633 //
   2634 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
   2635 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
   2636 //
   2637 // Since we normalize loops, we can simplify these equations to
   2638 //
   2639 //    LB^*_k = (A^-_k - B^+_k)U_k
   2640 //    UB^*_k = (A^+_k - B^-_k)U_k
   2641 //
   2642 // We must be careful to handle the case where the upper bound is unknown.
   2643 // Note that the lower bound is always <= 0
   2644 // and the upper bound is always >= 0.
   2645 void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
   2646                                        CoefficientInfo *B,
   2647                                        BoundInfo *Bound,
   2648                                        unsigned K) const {
   2649   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
   2650   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
   2651   if (Bound[K].Iterations) {
   2652     Bound[K].Lower[Dependence::DVEntry::ALL] =
   2653       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
   2654                      Bound[K].Iterations);
   2655     Bound[K].Upper[Dependence::DVEntry::ALL] =
   2656       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
   2657                      Bound[K].Iterations);
   2658   }
   2659   else {
   2660     // If the difference is 0, we won't need to know the number of iterations.
   2661     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
   2662       Bound[K].Lower[Dependence::DVEntry::ALL] =
   2663         SE->getConstant(A[K].Coeff->getType(), 0);
   2664     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
   2665       Bound[K].Upper[Dependence::DVEntry::ALL] =
   2666         SE->getConstant(A[K].Coeff->getType(), 0);
   2667   }
   2668 }
   2669 
   2670 
   2671 // Computes the upper and lower bounds for level K
   2672 // using the = direction. Records them in Bound.
   2673 // Wolfe gives the equations
   2674 //
   2675 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
   2676 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
   2677 //
   2678 // Since we normalize loops, we can simplify these equations to
   2679 //
   2680 //    LB^=_k = (A_k - B_k)^- U_k
   2681 //    UB^=_k = (A_k - B_k)^+ U_k
   2682 //
   2683 // We must be careful to handle the case where the upper bound is unknown.
   2684 // Note that the lower bound is always <= 0
   2685 // and the upper bound is always >= 0.
   2686 void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
   2687                                       CoefficientInfo *B,
   2688                                       BoundInfo *Bound,
   2689                                       unsigned K) const {
   2690   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
   2691   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
   2692   if (Bound[K].Iterations) {
   2693     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
   2694     const SCEV *NegativePart = getNegativePart(Delta);
   2695     Bound[K].Lower[Dependence::DVEntry::EQ] =
   2696       SE->getMulExpr(NegativePart, Bound[K].Iterations);
   2697     const SCEV *PositivePart = getPositivePart(Delta);
   2698     Bound[K].Upper[Dependence::DVEntry::EQ] =
   2699       SE->getMulExpr(PositivePart, Bound[K].Iterations);
   2700   }
   2701   else {
   2702     // If the positive/negative part of the difference is 0,
   2703     // we won't need to know the number of iterations.
   2704     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
   2705     const SCEV *NegativePart = getNegativePart(Delta);
   2706     if (NegativePart->isZero())
   2707       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
   2708     const SCEV *PositivePart = getPositivePart(Delta);
   2709     if (PositivePart->isZero())
   2710       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
   2711   }
   2712 }
   2713 
   2714 
   2715 // Computes the upper and lower bounds for level K
   2716 // using the < direction. Records them in Bound.
   2717 // Wolfe gives the equations
   2718 //
   2719 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2720 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2721 //
   2722 // Since we normalize loops, we can simplify these equations to
   2723 //
   2724 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
   2725 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
   2726 //
   2727 // We must be careful to handle the case where the upper bound is unknown.
   2728 void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
   2729                                       CoefficientInfo *B,
   2730                                       BoundInfo *Bound,
   2731                                       unsigned K) const {
   2732   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
   2733   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
   2734   if (Bound[K].Iterations) {
   2735     const SCEV *Iter_1 =
   2736       SE->getMinusSCEV(Bound[K].Iterations,
   2737                        SE->getConstant(Bound[K].Iterations->getType(), 1));
   2738     const SCEV *NegPart =
   2739       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
   2740     Bound[K].Lower[Dependence::DVEntry::LT] =
   2741       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
   2742     const SCEV *PosPart =
   2743       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
   2744     Bound[K].Upper[Dependence::DVEntry::LT] =
   2745       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
   2746   }
   2747   else {
   2748     // If the positive/negative part of the difference is 0,
   2749     // we won't need to know the number of iterations.
   2750     const SCEV *NegPart =
   2751       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
   2752     if (NegPart->isZero())
   2753       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
   2754     const SCEV *PosPart =
   2755       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
   2756     if (PosPart->isZero())
   2757       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
   2758   }
   2759 }
   2760 
   2761 
   2762 // Computes the upper and lower bounds for level K
   2763 // using the > direction. Records them in Bound.
   2764 // Wolfe gives the equations
   2765 //
   2766 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
   2767 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
   2768 //
   2769 // Since we normalize loops, we can simplify these equations to
   2770 //
   2771 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
   2772 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
   2773 //
   2774 // We must be careful to handle the case where the upper bound is unknown.
   2775 void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
   2776                                       CoefficientInfo *B,
   2777                                       BoundInfo *Bound,
   2778                                       unsigned K) const {
   2779   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
   2780   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
   2781   if (Bound[K].Iterations) {
   2782     const SCEV *Iter_1 =
   2783       SE->getMinusSCEV(Bound[K].Iterations,
   2784                        SE->getConstant(Bound[K].Iterations->getType(), 1));
   2785     const SCEV *NegPart =
   2786       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
   2787     Bound[K].Lower[Dependence::DVEntry::GT] =
   2788       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
   2789     const SCEV *PosPart =
   2790       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
   2791     Bound[K].Upper[Dependence::DVEntry::GT] =
   2792       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
   2793   }
   2794   else {
   2795     // If the positive/negative part of the difference is 0,
   2796     // we won't need to know the number of iterations.
   2797     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
   2798     if (NegPart->isZero())
   2799       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
   2800     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
   2801     if (PosPart->isZero())
   2802       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
   2803   }
   2804 }
   2805 
   2806 
   2807 // X^+ = max(X, 0)
   2808 const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
   2809   return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0));
   2810 }
   2811 
   2812 
   2813 // X^- = min(X, 0)
   2814 const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
   2815   return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0));
   2816 }
   2817 
   2818 
   2819 // Walks through the subscript,
   2820 // collecting each coefficient, the associated loop bounds,
   2821 // and recording its positive and negative parts for later use.
   2822 DependenceAnalysis::CoefficientInfo *
   2823 DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
   2824                                      bool SrcFlag,
   2825                                      const SCEV *&Constant) const {
   2826   const SCEV *Zero = SE->getConstant(Subscript->getType(), 0);
   2827   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
   2828   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2829     CI[K].Coeff = Zero;
   2830     CI[K].PosPart = Zero;
   2831     CI[K].NegPart = Zero;
   2832     CI[K].Iterations = nullptr;
   2833   }
   2834   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
   2835     const Loop *L = AddRec->getLoop();
   2836     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
   2837     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
   2838     CI[K].PosPart = getPositivePart(CI[K].Coeff);
   2839     CI[K].NegPart = getNegativePart(CI[K].Coeff);
   2840     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
   2841     Subscript = AddRec->getStart();
   2842   }
   2843   Constant = Subscript;
   2844 #ifndef NDEBUG
   2845   DEBUG(dbgs() << "\tCoefficient Info\n");
   2846   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2847     DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
   2848     DEBUG(dbgs() << "\tPos Part = ");
   2849     DEBUG(dbgs() << *CI[K].PosPart);
   2850     DEBUG(dbgs() << "\tNeg Part = ");
   2851     DEBUG(dbgs() << *CI[K].NegPart);
   2852     DEBUG(dbgs() << "\tUpper Bound = ");
   2853     if (CI[K].Iterations)
   2854       DEBUG(dbgs() << *CI[K].Iterations);
   2855     else
   2856       DEBUG(dbgs() << "+inf");
   2857     DEBUG(dbgs() << '\n');
   2858   }
   2859   DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
   2860 #endif
   2861   return CI;
   2862 }
   2863 
   2864 
   2865 // Looks through all the bounds info and
   2866 // computes the lower bound given the current direction settings
   2867 // at each level. If the lower bound for any level is -inf,
   2868 // the result is -inf.
   2869 const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
   2870   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
   2871   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
   2872     if (Bound[K].Lower[Bound[K].Direction])
   2873       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
   2874     else
   2875       Sum = nullptr;
   2876   }
   2877   return Sum;
   2878 }
   2879 
   2880 
   2881 // Looks through all the bounds info and
   2882 // computes the upper bound given the current direction settings
   2883 // at each level. If the upper bound at any level is +inf,
   2884 // the result is +inf.
   2885 const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
   2886   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
   2887   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
   2888     if (Bound[K].Upper[Bound[K].Direction])
   2889       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
   2890     else
   2891       Sum = nullptr;
   2892   }
   2893   return Sum;
   2894 }
   2895 
   2896 
   2897 //===----------------------------------------------------------------------===//
   2898 // Constraint manipulation for Delta test.
   2899 
   2900 // Given a linear SCEV,
   2901 // return the coefficient (the step)
   2902 // corresponding to the specified loop.
   2903 // If there isn't one, return 0.
   2904 // For example, given a*i + b*j + c*k, zeroing the coefficient
   2905 // corresponding to the j loop would yield b.
   2906 const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
   2907                                                 const Loop *TargetLoop)  const {
   2908   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   2909   if (!AddRec)
   2910     return SE->getConstant(Expr->getType(), 0);
   2911   if (AddRec->getLoop() == TargetLoop)
   2912     return AddRec->getStepRecurrence(*SE);
   2913   return findCoefficient(AddRec->getStart(), TargetLoop);
   2914 }
   2915 
   2916 
   2917 // Given a linear SCEV,
   2918 // return the SCEV given by zeroing out the coefficient
   2919 // corresponding to the specified loop.
   2920 // For example, given a*i + b*j + c*k, zeroing the coefficient
   2921 // corresponding to the j loop would yield a*i + c*k.
   2922 const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
   2923                                                 const Loop *TargetLoop)  const {
   2924   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   2925   if (!AddRec)
   2926     return Expr; // ignore
   2927   if (AddRec->getLoop() == TargetLoop)
   2928     return AddRec->getStart();
   2929   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
   2930                            AddRec->getStepRecurrence(*SE),
   2931                            AddRec->getLoop(),
   2932                            AddRec->getNoWrapFlags());
   2933 }
   2934 
   2935 
   2936 // Given a linear SCEV Expr,
   2937 // return the SCEV given by adding some Value to the
   2938 // coefficient corresponding to the specified TargetLoop.
   2939 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
   2940 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
   2941 const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
   2942                                                  const Loop *TargetLoop,
   2943                                                  const SCEV *Value)  const {
   2944   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   2945   if (!AddRec) // create a new addRec
   2946     return SE->getAddRecExpr(Expr,
   2947                              Value,
   2948                              TargetLoop,
   2949                              SCEV::FlagAnyWrap); // Worst case, with no info.
   2950   if (AddRec->getLoop() == TargetLoop) {
   2951     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
   2952     if (Sum->isZero())
   2953       return AddRec->getStart();
   2954     return SE->getAddRecExpr(AddRec->getStart(),
   2955                              Sum,
   2956                              AddRec->getLoop(),
   2957                              AddRec->getNoWrapFlags());
   2958   }
   2959   if (SE->isLoopInvariant(AddRec, TargetLoop))
   2960     return SE->getAddRecExpr(AddRec,
   2961 			     Value,
   2962 			     TargetLoop,
   2963 			     SCEV::FlagAnyWrap);
   2964   return SE->getAddRecExpr(addToCoefficient(AddRec->getStart(),
   2965                                             TargetLoop, Value),
   2966                            AddRec->getStepRecurrence(*SE),
   2967                            AddRec->getLoop(),
   2968                            AddRec->getNoWrapFlags());
   2969 }
   2970 
   2971 
   2972 // Review the constraints, looking for opportunities
   2973 // to simplify a subscript pair (Src and Dst).
   2974 // Return true if some simplification occurs.
   2975 // If the simplification isn't exact (that is, if it is conservative
   2976 // in terms of dependence), set consistent to false.
   2977 // Corresponds to Figure 5 from the paper
   2978 //
   2979 //            Practical Dependence Testing
   2980 //            Goff, Kennedy, Tseng
   2981 //            PLDI 1991
   2982 bool DependenceAnalysis::propagate(const SCEV *&Src,
   2983                                    const SCEV *&Dst,
   2984                                    SmallBitVector &Loops,
   2985                                    SmallVectorImpl<Constraint> &Constraints,
   2986                                    bool &Consistent) {
   2987   bool Result = false;
   2988   for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
   2989     DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
   2990     DEBUG(Constraints[LI].dump(dbgs()));
   2991     if (Constraints[LI].isDistance())
   2992       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
   2993     else if (Constraints[LI].isLine())
   2994       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
   2995     else if (Constraints[LI].isPoint())
   2996       Result |= propagatePoint(Src, Dst, Constraints[LI]);
   2997   }
   2998   return Result;
   2999 }
   3000 
   3001 
   3002 // Attempt to propagate a distance
   3003 // constraint into a subscript pair (Src and Dst).
   3004 // Return true if some simplification occurs.
   3005 // If the simplification isn't exact (that is, if it is conservative
   3006 // in terms of dependence), set consistent to false.
   3007 bool DependenceAnalysis::propagateDistance(const SCEV *&Src,
   3008                                            const SCEV *&Dst,
   3009                                            Constraint &CurConstraint,
   3010                                            bool &Consistent) {
   3011   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3012   DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
   3013   const SCEV *A_K = findCoefficient(Src, CurLoop);
   3014   if (A_K->isZero())
   3015     return false;
   3016   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
   3017   Src = SE->getMinusSCEV(Src, DA_K);
   3018   Src = zeroCoefficient(Src, CurLoop);
   3019   DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
   3020   DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
   3021   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
   3022   DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
   3023   if (!findCoefficient(Dst, CurLoop)->isZero())
   3024     Consistent = false;
   3025   return true;
   3026 }
   3027 
   3028 
   3029 // Attempt to propagate a line
   3030 // constraint into a subscript pair (Src and Dst).
   3031 // Return true if some simplification occurs.
   3032 // If the simplification isn't exact (that is, if it is conservative
   3033 // in terms of dependence), set consistent to false.
   3034 bool DependenceAnalysis::propagateLine(const SCEV *&Src,
   3035                                        const SCEV *&Dst,
   3036                                        Constraint &CurConstraint,
   3037                                        bool &Consistent) {
   3038   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3039   const SCEV *A = CurConstraint.getA();
   3040   const SCEV *B = CurConstraint.getB();
   3041   const SCEV *C = CurConstraint.getC();
   3042   DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
   3043   DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
   3044   DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
   3045   if (A->isZero()) {
   3046     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
   3047     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3048     if (!Bconst || !Cconst) return false;
   3049     APInt Beta = Bconst->getValue()->getValue();
   3050     APInt Charlie = Cconst->getValue()->getValue();
   3051     APInt CdivB = Charlie.sdiv(Beta);
   3052     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
   3053     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
   3054     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
   3055     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
   3056     Dst = zeroCoefficient(Dst, CurLoop);
   3057     if (!findCoefficient(Src, CurLoop)->isZero())
   3058       Consistent = false;
   3059   }
   3060   else if (B->isZero()) {
   3061     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
   3062     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3063     if (!Aconst || !Cconst) return false;
   3064     APInt Alpha = Aconst->getValue()->getValue();
   3065     APInt Charlie = Cconst->getValue()->getValue();
   3066     APInt CdivA = Charlie.sdiv(Alpha);
   3067     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
   3068     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3069     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
   3070     Src = zeroCoefficient(Src, CurLoop);
   3071     if (!findCoefficient(Dst, CurLoop)->isZero())
   3072       Consistent = false;
   3073   }
   3074   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
   3075     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
   3076     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3077     if (!Aconst || !Cconst) return false;
   3078     APInt Alpha = Aconst->getValue()->getValue();
   3079     APInt Charlie = Cconst->getValue()->getValue();
   3080     APInt CdivA = Charlie.sdiv(Alpha);
   3081     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
   3082     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3083     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
   3084     Src = zeroCoefficient(Src, CurLoop);
   3085     Dst = addToCoefficient(Dst, CurLoop, A_K);
   3086     if (!findCoefficient(Dst, CurLoop)->isZero())
   3087       Consistent = false;
   3088   }
   3089   else {
   3090     // paper is incorrect here, or perhaps just misleading
   3091     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3092     Src = SE->getMulExpr(Src, A);
   3093     Dst = SE->getMulExpr(Dst, A);
   3094     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
   3095     Src = zeroCoefficient(Src, CurLoop);
   3096     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
   3097     if (!findCoefficient(Dst, CurLoop)->isZero())
   3098       Consistent = false;
   3099   }
   3100   DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
   3101   DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
   3102   return true;
   3103 }
   3104 
   3105 
   3106 // Attempt to propagate a point
   3107 // constraint into a subscript pair (Src and Dst).
   3108 // Return true if some simplification occurs.
   3109 bool DependenceAnalysis::propagatePoint(const SCEV *&Src,
   3110                                         const SCEV *&Dst,
   3111                                         Constraint &CurConstraint) {
   3112   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3113   const SCEV *A_K = findCoefficient(Src, CurLoop);
   3114   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
   3115   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
   3116   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
   3117   DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
   3118   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
   3119   Src = zeroCoefficient(Src, CurLoop);
   3120   DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
   3121   DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
   3122   Dst = zeroCoefficient(Dst, CurLoop);
   3123   DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
   3124   return true;
   3125 }
   3126 
   3127 
   3128 // Update direction vector entry based on the current constraint.
   3129 void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
   3130                                          const Constraint &CurConstraint
   3131                                          ) const {
   3132   DEBUG(dbgs() << "\tUpdate direction, constraint =");
   3133   DEBUG(CurConstraint.dump(dbgs()));
   3134   if (CurConstraint.isAny())
   3135     ; // use defaults
   3136   else if (CurConstraint.isDistance()) {
   3137     // this one is consistent, the others aren't
   3138     Level.Scalar = false;
   3139     Level.Distance = CurConstraint.getD();
   3140     unsigned NewDirection = Dependence::DVEntry::NONE;
   3141     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
   3142       NewDirection = Dependence::DVEntry::EQ;
   3143     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
   3144       NewDirection |= Dependence::DVEntry::LT;
   3145     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
   3146       NewDirection |= Dependence::DVEntry::GT;
   3147     Level.Direction &= NewDirection;
   3148   }
   3149   else if (CurConstraint.isLine()) {
   3150     Level.Scalar = false;
   3151     Level.Distance = nullptr;
   3152     // direction should be accurate
   3153   }
   3154   else if (CurConstraint.isPoint()) {
   3155     Level.Scalar = false;
   3156     Level.Distance = nullptr;
   3157     unsigned NewDirection = Dependence::DVEntry::NONE;
   3158     if (!isKnownPredicate(CmpInst::ICMP_NE,
   3159                           CurConstraint.getY(),
   3160                           CurConstraint.getX()))
   3161       // if X may be = Y
   3162       NewDirection |= Dependence::DVEntry::EQ;
   3163     if (!isKnownPredicate(CmpInst::ICMP_SLE,
   3164                           CurConstraint.getY(),
   3165                           CurConstraint.getX()))
   3166       // if Y may be > X
   3167       NewDirection |= Dependence::DVEntry::LT;
   3168     if (!isKnownPredicate(CmpInst::ICMP_SGE,
   3169                           CurConstraint.getY(),
   3170                           CurConstraint.getX()))
   3171       // if Y may be < X
   3172       NewDirection |= Dependence::DVEntry::GT;
   3173     Level.Direction &= NewDirection;
   3174   }
   3175   else
   3176     llvm_unreachable("constraint has unexpected kind");
   3177 }
   3178 
   3179 /// Check if we can delinearize the subscripts. If the SCEVs representing the
   3180 /// source and destination array references are recurrences on a nested loop,
   3181 /// this function flattens the nested recurrences into separate recurrences
   3182 /// for each loop level.
   3183 bool DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV,
   3184                                         const SCEV *DstSCEV,
   3185                                         SmallVectorImpl<Subscript> &Pair,
   3186                                         const SCEV *ElementSize) const {
   3187   const SCEVUnknown *SrcBase =
   3188       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcSCEV));
   3189   const SCEVUnknown *DstBase =
   3190       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstSCEV));
   3191 
   3192   if (!SrcBase || !DstBase || SrcBase != DstBase)
   3193     return false;
   3194 
   3195   SrcSCEV = SE->getMinusSCEV(SrcSCEV, SrcBase);
   3196   DstSCEV = SE->getMinusSCEV(DstSCEV, DstBase);
   3197 
   3198   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
   3199   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
   3200   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
   3201     return false;
   3202 
   3203   // First step: collect parametric terms in both array references.
   3204   SmallVector<const SCEV *, 4> Terms;
   3205   SrcAR->collectParametricTerms(*SE, Terms);
   3206   DstAR->collectParametricTerms(*SE, Terms);
   3207 
   3208   // Second step: find subscript sizes.
   3209   SmallVector<const SCEV *, 4> Sizes;
   3210   SE->findArrayDimensions(Terms, Sizes, ElementSize);
   3211 
   3212   // Third step: compute the access functions for each subscript.
   3213   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
   3214   SrcAR->computeAccessFunctions(*SE, SrcSubscripts, Sizes);
   3215   DstAR->computeAccessFunctions(*SE, DstSubscripts, Sizes);
   3216 
   3217   // Fail when there is only a subscript: that's a linearized access function.
   3218   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
   3219       SrcSubscripts.size() != DstSubscripts.size())
   3220     return false;
   3221 
   3222   int size = SrcSubscripts.size();
   3223 
   3224   DEBUG({
   3225       dbgs() << "\nSrcSubscripts: ";
   3226     for (int i = 0; i < size; i++)
   3227       dbgs() << *SrcSubscripts[i];
   3228     dbgs() << "\nDstSubscripts: ";
   3229     for (int i = 0; i < size; i++)
   3230       dbgs() << *DstSubscripts[i];
   3231     });
   3232 
   3233   // The delinearization transforms a single-subscript MIV dependence test into
   3234   // a multi-subscript SIV dependence test that is easier to compute. So we
   3235   // resize Pair to contain as many pairs of subscripts as the delinearization
   3236   // has found, and then initialize the pairs following the delinearization.
   3237   Pair.resize(size);
   3238   for (int i = 0; i < size; ++i) {
   3239     Pair[i].Src = SrcSubscripts[i];
   3240     Pair[i].Dst = DstSubscripts[i];
   3241 
   3242     // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
   3243     // delinearization has found, and add these constraints to the dependence
   3244     // check to avoid memory accesses overflow from one dimension into another.
   3245     // This is related to the problem of determining the existence of data
   3246     // dependences in array accesses using a different number of subscripts: in
   3247     // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
   3248   }
   3249 
   3250   return true;
   3251 }
   3252 
   3253 //===----------------------------------------------------------------------===//
   3254 
   3255 #ifndef NDEBUG
   3256 // For debugging purposes, dump a small bit vector to dbgs().
   3257 static void dumpSmallBitVector(SmallBitVector &BV) {
   3258   dbgs() << "{";
   3259   for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
   3260     dbgs() << VI;
   3261     if (BV.find_next(VI) >= 0)
   3262       dbgs() << ' ';
   3263   }
   3264   dbgs() << "}\n";
   3265 }
   3266 #endif
   3267 
   3268 
   3269 // depends -
   3270 // Returns NULL if there is no dependence.
   3271 // Otherwise, return a Dependence with as many details as possible.
   3272 // Corresponds to Section 3.1 in the paper
   3273 //
   3274 //            Practical Dependence Testing
   3275 //            Goff, Kennedy, Tseng
   3276 //            PLDI 1991
   3277 //
   3278 // Care is required to keep the routine below, getSplitIteration(),
   3279 // up to date with respect to this routine.
   3280 Dependence *DependenceAnalysis::depends(Instruction *Src,
   3281                                         Instruction *Dst,
   3282                                         bool PossiblyLoopIndependent) {
   3283   if (Src == Dst)
   3284     PossiblyLoopIndependent = false;
   3285 
   3286   if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
   3287       (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
   3288     // if both instructions don't reference memory, there's no dependence
   3289     return nullptr;
   3290 
   3291   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
   3292     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
   3293     DEBUG(dbgs() << "can only handle simple loads and stores\n");
   3294     return new Dependence(Src, Dst);
   3295   }
   3296 
   3297   Value *SrcPtr = getPointerOperand(Src);
   3298   Value *DstPtr = getPointerOperand(Dst);
   3299 
   3300   switch (underlyingObjectsAlias(AA, DstPtr, SrcPtr)) {
   3301   case AliasAnalysis::MayAlias:
   3302   case AliasAnalysis::PartialAlias:
   3303     // cannot analyse objects if we don't understand their aliasing.
   3304     DEBUG(dbgs() << "can't analyze may or partial alias\n");
   3305     return new Dependence(Src, Dst);
   3306   case AliasAnalysis::NoAlias:
   3307     // If the objects noalias, they are distinct, accesses are independent.
   3308     DEBUG(dbgs() << "no alias\n");
   3309     return nullptr;
   3310   case AliasAnalysis::MustAlias:
   3311     break; // The underlying objects alias; test accesses for dependence.
   3312   }
   3313 
   3314   // establish loop nesting levels
   3315   establishNestingLevels(Src, Dst);
   3316   DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
   3317   DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
   3318 
   3319   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
   3320   ++TotalArrayPairs;
   3321 
   3322   // See if there are GEPs we can use.
   3323   bool UsefulGEP = false;
   3324   GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
   3325   GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
   3326   if (SrcGEP && DstGEP &&
   3327       SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
   3328     const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
   3329     const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
   3330     DEBUG(dbgs() << "    SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
   3331     DEBUG(dbgs() << "    DstPtrSCEV = " << *DstPtrSCEV << "\n");
   3332 
   3333     UsefulGEP =
   3334       isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
   3335       isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
   3336   }
   3337   unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
   3338   SmallVector<Subscript, 4> Pair(Pairs);
   3339   if (UsefulGEP) {
   3340     DEBUG(dbgs() << "    using GEPs\n");
   3341     unsigned P = 0;
   3342     for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
   3343            SrcEnd = SrcGEP->idx_end(),
   3344            DstIdx = DstGEP->idx_begin();
   3345          SrcIdx != SrcEnd;
   3346          ++SrcIdx, ++DstIdx, ++P) {
   3347       Pair[P].Src = SE->getSCEV(*SrcIdx);
   3348       Pair[P].Dst = SE->getSCEV(*DstIdx);
   3349     }
   3350   }
   3351   else {
   3352     DEBUG(dbgs() << "    ignoring GEPs\n");
   3353     const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
   3354     const SCEV *DstSCEV = SE->getSCEV(DstPtr);
   3355     DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
   3356     DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
   3357     Pair[0].Src = SrcSCEV;
   3358     Pair[0].Dst = DstSCEV;
   3359   }
   3360 
   3361   if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
   3362       tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
   3363     DEBUG(dbgs() << "    delinerized GEP\n");
   3364     Pairs = Pair.size();
   3365   }
   3366 
   3367   for (unsigned P = 0; P < Pairs; ++P) {
   3368     Pair[P].Loops.resize(MaxLevels + 1);
   3369     Pair[P].GroupLoops.resize(MaxLevels + 1);
   3370     Pair[P].Group.resize(Pairs);
   3371     removeMatchingExtensions(&Pair[P]);
   3372     Pair[P].Classification =
   3373       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
   3374                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
   3375                    Pair[P].Loops);
   3376     Pair[P].GroupLoops = Pair[P].Loops;
   3377     Pair[P].Group.set(P);
   3378     DEBUG(dbgs() << "    subscript " << P << "\n");
   3379     DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
   3380     DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
   3381     DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
   3382     DEBUG(dbgs() << "\tloops = ");
   3383     DEBUG(dumpSmallBitVector(Pair[P].Loops));
   3384   }
   3385 
   3386   SmallBitVector Separable(Pairs);
   3387   SmallBitVector Coupled(Pairs);
   3388 
   3389   // Partition subscripts into separable and minimally-coupled groups
   3390   // Algorithm in paper is algorithmically better;
   3391   // this may be faster in practice. Check someday.
   3392   //
   3393   // Here's an example of how it works. Consider this code:
   3394   //
   3395   //   for (i = ...) {
   3396   //     for (j = ...) {
   3397   //       for (k = ...) {
   3398   //         for (l = ...) {
   3399   //           for (m = ...) {
   3400   //             A[i][j][k][m] = ...;
   3401   //             ... = A[0][j][l][i + j];
   3402   //           }
   3403   //         }
   3404   //       }
   3405   //     }
   3406   //   }
   3407   //
   3408   // There are 4 subscripts here:
   3409   //    0 [i] and [0]
   3410   //    1 [j] and [j]
   3411   //    2 [k] and [l]
   3412   //    3 [m] and [i + j]
   3413   //
   3414   // We've already classified each subscript pair as ZIV, SIV, etc.,
   3415   // and collected all the loops mentioned by pair P in Pair[P].Loops.
   3416   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
   3417   // and set Pair[P].Group = {P}.
   3418   //
   3419   //      Src Dst    Classification Loops  GroupLoops Group
   3420   //    0 [i] [0]         SIV       {1}      {1}        {0}
   3421   //    1 [j] [j]         SIV       {2}      {2}        {1}
   3422   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
   3423   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
   3424   //
   3425   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
   3426   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
   3427   //
   3428   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
   3429   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
   3430   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
   3431   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
   3432   // to either Separable or Coupled).
   3433   //
   3434   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
   3435   // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
   3436   // so Pair[3].Group = {0, 1, 3} and Done = false.
   3437   //
   3438   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
   3439   // Since Done remains true, we add 2 to the set of Separable pairs.
   3440   //
   3441   // Finally, we consider 3. There's nothing to compare it with,
   3442   // so Done remains true and we add it to the Coupled set.
   3443   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
   3444   //
   3445   // In the end, we've got 1 separable subscript and 1 coupled group.
   3446   for (unsigned SI = 0; SI < Pairs; ++SI) {
   3447     if (Pair[SI].Classification == Subscript::NonLinear) {
   3448       // ignore these, but collect loops for later
   3449       ++NonlinearSubscriptPairs;
   3450       collectCommonLoops(Pair[SI].Src,
   3451                          LI->getLoopFor(Src->getParent()),
   3452                          Pair[SI].Loops);
   3453       collectCommonLoops(Pair[SI].Dst,
   3454                          LI->getLoopFor(Dst->getParent()),
   3455                          Pair[SI].Loops);
   3456       Result.Consistent = false;
   3457     }
   3458     else if (Pair[SI].Classification == Subscript::ZIV) {
   3459       // always separable
   3460       Separable.set(SI);
   3461     }
   3462     else {
   3463       // SIV, RDIV, or MIV, so check for coupled group
   3464       bool Done = true;
   3465       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
   3466         SmallBitVector Intersection = Pair[SI].GroupLoops;
   3467         Intersection &= Pair[SJ].GroupLoops;
   3468         if (Intersection.any()) {
   3469           // accumulate set of all the loops in group
   3470           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
   3471           // accumulate set of all subscripts in group
   3472           Pair[SJ].Group |= Pair[SI].Group;
   3473           Done = false;
   3474         }
   3475       }
   3476       if (Done) {
   3477         if (Pair[SI].Group.count() == 1) {
   3478           Separable.set(SI);
   3479           ++SeparableSubscriptPairs;
   3480         }
   3481         else {
   3482           Coupled.set(SI);
   3483           ++CoupledSubscriptPairs;
   3484         }
   3485       }
   3486     }
   3487   }
   3488 
   3489   DEBUG(dbgs() << "    Separable = ");
   3490   DEBUG(dumpSmallBitVector(Separable));
   3491   DEBUG(dbgs() << "    Coupled = ");
   3492   DEBUG(dumpSmallBitVector(Coupled));
   3493 
   3494   Constraint NewConstraint;
   3495   NewConstraint.setAny(SE);
   3496 
   3497   // test separable subscripts
   3498   for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
   3499     DEBUG(dbgs() << "testing subscript " << SI);
   3500     switch (Pair[SI].Classification) {
   3501     case Subscript::ZIV:
   3502       DEBUG(dbgs() << ", ZIV\n");
   3503       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
   3504         return nullptr;
   3505       break;
   3506     case Subscript::SIV: {
   3507       DEBUG(dbgs() << ", SIV\n");
   3508       unsigned Level;
   3509       const SCEV *SplitIter = nullptr;
   3510       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
   3511                   Result, NewConstraint, SplitIter))
   3512         return nullptr;
   3513       break;
   3514     }
   3515     case Subscript::RDIV:
   3516       DEBUG(dbgs() << ", RDIV\n");
   3517       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
   3518         return nullptr;
   3519       break;
   3520     case Subscript::MIV:
   3521       DEBUG(dbgs() << ", MIV\n");
   3522       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
   3523         return nullptr;
   3524       break;
   3525     default:
   3526       llvm_unreachable("subscript has unexpected classification");
   3527     }
   3528   }
   3529 
   3530   if (Coupled.count()) {
   3531     // test coupled subscript groups
   3532     DEBUG(dbgs() << "starting on coupled subscripts\n");
   3533     DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
   3534     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
   3535     for (unsigned II = 0; II <= MaxLevels; ++II)
   3536       Constraints[II].setAny(SE);
   3537     for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
   3538       DEBUG(dbgs() << "testing subscript group " << SI << " { ");
   3539       SmallBitVector Group(Pair[SI].Group);
   3540       SmallBitVector Sivs(Pairs);
   3541       SmallBitVector Mivs(Pairs);
   3542       SmallBitVector ConstrainedLevels(MaxLevels + 1);
   3543       for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
   3544         DEBUG(dbgs() << SJ << " ");
   3545         if (Pair[SJ].Classification == Subscript::SIV)
   3546           Sivs.set(SJ);
   3547         else
   3548           Mivs.set(SJ);
   3549       }
   3550       DEBUG(dbgs() << "}\n");
   3551       while (Sivs.any()) {
   3552         bool Changed = false;
   3553         for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
   3554           DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
   3555           // SJ is an SIV subscript that's part of the current coupled group
   3556           unsigned Level;
   3557           const SCEV *SplitIter = nullptr;
   3558           DEBUG(dbgs() << "SIV\n");
   3559           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
   3560                       Result, NewConstraint, SplitIter))
   3561             return nullptr;
   3562           ConstrainedLevels.set(Level);
   3563           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
   3564             if (Constraints[Level].isEmpty()) {
   3565               ++DeltaIndependence;
   3566               return nullptr;
   3567             }
   3568             Changed = true;
   3569           }
   3570           Sivs.reset(SJ);
   3571         }
   3572         if (Changed) {
   3573           // propagate, possibly creating new SIVs and ZIVs
   3574           DEBUG(dbgs() << "    propagating\n");
   3575           DEBUG(dbgs() << "\tMivs = ");
   3576           DEBUG(dumpSmallBitVector(Mivs));
   3577           for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3578             // SJ is an MIV subscript that's part of the current coupled group
   3579             DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
   3580             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
   3581                           Constraints, Result.Consistent)) {
   3582               DEBUG(dbgs() << "\t    Changed\n");
   3583               ++DeltaPropagations;
   3584               Pair[SJ].Classification =
   3585                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
   3586                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
   3587                              Pair[SJ].Loops);
   3588               switch (Pair[SJ].Classification) {
   3589               case Subscript::ZIV:
   3590                 DEBUG(dbgs() << "ZIV\n");
   3591                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
   3592                   return nullptr;
   3593                 Mivs.reset(SJ);
   3594                 break;
   3595               case Subscript::SIV:
   3596                 Sivs.set(SJ);
   3597                 Mivs.reset(SJ);
   3598                 break;
   3599               case Subscript::RDIV:
   3600               case Subscript::MIV:
   3601                 break;
   3602               default:
   3603                 llvm_unreachable("bad subscript classification");
   3604               }
   3605             }
   3606           }
   3607         }
   3608       }
   3609 
   3610       // test & propagate remaining RDIVs
   3611       for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3612         if (Pair[SJ].Classification == Subscript::RDIV) {
   3613           DEBUG(dbgs() << "RDIV test\n");
   3614           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
   3615             return nullptr;
   3616           // I don't yet understand how to propagate RDIV results
   3617           Mivs.reset(SJ);
   3618         }
   3619       }
   3620 
   3621       // test remaining MIVs
   3622       // This code is temporary.
   3623       // Better to somehow test all remaining subscripts simultaneously.
   3624       for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3625         if (Pair[SJ].Classification == Subscript::MIV) {
   3626           DEBUG(dbgs() << "MIV test\n");
   3627           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
   3628             return nullptr;
   3629         }
   3630         else
   3631           llvm_unreachable("expected only MIV subscripts at this point");
   3632       }
   3633 
   3634       // update Result.DV from constraint vector
   3635       DEBUG(dbgs() << "    updating\n");
   3636       for (int SJ = ConstrainedLevels.find_first();
   3637            SJ >= 0; SJ = ConstrainedLevels.find_next(SJ)) {
   3638         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
   3639         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
   3640           return nullptr;
   3641       }
   3642     }
   3643   }
   3644 
   3645   // Make sure the Scalar flags are set correctly.
   3646   SmallBitVector CompleteLoops(MaxLevels + 1);
   3647   for (unsigned SI = 0; SI < Pairs; ++SI)
   3648     CompleteLoops |= Pair[SI].Loops;
   3649   for (unsigned II = 1; II <= CommonLevels; ++II)
   3650     if (CompleteLoops[II])
   3651       Result.DV[II - 1].Scalar = false;
   3652 
   3653   if (PossiblyLoopIndependent) {
   3654     // Make sure the LoopIndependent flag is set correctly.
   3655     // All directions must include equal, otherwise no
   3656     // loop-independent dependence is possible.
   3657     for (unsigned II = 1; II <= CommonLevels; ++II) {
   3658       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
   3659         Result.LoopIndependent = false;
   3660         break;
   3661       }
   3662     }
   3663   }
   3664   else {
   3665     // On the other hand, if all directions are equal and there's no
   3666     // loop-independent dependence possible, then no dependence exists.
   3667     bool AllEqual = true;
   3668     for (unsigned II = 1; II <= CommonLevels; ++II) {
   3669       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
   3670         AllEqual = false;
   3671         break;
   3672       }
   3673     }
   3674     if (AllEqual)
   3675       return nullptr;
   3676   }
   3677 
   3678   FullDependence *Final = new FullDependence(Result);
   3679   Result.DV = nullptr;
   3680   return Final;
   3681 }
   3682 
   3683 
   3684 
   3685 //===----------------------------------------------------------------------===//
   3686 // getSplitIteration -
   3687 // Rather than spend rarely-used space recording the splitting iteration
   3688 // during the Weak-Crossing SIV test, we re-compute it on demand.
   3689 // The re-computation is basically a repeat of the entire dependence test,
   3690 // though simplified since we know that the dependence exists.
   3691 // It's tedious, since we must go through all propagations, etc.
   3692 //
   3693 // Care is required to keep this code up to date with respect to the routine
   3694 // above, depends().
   3695 //
   3696 // Generally, the dependence analyzer will be used to build
   3697 // a dependence graph for a function (basically a map from instructions
   3698 // to dependences). Looking for cycles in the graph shows us loops
   3699 // that cannot be trivially vectorized/parallelized.
   3700 //
   3701 // We can try to improve the situation by examining all the dependences
   3702 // that make up the cycle, looking for ones we can break.
   3703 // Sometimes, peeling the first or last iteration of a loop will break
   3704 // dependences, and we've got flags for those possibilities.
   3705 // Sometimes, splitting a loop at some other iteration will do the trick,
   3706 // and we've got a flag for that case. Rather than waste the space to
   3707 // record the exact iteration (since we rarely know), we provide
   3708 // a method that calculates the iteration. It's a drag that it must work
   3709 // from scratch, but wonderful in that it's possible.
   3710 //
   3711 // Here's an example:
   3712 //
   3713 //    for (i = 0; i < 10; i++)
   3714 //        A[i] = ...
   3715 //        ... = A[11 - i]
   3716 //
   3717 // There's a loop-carried flow dependence from the store to the load,
   3718 // found by the weak-crossing SIV test. The dependence will have a flag,
   3719 // indicating that the dependence can be broken by splitting the loop.
   3720 // Calling getSplitIteration will return 5.
   3721 // Splitting the loop breaks the dependence, like so:
   3722 //
   3723 //    for (i = 0; i <= 5; i++)
   3724 //        A[i] = ...
   3725 //        ... = A[11 - i]
   3726 //    for (i = 6; i < 10; i++)
   3727 //        A[i] = ...
   3728 //        ... = A[11 - i]
   3729 //
   3730 // breaks the dependence and allows us to vectorize/parallelize
   3731 // both loops.
   3732 const  SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep,
   3733                                                    unsigned SplitLevel) {
   3734   assert(Dep && "expected a pointer to a Dependence");
   3735   assert(Dep->isSplitable(SplitLevel) &&
   3736          "Dep should be splitable at SplitLevel");
   3737   Instruction *Src = Dep->getSrc();
   3738   Instruction *Dst = Dep->getDst();
   3739   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
   3740   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
   3741   assert(isLoadOrStore(Src));
   3742   assert(isLoadOrStore(Dst));
   3743   Value *SrcPtr = getPointerOperand(Src);
   3744   Value *DstPtr = getPointerOperand(Dst);
   3745   assert(underlyingObjectsAlias(AA, DstPtr, SrcPtr) ==
   3746          AliasAnalysis::MustAlias);
   3747 
   3748   // establish loop nesting levels
   3749   establishNestingLevels(Src, Dst);
   3750 
   3751   FullDependence Result(Src, Dst, false, CommonLevels);
   3752 
   3753   // See if there are GEPs we can use.
   3754   bool UsefulGEP = false;
   3755   GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
   3756   GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
   3757   if (SrcGEP && DstGEP &&
   3758       SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
   3759     const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
   3760     const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
   3761     UsefulGEP =
   3762       isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
   3763       isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
   3764   }
   3765   unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
   3766   SmallVector<Subscript, 4> Pair(Pairs);
   3767   if (UsefulGEP) {
   3768     unsigned P = 0;
   3769     for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
   3770            SrcEnd = SrcGEP->idx_end(),
   3771            DstIdx = DstGEP->idx_begin();
   3772          SrcIdx != SrcEnd;
   3773          ++SrcIdx, ++DstIdx, ++P) {
   3774       Pair[P].Src = SE->getSCEV(*SrcIdx);
   3775       Pair[P].Dst = SE->getSCEV(*DstIdx);
   3776     }
   3777   }
   3778   else {
   3779     const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
   3780     const SCEV *DstSCEV = SE->getSCEV(DstPtr);
   3781     Pair[0].Src = SrcSCEV;
   3782     Pair[0].Dst = DstSCEV;
   3783   }
   3784 
   3785   if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
   3786       tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
   3787     DEBUG(dbgs() << "    delinerized GEP\n");
   3788     Pairs = Pair.size();
   3789   }
   3790 
   3791   for (unsigned P = 0; P < Pairs; ++P) {
   3792     Pair[P].Loops.resize(MaxLevels + 1);
   3793     Pair[P].GroupLoops.resize(MaxLevels + 1);
   3794     Pair[P].Group.resize(Pairs);
   3795     removeMatchingExtensions(&Pair[P]);
   3796     Pair[P].Classification =
   3797       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
   3798                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
   3799                    Pair[P].Loops);
   3800     Pair[P].GroupLoops = Pair[P].Loops;
   3801     Pair[P].Group.set(P);
   3802   }
   3803 
   3804   SmallBitVector Separable(Pairs);
   3805   SmallBitVector Coupled(Pairs);
   3806 
   3807   // partition subscripts into separable and minimally-coupled groups
   3808   for (unsigned SI = 0; SI < Pairs; ++SI) {
   3809     if (Pair[SI].Classification == Subscript::NonLinear) {
   3810       // ignore these, but collect loops for later
   3811       collectCommonLoops(Pair[SI].Src,
   3812                          LI->getLoopFor(Src->getParent()),
   3813                          Pair[SI].Loops);
   3814       collectCommonLoops(Pair[SI].Dst,
   3815                          LI->getLoopFor(Dst->getParent()),
   3816                          Pair[SI].Loops);
   3817       Result.Consistent = false;
   3818     }
   3819     else if (Pair[SI].Classification == Subscript::ZIV)
   3820       Separable.set(SI);
   3821     else {
   3822       // SIV, RDIV, or MIV, so check for coupled group
   3823       bool Done = true;
   3824       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
   3825         SmallBitVector Intersection = Pair[SI].GroupLoops;
   3826         Intersection &= Pair[SJ].GroupLoops;
   3827         if (Intersection.any()) {
   3828           // accumulate set of all the loops in group
   3829           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
   3830           // accumulate set of all subscripts in group
   3831           Pair[SJ].Group |= Pair[SI].Group;
   3832           Done = false;
   3833         }
   3834       }
   3835       if (Done) {
   3836         if (Pair[SI].Group.count() == 1)
   3837           Separable.set(SI);
   3838         else
   3839           Coupled.set(SI);
   3840       }
   3841     }
   3842   }
   3843 
   3844   Constraint NewConstraint;
   3845   NewConstraint.setAny(SE);
   3846 
   3847   // test separable subscripts
   3848   for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
   3849     switch (Pair[SI].Classification) {
   3850     case Subscript::SIV: {
   3851       unsigned Level;
   3852       const SCEV *SplitIter = nullptr;
   3853       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
   3854                      Result, NewConstraint, SplitIter);
   3855       if (Level == SplitLevel) {
   3856         assert(SplitIter != nullptr);
   3857         return SplitIter;
   3858       }
   3859       break;
   3860     }
   3861     case Subscript::ZIV:
   3862     case Subscript::RDIV:
   3863     case Subscript::MIV:
   3864       break;
   3865     default:
   3866       llvm_unreachable("subscript has unexpected classification");
   3867     }
   3868   }
   3869 
   3870   if (Coupled.count()) {
   3871     // test coupled subscript groups
   3872     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
   3873     for (unsigned II = 0; II <= MaxLevels; ++II)
   3874       Constraints[II].setAny(SE);
   3875     for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
   3876       SmallBitVector Group(Pair[SI].Group);
   3877       SmallBitVector Sivs(Pairs);
   3878       SmallBitVector Mivs(Pairs);
   3879       SmallBitVector ConstrainedLevels(MaxLevels + 1);
   3880       for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
   3881         if (Pair[SJ].Classification == Subscript::SIV)
   3882           Sivs.set(SJ);
   3883         else
   3884           Mivs.set(SJ);
   3885       }
   3886       while (Sivs.any()) {
   3887         bool Changed = false;
   3888         for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
   3889           // SJ is an SIV subscript that's part of the current coupled group
   3890           unsigned Level;
   3891           const SCEV *SplitIter = nullptr;
   3892           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
   3893                          Result, NewConstraint, SplitIter);
   3894           if (Level == SplitLevel && SplitIter)
   3895             return SplitIter;
   3896           ConstrainedLevels.set(Level);
   3897           if (intersectConstraints(&Constraints[Level], &NewConstraint))
   3898             Changed = true;
   3899           Sivs.reset(SJ);
   3900         }
   3901         if (Changed) {
   3902           // propagate, possibly creating new SIVs and ZIVs
   3903           for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3904             // SJ is an MIV subscript that's part of the current coupled group
   3905             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
   3906                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
   3907               Pair[SJ].Classification =
   3908                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
   3909                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
   3910                              Pair[SJ].Loops);
   3911               switch (Pair[SJ].Classification) {
   3912               case Subscript::ZIV:
   3913                 Mivs.reset(SJ);
   3914                 break;
   3915               case Subscript::SIV:
   3916                 Sivs.set(SJ);
   3917                 Mivs.reset(SJ);
   3918                 break;
   3919               case Subscript::RDIV:
   3920               case Subscript::MIV:
   3921                 break;
   3922               default:
   3923                 llvm_unreachable("bad subscript classification");
   3924               }
   3925             }
   3926           }
   3927         }
   3928       }
   3929     }
   3930   }
   3931   llvm_unreachable("somehow reached end of routine");
   3932   return nullptr;
   3933 }
   3934