Home | History | Annotate | Download | only in UmfPackSupport
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_UMFPACKSUPPORT_H
     11 #define EIGEN_UMFPACKSUPPORT_H
     12 
     13 namespace Eigen {
     14 
     15 /* TODO extract L, extract U, compute det, etc... */
     16 
     17 // generic double/complex<double> wrapper functions:
     18 
     19 inline void umfpack_free_numeric(void **Numeric, double)
     20 { umfpack_di_free_numeric(Numeric); *Numeric = 0; }
     21 
     22 inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
     23 { umfpack_zi_free_numeric(Numeric); *Numeric = 0; }
     24 
     25 inline void umfpack_free_symbolic(void **Symbolic, double)
     26 { umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }
     27 
     28 inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
     29 { umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }
     30 
     31 inline int umfpack_symbolic(int n_row,int n_col,
     32                             const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
     33                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
     34 {
     35   return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
     36 }
     37 
     38 inline int umfpack_symbolic(int n_row,int n_col,
     39                             const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
     40                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
     41 {
     42   return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
     43 }
     44 
     45 inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
     46                             void *Symbolic, void **Numeric,
     47                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
     48 {
     49   return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
     50 }
     51 
     52 inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
     53                             void *Symbolic, void **Numeric,
     54                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
     55 {
     56   return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
     57 }
     58 
     59 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
     60                           double X[], const double B[], void *Numeric,
     61                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
     62 {
     63   return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
     64 }
     65 
     66 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
     67                           std::complex<double> X[], const std::complex<double> B[], void *Numeric,
     68                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
     69 {
     70   return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
     71 }
     72 
     73 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
     74 {
     75   return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
     76 }
     77 
     78 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
     79 {
     80   return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
     81 }
     82 
     83 inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
     84                                int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
     85 {
     86   return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
     87 }
     88 
     89 inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
     90                                int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
     91 {
     92   double& lx0_real = numext::real_ref(Lx[0]);
     93   double& ux0_real = numext::real_ref(Ux[0]);
     94   double& dx0_real = numext::real_ref(Dx[0]);
     95   return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
     96                                 Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
     97 }
     98 
     99 inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
    100 {
    101   return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
    102 }
    103 
    104 inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
    105 {
    106   double& mx_real = numext::real_ref(*Mx);
    107   return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
    108 }
    109 
    110 /** \ingroup UmfPackSupport_Module
    111   * \brief A sparse LU factorization and solver based on UmfPack
    112   *
    113   * This class allows to solve for A.X = B sparse linear problems via a LU factorization
    114   * using the UmfPack library. The sparse matrix A must be squared and full rank.
    115   * The vectors or matrices X and B can be either dense or sparse.
    116   *
    117   * \warning The input matrix A should be in a \b compressed and \b column-major form.
    118   * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
    119   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
    120   *
    121   * \sa \ref TutorialSparseDirectSolvers
    122   */
    123 template<typename _MatrixType>
    124 class UmfPackLU : internal::noncopyable
    125 {
    126   public:
    127     typedef _MatrixType MatrixType;
    128     typedef typename MatrixType::Scalar Scalar;
    129     typedef typename MatrixType::RealScalar RealScalar;
    130     typedef typename MatrixType::Index Index;
    131     typedef Matrix<Scalar,Dynamic,1> Vector;
    132     typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
    133     typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
    134     typedef SparseMatrix<Scalar> LUMatrixType;
    135     typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType;
    136 
    137   public:
    138 
    139     UmfPackLU() { init(); }
    140 
    141     UmfPackLU(const MatrixType& matrix)
    142     {
    143       init();
    144       compute(matrix);
    145     }
    146 
    147     ~UmfPackLU()
    148     {
    149       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
    150       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
    151     }
    152 
    153     inline Index rows() const { return m_copyMatrix.rows(); }
    154     inline Index cols() const { return m_copyMatrix.cols(); }
    155 
    156     /** \brief Reports whether previous computation was successful.
    157       *
    158       * \returns \c Success if computation was succesful,
    159       *          \c NumericalIssue if the matrix.appears to be negative.
    160       */
    161     ComputationInfo info() const
    162     {
    163       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
    164       return m_info;
    165     }
    166 
    167     inline const LUMatrixType& matrixL() const
    168     {
    169       if (m_extractedDataAreDirty) extractData();
    170       return m_l;
    171     }
    172 
    173     inline const LUMatrixType& matrixU() const
    174     {
    175       if (m_extractedDataAreDirty) extractData();
    176       return m_u;
    177     }
    178 
    179     inline const IntColVectorType& permutationP() const
    180     {
    181       if (m_extractedDataAreDirty) extractData();
    182       return m_p;
    183     }
    184 
    185     inline const IntRowVectorType& permutationQ() const
    186     {
    187       if (m_extractedDataAreDirty) extractData();
    188       return m_q;
    189     }
    190 
    191     /** Computes the sparse Cholesky decomposition of \a matrix
    192      *  Note that the matrix should be column-major, and in compressed format for best performance.
    193      *  \sa SparseMatrix::makeCompressed().
    194      */
    195     void compute(const MatrixType& matrix)
    196     {
    197       analyzePattern(matrix);
    198       factorize(matrix);
    199     }
    200 
    201     /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
    202       *
    203       * \sa compute()
    204       */
    205     template<typename Rhs>
    206     inline const internal::solve_retval<UmfPackLU, Rhs> solve(const MatrixBase<Rhs>& b) const
    207     {
    208       eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
    209       eigen_assert(rows()==b.rows()
    210                 && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
    211       return internal::solve_retval<UmfPackLU, Rhs>(*this, b.derived());
    212     }
    213 
    214     /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
    215       *
    216       * \sa compute()
    217       */
    218     template<typename Rhs>
    219     inline const internal::sparse_solve_retval<UmfPackLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
    220     {
    221       eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
    222       eigen_assert(rows()==b.rows()
    223                 && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
    224       return internal::sparse_solve_retval<UmfPackLU, Rhs>(*this, b.derived());
    225     }
    226 
    227     /** Performs a symbolic decomposition on the sparcity of \a matrix.
    228       *
    229       * This function is particularly useful when solving for several problems having the same structure.
    230       *
    231       * \sa factorize(), compute()
    232       */
    233     void analyzePattern(const MatrixType& matrix)
    234     {
    235       if(m_symbolic)
    236         umfpack_free_symbolic(&m_symbolic,Scalar());
    237       if(m_numeric)
    238         umfpack_free_numeric(&m_numeric,Scalar());
    239 
    240       grapInput(matrix);
    241 
    242       int errorCode = 0;
    243       errorCode = umfpack_symbolic(matrix.rows(), matrix.cols(), m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
    244                                    &m_symbolic, 0, 0);
    245 
    246       m_isInitialized = true;
    247       m_info = errorCode ? InvalidInput : Success;
    248       m_analysisIsOk = true;
    249       m_factorizationIsOk = false;
    250     }
    251 
    252     /** Performs a numeric decomposition of \a matrix
    253       *
    254       * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
    255       *
    256       * \sa analyzePattern(), compute()
    257       */
    258     void factorize(const MatrixType& matrix)
    259     {
    260       eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
    261       if(m_numeric)
    262         umfpack_free_numeric(&m_numeric,Scalar());
    263 
    264       grapInput(matrix);
    265 
    266       int errorCode;
    267       errorCode = umfpack_numeric(m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
    268                                   m_symbolic, &m_numeric, 0, 0);
    269 
    270       m_info = errorCode ? NumericalIssue : Success;
    271       m_factorizationIsOk = true;
    272     }
    273 
    274     #ifndef EIGEN_PARSED_BY_DOXYGEN
    275     /** \internal */
    276     template<typename BDerived,typename XDerived>
    277     bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
    278     #endif
    279 
    280     Scalar determinant() const;
    281 
    282     void extractData() const;
    283 
    284   protected:
    285 
    286 
    287     void init()
    288     {
    289       m_info = InvalidInput;
    290       m_isInitialized = false;
    291       m_numeric = 0;
    292       m_symbolic = 0;
    293       m_outerIndexPtr = 0;
    294       m_innerIndexPtr = 0;
    295       m_valuePtr      = 0;
    296     }
    297 
    298     void grapInput(const MatrixType& mat)
    299     {
    300       m_copyMatrix.resize(mat.rows(), mat.cols());
    301       if( ((MatrixType::Flags&RowMajorBit)==RowMajorBit) || sizeof(typename MatrixType::Index)!=sizeof(int) || !mat.isCompressed() )
    302       {
    303         // non supported input -> copy
    304         m_copyMatrix = mat;
    305         m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
    306         m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
    307         m_valuePtr      = m_copyMatrix.valuePtr();
    308       }
    309       else
    310       {
    311         m_outerIndexPtr = mat.outerIndexPtr();
    312         m_innerIndexPtr = mat.innerIndexPtr();
    313         m_valuePtr      = mat.valuePtr();
    314       }
    315     }
    316 
    317     // cached data to reduce reallocation, etc.
    318     mutable LUMatrixType m_l;
    319     mutable LUMatrixType m_u;
    320     mutable IntColVectorType m_p;
    321     mutable IntRowVectorType m_q;
    322 
    323     UmfpackMatrixType m_copyMatrix;
    324     const Scalar* m_valuePtr;
    325     const int* m_outerIndexPtr;
    326     const int* m_innerIndexPtr;
    327     void* m_numeric;
    328     void* m_symbolic;
    329 
    330     mutable ComputationInfo m_info;
    331     bool m_isInitialized;
    332     int m_factorizationIsOk;
    333     int m_analysisIsOk;
    334     mutable bool m_extractedDataAreDirty;
    335 
    336   private:
    337     UmfPackLU(UmfPackLU& ) { }
    338 };
    339 
    340 
    341 template<typename MatrixType>
    342 void UmfPackLU<MatrixType>::extractData() const
    343 {
    344   if (m_extractedDataAreDirty)
    345   {
    346     // get size of the data
    347     int lnz, unz, rows, cols, nz_udiag;
    348     umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
    349 
    350     // allocate data
    351     m_l.resize(rows,(std::min)(rows,cols));
    352     m_l.resizeNonZeros(lnz);
    353 
    354     m_u.resize((std::min)(rows,cols),cols);
    355     m_u.resizeNonZeros(unz);
    356 
    357     m_p.resize(rows);
    358     m_q.resize(cols);
    359 
    360     // extract
    361     umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
    362                         m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
    363                         m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
    364 
    365     m_extractedDataAreDirty = false;
    366   }
    367 }
    368 
    369 template<typename MatrixType>
    370 typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
    371 {
    372   Scalar det;
    373   umfpack_get_determinant(&det, 0, m_numeric, 0);
    374   return det;
    375 }
    376 
    377 template<typename MatrixType>
    378 template<typename BDerived,typename XDerived>
    379 bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
    380 {
    381   const int rhsCols = b.cols();
    382   eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
    383   eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
    384   eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
    385 
    386   int errorCode;
    387   for (int j=0; j<rhsCols; ++j)
    388   {
    389     errorCode = umfpack_solve(UMFPACK_A,
    390         m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
    391         &x.col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
    392     if (errorCode!=0)
    393       return false;
    394   }
    395 
    396   return true;
    397 }
    398 
    399 
    400 namespace internal {
    401 
    402 template<typename _MatrixType, typename Rhs>
    403 struct solve_retval<UmfPackLU<_MatrixType>, Rhs>
    404   : solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
    405 {
    406   typedef UmfPackLU<_MatrixType> Dec;
    407   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    408 
    409   template<typename Dest> void evalTo(Dest& dst) const
    410   {
    411     dec()._solve(rhs(),dst);
    412   }
    413 };
    414 
    415 template<typename _MatrixType, typename Rhs>
    416 struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs>
    417   : sparse_solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
    418 {
    419   typedef UmfPackLU<_MatrixType> Dec;
    420   EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
    421 
    422   template<typename Dest> void evalTo(Dest& dst) const
    423   {
    424     this->defaultEvalTo(dst);
    425   }
    426 };
    427 
    428 } // end namespace internal
    429 
    430 } // end namespace Eigen
    431 
    432 #endif // EIGEN_UMFPACKSUPPORT_H
    433