Home | History | Annotate | Download | only in AST
      1 //===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Defines the clang::ASTContext interface.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
     16 #define LLVM_CLANG_AST_ASTCONTEXT_H
     17 
     18 #include "clang/AST/ASTTypeTraits.h"
     19 #include "clang/AST/CanonicalType.h"
     20 #include "clang/AST/CommentCommandTraits.h"
     21 #include "clang/AST/Decl.h"
     22 #include "clang/AST/ExternalASTSource.h"
     23 #include "clang/AST/NestedNameSpecifier.h"
     24 #include "clang/AST/PrettyPrinter.h"
     25 #include "clang/AST/RawCommentList.h"
     26 #include "clang/AST/TemplateName.h"
     27 #include "clang/AST/Type.h"
     28 #include "clang/Basic/AddressSpaces.h"
     29 #include "clang/Basic/IdentifierTable.h"
     30 #include "clang/Basic/LangOptions.h"
     31 #include "clang/Basic/OperatorKinds.h"
     32 #include "clang/Basic/PartialDiagnostic.h"
     33 #include "clang/Basic/VersionTuple.h"
     34 #include "llvm/ADT/DenseMap.h"
     35 #include "llvm/ADT/FoldingSet.h"
     36 #include "llvm/ADT/IntrusiveRefCntPtr.h"
     37 #include "llvm/ADT/SmallPtrSet.h"
     38 #include "llvm/ADT/TinyPtrVector.h"
     39 #include "llvm/Support/Allocator.h"
     40 #include <memory>
     41 #include <vector>
     42 
     43 namespace llvm {
     44   struct fltSemantics;
     45 }
     46 
     47 namespace clang {
     48   class FileManager;
     49   class AtomicExpr;
     50   class ASTRecordLayout;
     51   class BlockExpr;
     52   class CharUnits;
     53   class DiagnosticsEngine;
     54   class Expr;
     55   class ASTMutationListener;
     56   class IdentifierTable;
     57   class MaterializeTemporaryExpr;
     58   class SelectorTable;
     59   class TargetInfo;
     60   class CXXABI;
     61   class MangleNumberingContext;
     62   // Decls
     63   class MangleContext;
     64   class ObjCIvarDecl;
     65   class ObjCPropertyDecl;
     66   class UnresolvedSetIterator;
     67   class UsingDecl;
     68   class UsingShadowDecl;
     69   class VTableContextBase;
     70 
     71   namespace Builtin { class Context; }
     72 
     73   namespace comments {
     74     class FullComment;
     75   }
     76 
     77 /// \brief Holds long-lived AST nodes (such as types and decls) that can be
     78 /// referred to throughout the semantic analysis of a file.
     79 class ASTContext : public RefCountedBase<ASTContext> {
     80   ASTContext &this_() { return *this; }
     81 
     82   mutable SmallVector<Type *, 0> Types;
     83   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
     84   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
     85   mutable llvm::FoldingSet<PointerType> PointerTypes;
     86   mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
     87   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
     88   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
     89   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
     90   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
     91   mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
     92   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
     93   mutable std::vector<VariableArrayType*> VariableArrayTypes;
     94   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
     95   mutable llvm::FoldingSet<DependentSizedExtVectorType>
     96     DependentSizedExtVectorTypes;
     97   mutable llvm::FoldingSet<VectorType> VectorTypes;
     98   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
     99   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
    100     FunctionProtoTypes;
    101   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
    102   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
    103   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
    104   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
    105     SubstTemplateTypeParmTypes;
    106   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
    107     SubstTemplateTypeParmPackTypes;
    108   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
    109     TemplateSpecializationTypes;
    110   mutable llvm::FoldingSet<ParenType> ParenTypes;
    111   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
    112   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
    113   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
    114                                      ASTContext&>
    115     DependentTemplateSpecializationTypes;
    116   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
    117   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
    118   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
    119   mutable llvm::FoldingSet<AutoType> AutoTypes;
    120   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
    121   llvm::FoldingSet<AttributedType> AttributedTypes;
    122 
    123   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
    124   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
    125   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
    126     SubstTemplateTemplateParms;
    127   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
    128                                      ASTContext&>
    129     SubstTemplateTemplateParmPacks;
    130 
    131   /// \brief The set of nested name specifiers.
    132   ///
    133   /// This set is managed by the NestedNameSpecifier class.
    134   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
    135   mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
    136   friend class NestedNameSpecifier;
    137 
    138   /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
    139   ///
    140   /// This is lazily created.  This is intentionally not serialized.
    141   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
    142     ASTRecordLayouts;
    143   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
    144     ObjCLayouts;
    145 
    146   /// \brief A cache from types to size and alignment information.
    147   typedef llvm::DenseMap<const Type*,
    148                          std::pair<uint64_t, unsigned> > TypeInfoMap;
    149   mutable TypeInfoMap MemoizedTypeInfo;
    150 
    151   /// \brief A cache mapping from CXXRecordDecls to key functions.
    152   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
    153 
    154   /// \brief Mapping from ObjCContainers to their ObjCImplementations.
    155   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
    156 
    157   /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
    158   /// interface.
    159   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
    160 
    161   /// \brief Mapping from __block VarDecls to their copy initialization expr.
    162   llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
    163 
    164   /// \brief Mapping from class scope functions specialization to their
    165   /// template patterns.
    166   llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
    167     ClassScopeSpecializationPattern;
    168 
    169   /// \brief Mapping from materialized temporaries with static storage duration
    170   /// that appear in constant initializers to their evaluated values.
    171   llvm::DenseMap<const MaterializeTemporaryExpr*, APValue>
    172     MaterializedTemporaryValues;
    173 
    174   /// \brief Representation of a "canonical" template template parameter that
    175   /// is used in canonical template names.
    176   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
    177     TemplateTemplateParmDecl *Parm;
    178 
    179   public:
    180     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
    181       : Parm(Parm) { }
    182 
    183     TemplateTemplateParmDecl *getParam() const { return Parm; }
    184 
    185     void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
    186 
    187     static void Profile(llvm::FoldingSetNodeID &ID,
    188                         TemplateTemplateParmDecl *Parm);
    189   };
    190   mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
    191     CanonTemplateTemplateParms;
    192 
    193   TemplateTemplateParmDecl *
    194     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
    195 
    196   /// \brief The typedef for the __int128_t type.
    197   mutable TypedefDecl *Int128Decl;
    198 
    199   /// \brief The typedef for the __uint128_t type.
    200   mutable TypedefDecl *UInt128Decl;
    201 
    202   /// \brief The typedef for the __float128 stub type.
    203   mutable TypeDecl *Float128StubDecl;
    204 
    205   /// \brief The typedef for the target specific predefined
    206   /// __builtin_va_list type.
    207   mutable TypedefDecl *BuiltinVaListDecl;
    208 
    209   /// \brief The typedef for the predefined \c id type.
    210   mutable TypedefDecl *ObjCIdDecl;
    211 
    212   /// \brief The typedef for the predefined \c SEL type.
    213   mutable TypedefDecl *ObjCSelDecl;
    214 
    215   /// \brief The typedef for the predefined \c Class type.
    216   mutable TypedefDecl *ObjCClassDecl;
    217 
    218   /// \brief The typedef for the predefined \c Protocol class in Objective-C.
    219   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
    220 
    221   /// \brief The typedef for the predefined 'BOOL' type.
    222   mutable TypedefDecl *BOOLDecl;
    223 
    224   // Typedefs which may be provided defining the structure of Objective-C
    225   // pseudo-builtins
    226   QualType ObjCIdRedefinitionType;
    227   QualType ObjCClassRedefinitionType;
    228   QualType ObjCSelRedefinitionType;
    229 
    230   QualType ObjCConstantStringType;
    231   mutable RecordDecl *CFConstantStringTypeDecl;
    232 
    233   mutable QualType ObjCSuperType;
    234 
    235   QualType ObjCNSStringType;
    236 
    237   /// \brief The typedef declaration for the Objective-C "instancetype" type.
    238   TypedefDecl *ObjCInstanceTypeDecl;
    239 
    240   /// \brief The type for the C FILE type.
    241   TypeDecl *FILEDecl;
    242 
    243   /// \brief The type for the C jmp_buf type.
    244   TypeDecl *jmp_bufDecl;
    245 
    246   /// \brief The type for the C sigjmp_buf type.
    247   TypeDecl *sigjmp_bufDecl;
    248 
    249   /// \brief The type for the C ucontext_t type.
    250   TypeDecl *ucontext_tDecl;
    251 
    252   /// \brief Type for the Block descriptor for Blocks CodeGen.
    253   ///
    254   /// Since this is only used for generation of debug info, it is not
    255   /// serialized.
    256   mutable RecordDecl *BlockDescriptorType;
    257 
    258   /// \brief Type for the Block descriptor for Blocks CodeGen.
    259   ///
    260   /// Since this is only used for generation of debug info, it is not
    261   /// serialized.
    262   mutable RecordDecl *BlockDescriptorExtendedType;
    263 
    264   /// \brief Declaration for the CUDA cudaConfigureCall function.
    265   FunctionDecl *cudaConfigureCallDecl;
    266 
    267   TypeSourceInfo NullTypeSourceInfo;
    268 
    269   /// \brief Keeps track of all declaration attributes.
    270   ///
    271   /// Since so few decls have attrs, we keep them in a hash map instead of
    272   /// wasting space in the Decl class.
    273   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
    274 
    275   /// \brief A mapping from non-redeclarable declarations in modules that were
    276   /// merged with other declarations to the canonical declaration that they were
    277   /// merged into.
    278   llvm::DenseMap<Decl*, Decl*> MergedDecls;
    279 
    280 public:
    281   /// \brief A type synonym for the TemplateOrInstantiation mapping.
    282   typedef llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>
    283   TemplateOrSpecializationInfo;
    284 
    285 private:
    286 
    287   /// \brief A mapping to contain the template or declaration that
    288   /// a variable declaration describes or was instantiated from,
    289   /// respectively.
    290   ///
    291   /// For non-templates, this value will be NULL. For variable
    292   /// declarations that describe a variable template, this will be a
    293   /// pointer to a VarTemplateDecl. For static data members
    294   /// of class template specializations, this will be the
    295   /// MemberSpecializationInfo referring to the member variable that was
    296   /// instantiated or specialized. Thus, the mapping will keep track of
    297   /// the static data member templates from which static data members of
    298   /// class template specializations were instantiated.
    299   ///
    300   /// Given the following example:
    301   ///
    302   /// \code
    303   /// template<typename T>
    304   /// struct X {
    305   ///   static T value;
    306   /// };
    307   ///
    308   /// template<typename T>
    309   ///   T X<T>::value = T(17);
    310   ///
    311   /// int *x = &X<int>::value;
    312   /// \endcode
    313   ///
    314   /// This mapping will contain an entry that maps from the VarDecl for
    315   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
    316   /// class template X) and will be marked TSK_ImplicitInstantiation.
    317   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
    318   TemplateOrInstantiation;
    319 
    320   /// \brief Keeps track of the declaration from which a UsingDecl was
    321   /// created during instantiation.
    322   ///
    323   /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
    324   /// or an UnresolvedUsingTypenameDecl.
    325   ///
    326   /// For example:
    327   /// \code
    328   /// template<typename T>
    329   /// struct A {
    330   ///   void f();
    331   /// };
    332   ///
    333   /// template<typename T>
    334   /// struct B : A<T> {
    335   ///   using A<T>::f;
    336   /// };
    337   ///
    338   /// template struct B<int>;
    339   /// \endcode
    340   ///
    341   /// This mapping will contain an entry that maps from the UsingDecl in
    342   /// B<int> to the UnresolvedUsingDecl in B<T>.
    343   llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
    344 
    345   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
    346     InstantiatedFromUsingShadowDecl;
    347 
    348   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
    349 
    350   /// \brief Mapping that stores the methods overridden by a given C++
    351   /// member function.
    352   ///
    353   /// Since most C++ member functions aren't virtual and therefore
    354   /// don't override anything, we store the overridden functions in
    355   /// this map on the side rather than within the CXXMethodDecl structure.
    356   typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
    357   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
    358 
    359   /// \brief Mapping from each declaration context to its corresponding
    360   /// mangling numbering context (used for constructs like lambdas which
    361   /// need to be consistently numbered for the mangler).
    362   llvm::DenseMap<const DeclContext *, MangleNumberingContext *>
    363       MangleNumberingContexts;
    364 
    365   /// \brief Side-table of mangling numbers for declarations which rarely
    366   /// need them (like static local vars).
    367   llvm::DenseMap<const NamedDecl *, unsigned> MangleNumbers;
    368   llvm::DenseMap<const VarDecl *, unsigned> StaticLocalNumbers;
    369 
    370   /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
    371   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
    372   typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
    373   ParameterIndexTable ParamIndices;
    374 
    375   ImportDecl *FirstLocalImport;
    376   ImportDecl *LastLocalImport;
    377 
    378   TranslationUnitDecl *TUDecl;
    379 
    380   /// \brief The associated SourceManager object.a
    381   SourceManager &SourceMgr;
    382 
    383   /// \brief The language options used to create the AST associated with
    384   ///  this ASTContext object.
    385   LangOptions &LangOpts;
    386 
    387   /// \brief The allocator used to create AST objects.
    388   ///
    389   /// AST objects are never destructed; rather, all memory associated with the
    390   /// AST objects will be released when the ASTContext itself is destroyed.
    391   mutable llvm::BumpPtrAllocator BumpAlloc;
    392 
    393   /// \brief Allocator for partial diagnostics.
    394   PartialDiagnostic::StorageAllocator DiagAllocator;
    395 
    396   /// \brief The current C++ ABI.
    397   std::unique_ptr<CXXABI> ABI;
    398   CXXABI *createCXXABI(const TargetInfo &T);
    399 
    400   /// \brief The logical -> physical address space map.
    401   const LangAS::Map *AddrSpaceMap;
    402 
    403   /// \brief Address space map mangling must be used with language specific
    404   /// address spaces (e.g. OpenCL/CUDA)
    405   bool AddrSpaceMapMangling;
    406 
    407   friend class ASTDeclReader;
    408   friend class ASTReader;
    409   friend class ASTWriter;
    410   friend class CXXRecordDecl;
    411 
    412   const TargetInfo *Target;
    413   clang::PrintingPolicy PrintingPolicy;
    414 
    415 public:
    416   IdentifierTable &Idents;
    417   SelectorTable &Selectors;
    418   Builtin::Context &BuiltinInfo;
    419   mutable DeclarationNameTable DeclarationNames;
    420   IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
    421   ASTMutationListener *Listener;
    422 
    423   /// \brief Contains parents of a node.
    424   typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 2> ParentVector;
    425 
    426   /// \brief Maps from a node to its parents.
    427   typedef llvm::DenseMap<const void *,
    428                          llvm::PointerUnion<ast_type_traits::DynTypedNode *,
    429                                             ParentVector *>> ParentMap;
    430 
    431   /// \brief Returns the parents of the given node.
    432   ///
    433   /// Note that this will lazily compute the parents of all nodes
    434   /// and store them for later retrieval. Thus, the first call is O(n)
    435   /// in the number of AST nodes.
    436   ///
    437   /// Caveats and FIXMEs:
    438   /// Calculating the parent map over all AST nodes will need to load the
    439   /// full AST. This can be undesirable in the case where the full AST is
    440   /// expensive to create (for example, when using precompiled header
    441   /// preambles). Thus, there are good opportunities for optimization here.
    442   /// One idea is to walk the given node downwards, looking for references
    443   /// to declaration contexts - once a declaration context is found, compute
    444   /// the parent map for the declaration context; if that can satisfy the
    445   /// request, loading the whole AST can be avoided. Note that this is made
    446   /// more complex by statements in templates having multiple parents - those
    447   /// problems can be solved by building closure over the templated parts of
    448   /// the AST, which also avoids touching large parts of the AST.
    449   /// Additionally, we will want to add an interface to already give a hint
    450   /// where to search for the parents, for example when looking at a statement
    451   /// inside a certain function.
    452   ///
    453   /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
    454   /// NestedNameSpecifier or NestedNameSpecifierLoc.
    455   template <typename NodeT>
    456   ParentVector getParents(const NodeT &Node) {
    457     return getParents(ast_type_traits::DynTypedNode::create(Node));
    458   }
    459 
    460   ParentVector getParents(const ast_type_traits::DynTypedNode &Node);
    461 
    462   const clang::PrintingPolicy &getPrintingPolicy() const {
    463     return PrintingPolicy;
    464   }
    465 
    466   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
    467     PrintingPolicy = Policy;
    468   }
    469 
    470   SourceManager& getSourceManager() { return SourceMgr; }
    471   const SourceManager& getSourceManager() const { return SourceMgr; }
    472 
    473   llvm::BumpPtrAllocator &getAllocator() const {
    474     return BumpAlloc;
    475   }
    476 
    477   void *Allocate(size_t Size, unsigned Align = 8) const {
    478     return BumpAlloc.Allocate(Size, Align);
    479   }
    480   void Deallocate(void *Ptr) const { }
    481 
    482   /// Return the total amount of physical memory allocated for representing
    483   /// AST nodes and type information.
    484   size_t getASTAllocatedMemory() const {
    485     return BumpAlloc.getTotalMemory();
    486   }
    487   /// Return the total memory used for various side tables.
    488   size_t getSideTableAllocatedMemory() const;
    489 
    490   PartialDiagnostic::StorageAllocator &getDiagAllocator() {
    491     return DiagAllocator;
    492   }
    493 
    494   const TargetInfo &getTargetInfo() const { return *Target; }
    495 
    496   /// getIntTypeForBitwidth -
    497   /// sets integer QualTy according to specified details:
    498   /// bitwidth, signed/unsigned.
    499   /// Returns empty type if there is no appropriate target types.
    500   QualType getIntTypeForBitwidth(unsigned DestWidth,
    501                                  unsigned Signed) const;
    502   /// getRealTypeForBitwidth -
    503   /// sets floating point QualTy according to specified bitwidth.
    504   /// Returns empty type if there is no appropriate target types.
    505   QualType getRealTypeForBitwidth(unsigned DestWidth) const;
    506 
    507   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
    508 
    509   const LangOptions& getLangOpts() const { return LangOpts; }
    510 
    511   DiagnosticsEngine &getDiagnostics() const;
    512 
    513   FullSourceLoc getFullLoc(SourceLocation Loc) const {
    514     return FullSourceLoc(Loc,SourceMgr);
    515   }
    516 
    517   /// \brief All comments in this translation unit.
    518   RawCommentList Comments;
    519 
    520   /// \brief True if comments are already loaded from ExternalASTSource.
    521   mutable bool CommentsLoaded;
    522 
    523   class RawCommentAndCacheFlags {
    524   public:
    525     enum Kind {
    526       /// We searched for a comment attached to the particular declaration, but
    527       /// didn't find any.
    528       ///
    529       /// getRaw() == 0.
    530       NoCommentInDecl = 0,
    531 
    532       /// We have found a comment attached to this particular declaration.
    533       ///
    534       /// getRaw() != 0.
    535       FromDecl,
    536 
    537       /// This declaration does not have an attached comment, and we have
    538       /// searched the redeclaration chain.
    539       ///
    540       /// If getRaw() == 0, the whole redeclaration chain does not have any
    541       /// comments.
    542       ///
    543       /// If getRaw() != 0, it is a comment propagated from other
    544       /// redeclaration.
    545       FromRedecl
    546     };
    547 
    548     Kind getKind() const LLVM_READONLY {
    549       return Data.getInt();
    550     }
    551 
    552     void setKind(Kind K) {
    553       Data.setInt(K);
    554     }
    555 
    556     const RawComment *getRaw() const LLVM_READONLY {
    557       return Data.getPointer();
    558     }
    559 
    560     void setRaw(const RawComment *RC) {
    561       Data.setPointer(RC);
    562     }
    563 
    564     const Decl *getOriginalDecl() const LLVM_READONLY {
    565       return OriginalDecl;
    566     }
    567 
    568     void setOriginalDecl(const Decl *Orig) {
    569       OriginalDecl = Orig;
    570     }
    571 
    572   private:
    573     llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
    574     const Decl *OriginalDecl;
    575   };
    576 
    577   /// \brief Mapping from declarations to comments attached to any
    578   /// redeclaration.
    579   ///
    580   /// Raw comments are owned by Comments list.  This mapping is populated
    581   /// lazily.
    582   mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
    583 
    584   /// \brief Mapping from declarations to parsed comments attached to any
    585   /// redeclaration.
    586   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
    587 
    588   /// \brief Return the documentation comment attached to a given declaration,
    589   /// without looking into cache.
    590   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
    591 
    592 public:
    593   RawCommentList &getRawCommentList() {
    594     return Comments;
    595   }
    596 
    597   void addComment(const RawComment &RC) {
    598     assert(LangOpts.RetainCommentsFromSystemHeaders ||
    599            !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
    600     Comments.addComment(RC, BumpAlloc);
    601   }
    602 
    603   /// \brief Return the documentation comment attached to a given declaration.
    604   /// Returns NULL if no comment is attached.
    605   ///
    606   /// \param OriginalDecl if not NULL, is set to declaration AST node that had
    607   /// the comment, if the comment we found comes from a redeclaration.
    608   const RawComment *
    609   getRawCommentForAnyRedecl(const Decl *D,
    610                             const Decl **OriginalDecl = nullptr) const;
    611 
    612   /// Return parsed documentation comment attached to a given declaration.
    613   /// Returns NULL if no comment is attached.
    614   ///
    615   /// \param PP the Preprocessor used with this TU.  Could be NULL if
    616   /// preprocessor is not available.
    617   comments::FullComment *getCommentForDecl(const Decl *D,
    618                                            const Preprocessor *PP) const;
    619 
    620   /// Return parsed documentation comment attached to a given declaration.
    621   /// Returns NULL if no comment is attached. Does not look at any
    622   /// redeclarations of the declaration.
    623   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
    624 
    625   comments::FullComment *cloneFullComment(comments::FullComment *FC,
    626                                          const Decl *D) const;
    627 
    628 private:
    629   mutable comments::CommandTraits CommentCommandTraits;
    630 
    631   /// \brief Iterator that visits import declarations.
    632   class import_iterator {
    633     ImportDecl *Import;
    634 
    635   public:
    636     typedef ImportDecl               *value_type;
    637     typedef ImportDecl               *reference;
    638     typedef ImportDecl               *pointer;
    639     typedef int                       difference_type;
    640     typedef std::forward_iterator_tag iterator_category;
    641 
    642     import_iterator() : Import() {}
    643     explicit import_iterator(ImportDecl *Import) : Import(Import) {}
    644 
    645     reference operator*() const { return Import; }
    646     pointer operator->() const { return Import; }
    647 
    648     import_iterator &operator++() {
    649       Import = ASTContext::getNextLocalImport(Import);
    650       return *this;
    651     }
    652 
    653     import_iterator operator++(int) {
    654       import_iterator Other(*this);
    655       ++(*this);
    656       return Other;
    657     }
    658 
    659     friend bool operator==(import_iterator X, import_iterator Y) {
    660       return X.Import == Y.Import;
    661     }
    662 
    663     friend bool operator!=(import_iterator X, import_iterator Y) {
    664       return X.Import != Y.Import;
    665     }
    666   };
    667 
    668 public:
    669   comments::CommandTraits &getCommentCommandTraits() const {
    670     return CommentCommandTraits;
    671   }
    672 
    673   /// \brief Retrieve the attributes for the given declaration.
    674   AttrVec& getDeclAttrs(const Decl *D);
    675 
    676   /// \brief Erase the attributes corresponding to the given declaration.
    677   void eraseDeclAttrs(const Decl *D);
    678 
    679   /// \brief If this variable is an instantiated static data member of a
    680   /// class template specialization, returns the templated static data member
    681   /// from which it was instantiated.
    682   // FIXME: Remove ?
    683   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
    684                                                            const VarDecl *Var);
    685 
    686   TemplateOrSpecializationInfo
    687   getTemplateOrSpecializationInfo(const VarDecl *Var);
    688 
    689   FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
    690 
    691   void setClassScopeSpecializationPattern(FunctionDecl *FD,
    692                                           FunctionDecl *Pattern);
    693 
    694   /// \brief Note that the static data member \p Inst is an instantiation of
    695   /// the static data member template \p Tmpl of a class template.
    696   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
    697                                            TemplateSpecializationKind TSK,
    698                         SourceLocation PointOfInstantiation = SourceLocation());
    699 
    700   void setTemplateOrSpecializationInfo(VarDecl *Inst,
    701                                        TemplateOrSpecializationInfo TSI);
    702 
    703   /// \brief If the given using decl \p Inst is an instantiation of a
    704   /// (possibly unresolved) using decl from a template instantiation,
    705   /// return it.
    706   NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
    707 
    708   /// \brief Remember that the using decl \p Inst is an instantiation
    709   /// of the using decl \p Pattern of a class template.
    710   void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
    711 
    712   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
    713                                           UsingShadowDecl *Pattern);
    714   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
    715 
    716   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
    717 
    718   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
    719 
    720   // Access to the set of methods overridden by the given C++ method.
    721   typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
    722   overridden_cxx_method_iterator
    723   overridden_methods_begin(const CXXMethodDecl *Method) const;
    724 
    725   overridden_cxx_method_iterator
    726   overridden_methods_end(const CXXMethodDecl *Method) const;
    727 
    728   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
    729 
    730   /// \brief Note that the given C++ \p Method overrides the given \p
    731   /// Overridden method.
    732   void addOverriddenMethod(const CXXMethodDecl *Method,
    733                            const CXXMethodDecl *Overridden);
    734 
    735   /// \brief Return C++ or ObjC overridden methods for the given \p Method.
    736   ///
    737   /// An ObjC method is considered to override any method in the class's
    738   /// base classes, its protocols, or its categories' protocols, that has
    739   /// the same selector and is of the same kind (class or instance).
    740   /// A method in an implementation is not considered as overriding the same
    741   /// method in the interface or its categories.
    742   void getOverriddenMethods(
    743                         const NamedDecl *Method,
    744                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
    745 
    746   /// \brief Notify the AST context that a new import declaration has been
    747   /// parsed or implicitly created within this translation unit.
    748   void addedLocalImportDecl(ImportDecl *Import);
    749 
    750   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
    751     return Import->NextLocalImport;
    752   }
    753 
    754   typedef llvm::iterator_range<import_iterator> import_range;
    755   import_range local_imports() const {
    756     return import_range(import_iterator(FirstLocalImport), import_iterator());
    757   }
    758 
    759   Decl *getPrimaryMergedDecl(Decl *D) {
    760     Decl *Result = MergedDecls.lookup(D);
    761     return Result ? Result : D;
    762   }
    763   void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
    764     MergedDecls[D] = Primary;
    765   }
    766 
    767   TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
    768 
    769 
    770   // Builtin Types.
    771   CanQualType VoidTy;
    772   CanQualType BoolTy;
    773   CanQualType CharTy;
    774   CanQualType WCharTy;  // [C++ 3.9.1p5].
    775   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
    776   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
    777   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
    778   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
    779   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
    780   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
    781   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
    782   CanQualType FloatTy, DoubleTy, LongDoubleTy;
    783   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
    784   CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
    785   CanQualType VoidPtrTy, NullPtrTy;
    786   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
    787   CanQualType BuiltinFnTy;
    788   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
    789   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
    790   CanQualType ObjCBuiltinBoolTy;
    791   CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
    792   CanQualType OCLImage2dTy, OCLImage2dArrayTy;
    793   CanQualType OCLImage3dTy;
    794   CanQualType OCLSamplerTy, OCLEventTy;
    795 
    796   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
    797   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
    798   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
    799 
    800   // Type used to help define __builtin_va_list for some targets.
    801   // The type is built when constructing 'BuiltinVaListDecl'.
    802   mutable QualType VaListTagTy;
    803 
    804   ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
    805              SelectorTable &sels, Builtin::Context &builtins);
    806 
    807   ~ASTContext();
    808 
    809   /// \brief Attach an external AST source to the AST context.
    810   ///
    811   /// The external AST source provides the ability to load parts of
    812   /// the abstract syntax tree as needed from some external storage,
    813   /// e.g., a precompiled header.
    814   void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
    815 
    816   /// \brief Retrieve a pointer to the external AST source associated
    817   /// with this AST context, if any.
    818   ExternalASTSource *getExternalSource() const {
    819     return ExternalSource.get();
    820   }
    821 
    822   /// \brief Attach an AST mutation listener to the AST context.
    823   ///
    824   /// The AST mutation listener provides the ability to track modifications to
    825   /// the abstract syntax tree entities committed after they were initially
    826   /// created.
    827   void setASTMutationListener(ASTMutationListener *Listener) {
    828     this->Listener = Listener;
    829   }
    830 
    831   /// \brief Retrieve a pointer to the AST mutation listener associated
    832   /// with this AST context, if any.
    833   ASTMutationListener *getASTMutationListener() const { return Listener; }
    834 
    835   void PrintStats() const;
    836   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
    837 
    838   /// \brief Create a new implicit TU-level CXXRecordDecl or RecordDecl
    839   /// declaration.
    840   RecordDecl *buildImplicitRecord(StringRef Name,
    841                                   RecordDecl::TagKind TK = TTK_Struct) const;
    842 
    843   /// \brief Create a new implicit TU-level typedef declaration.
    844   TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
    845 
    846   /// \brief Retrieve the declaration for the 128-bit signed integer type.
    847   TypedefDecl *getInt128Decl() const;
    848 
    849   /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
    850   TypedefDecl *getUInt128Decl() const;
    851 
    852   /// \brief Retrieve the declaration for a 128-bit float stub type.
    853   TypeDecl *getFloat128StubType() const;
    854 
    855   //===--------------------------------------------------------------------===//
    856   //                           Type Constructors
    857   //===--------------------------------------------------------------------===//
    858 
    859 private:
    860   /// \brief Return a type with extended qualifiers.
    861   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
    862 
    863   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
    864 
    865 public:
    866   /// \brief Return the uniqued reference to the type for an address space
    867   /// qualified type with the specified type and address space.
    868   ///
    869   /// The resulting type has a union of the qualifiers from T and the address
    870   /// space. If T already has an address space specifier, it is silently
    871   /// replaced.
    872   QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
    873 
    874   /// \brief Return the uniqued reference to the type for an Objective-C
    875   /// gc-qualified type.
    876   ///
    877   /// The retulting type has a union of the qualifiers from T and the gc
    878   /// attribute.
    879   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
    880 
    881   /// \brief Return the uniqued reference to the type for a \c restrict
    882   /// qualified type.
    883   ///
    884   /// The resulting type has a union of the qualifiers from \p T and
    885   /// \c restrict.
    886   QualType getRestrictType(QualType T) const {
    887     return T.withFastQualifiers(Qualifiers::Restrict);
    888   }
    889 
    890   /// \brief Return the uniqued reference to the type for a \c volatile
    891   /// qualified type.
    892   ///
    893   /// The resulting type has a union of the qualifiers from \p T and
    894   /// \c volatile.
    895   QualType getVolatileType(QualType T) const {
    896     return T.withFastQualifiers(Qualifiers::Volatile);
    897   }
    898 
    899   /// \brief Return the uniqued reference to the type for a \c const
    900   /// qualified type.
    901   ///
    902   /// The resulting type has a union of the qualifiers from \p T and \c const.
    903   ///
    904   /// It can be reasonably expected that this will always be equivalent to
    905   /// calling T.withConst().
    906   QualType getConstType(QualType T) const { return T.withConst(); }
    907 
    908   /// \brief Change the ExtInfo on a function type.
    909   const FunctionType *adjustFunctionType(const FunctionType *Fn,
    910                                          FunctionType::ExtInfo EInfo);
    911 
    912   /// \brief Change the result type of a function type once it is deduced.
    913   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
    914 
    915   /// \brief Return the uniqued reference to the type for a complex
    916   /// number with the specified element type.
    917   QualType getComplexType(QualType T) const;
    918   CanQualType getComplexType(CanQualType T) const {
    919     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
    920   }
    921 
    922   /// \brief Return the uniqued reference to the type for a pointer to
    923   /// the specified type.
    924   QualType getPointerType(QualType T) const;
    925   CanQualType getPointerType(CanQualType T) const {
    926     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
    927   }
    928 
    929   /// \brief Return the uniqued reference to a type adjusted from the original
    930   /// type to a new type.
    931   QualType getAdjustedType(QualType Orig, QualType New) const;
    932   CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
    933     return CanQualType::CreateUnsafe(
    934         getAdjustedType((QualType)Orig, (QualType)New));
    935   }
    936 
    937   /// \brief Return the uniqued reference to the decayed version of the given
    938   /// type.  Can only be called on array and function types which decay to
    939   /// pointer types.
    940   QualType getDecayedType(QualType T) const;
    941   CanQualType getDecayedType(CanQualType T) const {
    942     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
    943   }
    944 
    945   /// \brief Return the uniqued reference to the atomic type for the specified
    946   /// type.
    947   QualType getAtomicType(QualType T) const;
    948 
    949   /// \brief Return the uniqued reference to the type for a block of the
    950   /// specified type.
    951   QualType getBlockPointerType(QualType T) const;
    952 
    953   /// Gets the struct used to keep track of the descriptor for pointer to
    954   /// blocks.
    955   QualType getBlockDescriptorType() const;
    956 
    957   /// Gets the struct used to keep track of the extended descriptor for
    958   /// pointer to blocks.
    959   QualType getBlockDescriptorExtendedType() const;
    960 
    961   void setcudaConfigureCallDecl(FunctionDecl *FD) {
    962     cudaConfigureCallDecl = FD;
    963   }
    964   FunctionDecl *getcudaConfigureCallDecl() {
    965     return cudaConfigureCallDecl;
    966   }
    967 
    968   /// Returns true iff we need copy/dispose helpers for the given type.
    969   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
    970 
    971 
    972   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
    973   /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
    974   /// has extended lifetime.
    975   bool getByrefLifetime(QualType Ty,
    976                         Qualifiers::ObjCLifetime &Lifetime,
    977                         bool &HasByrefExtendedLayout) const;
    978 
    979   /// \brief Return the uniqued reference to the type for an lvalue reference
    980   /// to the specified type.
    981   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
    982     const;
    983 
    984   /// \brief Return the uniqued reference to the type for an rvalue reference
    985   /// to the specified type.
    986   QualType getRValueReferenceType(QualType T) const;
    987 
    988   /// \brief Return the uniqued reference to the type for a member pointer to
    989   /// the specified type in the specified class.
    990   ///
    991   /// The class \p Cls is a \c Type because it could be a dependent name.
    992   QualType getMemberPointerType(QualType T, const Type *Cls) const;
    993 
    994   /// \brief Return a non-unique reference to the type for a variable array of
    995   /// the specified element type.
    996   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
    997                                 ArrayType::ArraySizeModifier ASM,
    998                                 unsigned IndexTypeQuals,
    999                                 SourceRange Brackets) const;
   1000 
   1001   /// \brief Return a non-unique reference to the type for a dependently-sized
   1002   /// array of the specified element type.
   1003   ///
   1004   /// FIXME: We will need these to be uniqued, or at least comparable, at some
   1005   /// point.
   1006   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
   1007                                       ArrayType::ArraySizeModifier ASM,
   1008                                       unsigned IndexTypeQuals,
   1009                                       SourceRange Brackets) const;
   1010 
   1011   /// \brief Return a unique reference to the type for an incomplete array of
   1012   /// the specified element type.
   1013   QualType getIncompleteArrayType(QualType EltTy,
   1014                                   ArrayType::ArraySizeModifier ASM,
   1015                                   unsigned IndexTypeQuals) const;
   1016 
   1017   /// \brief Return the unique reference to the type for a constant array of
   1018   /// the specified element type.
   1019   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
   1020                                 ArrayType::ArraySizeModifier ASM,
   1021                                 unsigned IndexTypeQuals) const;
   1022 
   1023   /// \brief Returns a vla type where known sizes are replaced with [*].
   1024   QualType getVariableArrayDecayedType(QualType Ty) const;
   1025 
   1026   /// \brief Return the unique reference to a vector type of the specified
   1027   /// element type and size.
   1028   ///
   1029   /// \pre \p VectorType must be a built-in type.
   1030   QualType getVectorType(QualType VectorType, unsigned NumElts,
   1031                          VectorType::VectorKind VecKind) const;
   1032 
   1033   /// \brief Return the unique reference to an extended vector type
   1034   /// of the specified element type and size.
   1035   ///
   1036   /// \pre \p VectorType must be a built-in type.
   1037   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
   1038 
   1039   /// \pre Return a non-unique reference to the type for a dependently-sized
   1040   /// vector of the specified element type.
   1041   ///
   1042   /// FIXME: We will need these to be uniqued, or at least comparable, at some
   1043   /// point.
   1044   QualType getDependentSizedExtVectorType(QualType VectorType,
   1045                                           Expr *SizeExpr,
   1046                                           SourceLocation AttrLoc) const;
   1047 
   1048   /// \brief Return a K&R style C function type like 'int()'.
   1049   QualType getFunctionNoProtoType(QualType ResultTy,
   1050                                   const FunctionType::ExtInfo &Info) const;
   1051 
   1052   QualType getFunctionNoProtoType(QualType ResultTy) const {
   1053     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
   1054   }
   1055 
   1056   /// \brief Return a normal function type with a typed argument list.
   1057   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
   1058                            const FunctionProtoType::ExtProtoInfo &EPI) const;
   1059 
   1060   /// \brief Return the unique reference to the type for the specified type
   1061   /// declaration.
   1062   QualType getTypeDeclType(const TypeDecl *Decl,
   1063                            const TypeDecl *PrevDecl = nullptr) const {
   1064     assert(Decl && "Passed null for Decl param");
   1065     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   1066 
   1067     if (PrevDecl) {
   1068       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
   1069       Decl->TypeForDecl = PrevDecl->TypeForDecl;
   1070       return QualType(PrevDecl->TypeForDecl, 0);
   1071     }
   1072 
   1073     return getTypeDeclTypeSlow(Decl);
   1074   }
   1075 
   1076   /// \brief Return the unique reference to the type for the specified
   1077   /// typedef-name decl.
   1078   QualType getTypedefType(const TypedefNameDecl *Decl,
   1079                           QualType Canon = QualType()) const;
   1080 
   1081   QualType getRecordType(const RecordDecl *Decl) const;
   1082 
   1083   QualType getEnumType(const EnumDecl *Decl) const;
   1084 
   1085   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
   1086 
   1087   QualType getAttributedType(AttributedType::Kind attrKind,
   1088                              QualType modifiedType,
   1089                              QualType equivalentType);
   1090 
   1091   QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
   1092                                         QualType Replacement) const;
   1093   QualType getSubstTemplateTypeParmPackType(
   1094                                           const TemplateTypeParmType *Replaced,
   1095                                             const TemplateArgument &ArgPack);
   1096 
   1097   QualType
   1098   getTemplateTypeParmType(unsigned Depth, unsigned Index,
   1099                           bool ParameterPack,
   1100                           TemplateTypeParmDecl *ParmDecl = nullptr) const;
   1101 
   1102   QualType getTemplateSpecializationType(TemplateName T,
   1103                                          const TemplateArgument *Args,
   1104                                          unsigned NumArgs,
   1105                                          QualType Canon = QualType()) const;
   1106 
   1107   QualType getCanonicalTemplateSpecializationType(TemplateName T,
   1108                                                   const TemplateArgument *Args,
   1109                                                   unsigned NumArgs) const;
   1110 
   1111   QualType getTemplateSpecializationType(TemplateName T,
   1112                                          const TemplateArgumentListInfo &Args,
   1113                                          QualType Canon = QualType()) const;
   1114 
   1115   TypeSourceInfo *
   1116   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
   1117                                     const TemplateArgumentListInfo &Args,
   1118                                     QualType Canon = QualType()) const;
   1119 
   1120   QualType getParenType(QualType NamedType) const;
   1121 
   1122   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
   1123                              NestedNameSpecifier *NNS,
   1124                              QualType NamedType) const;
   1125   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
   1126                                 NestedNameSpecifier *NNS,
   1127                                 const IdentifierInfo *Name,
   1128                                 QualType Canon = QualType()) const;
   1129 
   1130   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   1131                                                   NestedNameSpecifier *NNS,
   1132                                                   const IdentifierInfo *Name,
   1133                                     const TemplateArgumentListInfo &Args) const;
   1134   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   1135                                                   NestedNameSpecifier *NNS,
   1136                                                   const IdentifierInfo *Name,
   1137                                                   unsigned NumArgs,
   1138                                             const TemplateArgument *Args) const;
   1139 
   1140   QualType getPackExpansionType(QualType Pattern,
   1141                                 Optional<unsigned> NumExpansions);
   1142 
   1143   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
   1144                                 ObjCInterfaceDecl *PrevDecl = nullptr) const;
   1145 
   1146   QualType getObjCObjectType(QualType Base,
   1147                              ObjCProtocolDecl * const *Protocols,
   1148                              unsigned NumProtocols) const;
   1149 
   1150   bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
   1151   /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
   1152   /// QT's qualified-id protocol list adopt all protocols in IDecl's list
   1153   /// of protocols.
   1154   bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
   1155                                             ObjCInterfaceDecl *IDecl);
   1156 
   1157   /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
   1158   QualType getObjCObjectPointerType(QualType OIT) const;
   1159 
   1160   /// \brief GCC extension.
   1161   QualType getTypeOfExprType(Expr *e) const;
   1162   QualType getTypeOfType(QualType t) const;
   1163 
   1164   /// \brief C++11 decltype.
   1165   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
   1166 
   1167   /// \brief Unary type transforms
   1168   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
   1169                                  UnaryTransformType::UTTKind UKind) const;
   1170 
   1171   /// \brief C++11 deduced auto type.
   1172   QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
   1173                        bool IsDependent) const;
   1174 
   1175   /// \brief C++11 deduction pattern for 'auto' type.
   1176   QualType getAutoDeductType() const;
   1177 
   1178   /// \brief C++11 deduction pattern for 'auto &&' type.
   1179   QualType getAutoRRefDeductType() const;
   1180 
   1181   /// \brief Return the unique reference to the type for the specified TagDecl
   1182   /// (struct/union/class/enum) decl.
   1183   QualType getTagDeclType(const TagDecl *Decl) const;
   1184 
   1185   /// \brief Return the unique type for "size_t" (C99 7.17), defined in
   1186   /// <stddef.h>.
   1187   ///
   1188   /// The sizeof operator requires this (C99 6.5.3.4p4).
   1189   CanQualType getSizeType() const;
   1190 
   1191   /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
   1192   /// <stdint.h>.
   1193   CanQualType getIntMaxType() const;
   1194 
   1195   /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
   1196   /// <stdint.h>.
   1197   CanQualType getUIntMaxType() const;
   1198 
   1199   /// \brief Return the unique wchar_t type available in C++ (and available as
   1200   /// __wchar_t as a Microsoft extension).
   1201   QualType getWCharType() const { return WCharTy; }
   1202 
   1203   /// \brief Return the type of wide characters. In C++, this returns the
   1204   /// unique wchar_t type. In C99, this returns a type compatible with the type
   1205   /// defined in <stddef.h> as defined by the target.
   1206   QualType getWideCharType() const { return WideCharTy; }
   1207 
   1208   /// \brief Return the type of "signed wchar_t".
   1209   ///
   1210   /// Used when in C++, as a GCC extension.
   1211   QualType getSignedWCharType() const;
   1212 
   1213   /// \brief Return the type of "unsigned wchar_t".
   1214   ///
   1215   /// Used when in C++, as a GCC extension.
   1216   QualType getUnsignedWCharType() const;
   1217 
   1218   /// \brief In C99, this returns a type compatible with the type
   1219   /// defined in <stddef.h> as defined by the target.
   1220   QualType getWIntType() const { return WIntTy; }
   1221 
   1222   /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
   1223   /// as defined by the target.
   1224   QualType getIntPtrType() const;
   1225 
   1226   /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
   1227   /// as defined by the target.
   1228   QualType getUIntPtrType() const;
   1229 
   1230   /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
   1231   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
   1232   QualType getPointerDiffType() const;
   1233 
   1234   /// \brief Return the unique type for "pid_t" defined in
   1235   /// <sys/types.h>. We need this to compute the correct type for vfork().
   1236   QualType getProcessIDType() const;
   1237 
   1238   /// \brief Return the C structure type used to represent constant CFStrings.
   1239   QualType getCFConstantStringType() const;
   1240 
   1241   /// \brief Returns the C struct type for objc_super
   1242   QualType getObjCSuperType() const;
   1243   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
   1244 
   1245   /// Get the structure type used to representation CFStrings, or NULL
   1246   /// if it hasn't yet been built.
   1247   QualType getRawCFConstantStringType() const {
   1248     if (CFConstantStringTypeDecl)
   1249       return getTagDeclType(CFConstantStringTypeDecl);
   1250     return QualType();
   1251   }
   1252   void setCFConstantStringType(QualType T);
   1253 
   1254   // This setter/getter represents the ObjC type for an NSConstantString.
   1255   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
   1256   QualType getObjCConstantStringInterface() const {
   1257     return ObjCConstantStringType;
   1258   }
   1259 
   1260   QualType getObjCNSStringType() const {
   1261     return ObjCNSStringType;
   1262   }
   1263 
   1264   void setObjCNSStringType(QualType T) {
   1265     ObjCNSStringType = T;
   1266   }
   1267 
   1268   /// \brief Retrieve the type that \c id has been defined to, which may be
   1269   /// different from the built-in \c id if \c id has been typedef'd.
   1270   QualType getObjCIdRedefinitionType() const {
   1271     if (ObjCIdRedefinitionType.isNull())
   1272       return getObjCIdType();
   1273     return ObjCIdRedefinitionType;
   1274   }
   1275 
   1276   /// \brief Set the user-written type that redefines \c id.
   1277   void setObjCIdRedefinitionType(QualType RedefType) {
   1278     ObjCIdRedefinitionType = RedefType;
   1279   }
   1280 
   1281   /// \brief Retrieve the type that \c Class has been defined to, which may be
   1282   /// different from the built-in \c Class if \c Class has been typedef'd.
   1283   QualType getObjCClassRedefinitionType() const {
   1284     if (ObjCClassRedefinitionType.isNull())
   1285       return getObjCClassType();
   1286     return ObjCClassRedefinitionType;
   1287   }
   1288 
   1289   /// \brief Set the user-written type that redefines 'SEL'.
   1290   void setObjCClassRedefinitionType(QualType RedefType) {
   1291     ObjCClassRedefinitionType = RedefType;
   1292   }
   1293 
   1294   /// \brief Retrieve the type that 'SEL' has been defined to, which may be
   1295   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
   1296   QualType getObjCSelRedefinitionType() const {
   1297     if (ObjCSelRedefinitionType.isNull())
   1298       return getObjCSelType();
   1299     return ObjCSelRedefinitionType;
   1300   }
   1301 
   1302 
   1303   /// \brief Set the user-written type that redefines 'SEL'.
   1304   void setObjCSelRedefinitionType(QualType RedefType) {
   1305     ObjCSelRedefinitionType = RedefType;
   1306   }
   1307 
   1308   /// \brief Retrieve the Objective-C "instancetype" type, if already known;
   1309   /// otherwise, returns a NULL type;
   1310   QualType getObjCInstanceType() {
   1311     return getTypeDeclType(getObjCInstanceTypeDecl());
   1312   }
   1313 
   1314   /// \brief Retrieve the typedef declaration corresponding to the Objective-C
   1315   /// "instancetype" type.
   1316   TypedefDecl *getObjCInstanceTypeDecl();
   1317 
   1318   /// \brief Set the type for the C FILE type.
   1319   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
   1320 
   1321   /// \brief Retrieve the C FILE type.
   1322   QualType getFILEType() const {
   1323     if (FILEDecl)
   1324       return getTypeDeclType(FILEDecl);
   1325     return QualType();
   1326   }
   1327 
   1328   /// \brief Set the type for the C jmp_buf type.
   1329   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
   1330     this->jmp_bufDecl = jmp_bufDecl;
   1331   }
   1332 
   1333   /// \brief Retrieve the C jmp_buf type.
   1334   QualType getjmp_bufType() const {
   1335     if (jmp_bufDecl)
   1336       return getTypeDeclType(jmp_bufDecl);
   1337     return QualType();
   1338   }
   1339 
   1340   /// \brief Set the type for the C sigjmp_buf type.
   1341   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
   1342     this->sigjmp_bufDecl = sigjmp_bufDecl;
   1343   }
   1344 
   1345   /// \brief Retrieve the C sigjmp_buf type.
   1346   QualType getsigjmp_bufType() const {
   1347     if (sigjmp_bufDecl)
   1348       return getTypeDeclType(sigjmp_bufDecl);
   1349     return QualType();
   1350   }
   1351 
   1352   /// \brief Set the type for the C ucontext_t type.
   1353   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
   1354     this->ucontext_tDecl = ucontext_tDecl;
   1355   }
   1356 
   1357   /// \brief Retrieve the C ucontext_t type.
   1358   QualType getucontext_tType() const {
   1359     if (ucontext_tDecl)
   1360       return getTypeDeclType(ucontext_tDecl);
   1361     return QualType();
   1362   }
   1363 
   1364   /// \brief The result type of logical operations, '<', '>', '!=', etc.
   1365   QualType getLogicalOperationType() const {
   1366     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
   1367   }
   1368 
   1369   /// \brief Emit the Objective-CC type encoding for the given type \p T into
   1370   /// \p S.
   1371   ///
   1372   /// If \p Field is specified then record field names are also encoded.
   1373   void getObjCEncodingForType(QualType T, std::string &S,
   1374                               const FieldDecl *Field=nullptr) const;
   1375 
   1376   /// \brief Emit the Objective-C property type encoding for the given
   1377   /// type \p T into \p S.
   1378   void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
   1379 
   1380   void getLegacyIntegralTypeEncoding(QualType &t) const;
   1381 
   1382   /// \brief Put the string version of the type qualifiers \p QT into \p S.
   1383   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
   1384                                        std::string &S) const;
   1385 
   1386   /// \brief Emit the encoded type for the function \p Decl into \p S.
   1387   ///
   1388   /// This is in the same format as Objective-C method encodings.
   1389   ///
   1390   /// \returns true if an error occurred (e.g., because one of the parameter
   1391   /// types is incomplete), false otherwise.
   1392   bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
   1393 
   1394   /// \brief Emit the encoded type for the method declaration \p Decl into
   1395   /// \p S.
   1396   ///
   1397   /// \returns true if an error occurred (e.g., because one of the parameter
   1398   /// types is incomplete), false otherwise.
   1399   bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
   1400                                     bool Extended = false)
   1401     const;
   1402 
   1403   /// \brief Return the encoded type for this block declaration.
   1404   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
   1405 
   1406   /// getObjCEncodingForPropertyDecl - Return the encoded type for
   1407   /// this method declaration. If non-NULL, Container must be either
   1408   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
   1409   /// only be NULL when getting encodings for protocol properties.
   1410   void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
   1411                                       const Decl *Container,
   1412                                       std::string &S) const;
   1413 
   1414   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
   1415                                       ObjCProtocolDecl *rProto) const;
   1416 
   1417   ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
   1418                                                   const ObjCPropertyDecl *PD,
   1419                                                   const Decl *Container) const;
   1420 
   1421   /// \brief Return the size of type \p T for Objective-C encoding purpose,
   1422   /// in characters.
   1423   CharUnits getObjCEncodingTypeSize(QualType T) const;
   1424 
   1425   /// \brief Retrieve the typedef corresponding to the predefined \c id type
   1426   /// in Objective-C.
   1427   TypedefDecl *getObjCIdDecl() const;
   1428 
   1429   /// \brief Represents the Objective-CC \c id type.
   1430   ///
   1431   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
   1432   /// pointer type, a pointer to a struct.
   1433   QualType getObjCIdType() const {
   1434     return getTypeDeclType(getObjCIdDecl());
   1435   }
   1436 
   1437   /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
   1438   /// in Objective-C.
   1439   TypedefDecl *getObjCSelDecl() const;
   1440 
   1441   /// \brief Retrieve the type that corresponds to the predefined Objective-C
   1442   /// 'SEL' type.
   1443   QualType getObjCSelType() const {
   1444     return getTypeDeclType(getObjCSelDecl());
   1445   }
   1446 
   1447   /// \brief Retrieve the typedef declaration corresponding to the predefined
   1448   /// Objective-C 'Class' type.
   1449   TypedefDecl *getObjCClassDecl() const;
   1450 
   1451   /// \brief Represents the Objective-C \c Class type.
   1452   ///
   1453   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
   1454   /// pointer type, a pointer to a struct.
   1455   QualType getObjCClassType() const {
   1456     return getTypeDeclType(getObjCClassDecl());
   1457   }
   1458 
   1459   /// \brief Retrieve the Objective-C class declaration corresponding to
   1460   /// the predefined \c Protocol class.
   1461   ObjCInterfaceDecl *getObjCProtocolDecl() const;
   1462 
   1463   /// \brief Retrieve declaration of 'BOOL' typedef
   1464   TypedefDecl *getBOOLDecl() const {
   1465     return BOOLDecl;
   1466   }
   1467 
   1468   /// \brief Save declaration of 'BOOL' typedef
   1469   void setBOOLDecl(TypedefDecl *TD) {
   1470     BOOLDecl = TD;
   1471   }
   1472 
   1473   /// \brief type of 'BOOL' type.
   1474   QualType getBOOLType() const {
   1475     return getTypeDeclType(getBOOLDecl());
   1476   }
   1477 
   1478   /// \brief Retrieve the type of the Objective-C \c Protocol class.
   1479   QualType getObjCProtoType() const {
   1480     return getObjCInterfaceType(getObjCProtocolDecl());
   1481   }
   1482 
   1483   /// \brief Retrieve the C type declaration corresponding to the predefined
   1484   /// \c __builtin_va_list type.
   1485   TypedefDecl *getBuiltinVaListDecl() const;
   1486 
   1487   /// \brief Retrieve the type of the \c __builtin_va_list type.
   1488   QualType getBuiltinVaListType() const {
   1489     return getTypeDeclType(getBuiltinVaListDecl());
   1490   }
   1491 
   1492   /// \brief Retrieve the C type declaration corresponding to the predefined
   1493   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
   1494   /// for some targets.
   1495   QualType getVaListTagType() const;
   1496 
   1497   /// \brief Return a type with additional \c const, \c volatile, or
   1498   /// \c restrict qualifiers.
   1499   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
   1500     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
   1501   }
   1502 
   1503   /// \brief Un-split a SplitQualType.
   1504   QualType getQualifiedType(SplitQualType split) const {
   1505     return getQualifiedType(split.Ty, split.Quals);
   1506   }
   1507 
   1508   /// \brief Return a type with additional qualifiers.
   1509   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
   1510     if (!Qs.hasNonFastQualifiers())
   1511       return T.withFastQualifiers(Qs.getFastQualifiers());
   1512     QualifierCollector Qc(Qs);
   1513     const Type *Ptr = Qc.strip(T);
   1514     return getExtQualType(Ptr, Qc);
   1515   }
   1516 
   1517   /// \brief Return a type with additional qualifiers.
   1518   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
   1519     if (!Qs.hasNonFastQualifiers())
   1520       return QualType(T, Qs.getFastQualifiers());
   1521     return getExtQualType(T, Qs);
   1522   }
   1523 
   1524   /// \brief Return a type with the given lifetime qualifier.
   1525   ///
   1526   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
   1527   QualType getLifetimeQualifiedType(QualType type,
   1528                                     Qualifiers::ObjCLifetime lifetime) {
   1529     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
   1530     assert(lifetime != Qualifiers::OCL_None);
   1531 
   1532     Qualifiers qs;
   1533     qs.addObjCLifetime(lifetime);
   1534     return getQualifiedType(type, qs);
   1535   }
   1536 
   1537   /// getUnqualifiedObjCPointerType - Returns version of
   1538   /// Objective-C pointer type with lifetime qualifier removed.
   1539   QualType getUnqualifiedObjCPointerType(QualType type) const {
   1540     if (!type.getTypePtr()->isObjCObjectPointerType() ||
   1541         !type.getQualifiers().hasObjCLifetime())
   1542       return type;
   1543     Qualifiers Qs = type.getQualifiers();
   1544     Qs.removeObjCLifetime();
   1545     return getQualifiedType(type.getUnqualifiedType(), Qs);
   1546   }
   1547 
   1548   DeclarationNameInfo getNameForTemplate(TemplateName Name,
   1549                                          SourceLocation NameLoc) const;
   1550 
   1551   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
   1552                                          UnresolvedSetIterator End) const;
   1553 
   1554   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
   1555                                         bool TemplateKeyword,
   1556                                         TemplateDecl *Template) const;
   1557 
   1558   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
   1559                                         const IdentifierInfo *Name) const;
   1560   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
   1561                                         OverloadedOperatorKind Operator) const;
   1562   TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
   1563                                             TemplateName replacement) const;
   1564   TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
   1565                                         const TemplateArgument &ArgPack) const;
   1566 
   1567   enum GetBuiltinTypeError {
   1568     GE_None,              ///< No error
   1569     GE_Missing_stdio,     ///< Missing a type from <stdio.h>
   1570     GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
   1571     GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
   1572   };
   1573 
   1574   /// \brief Return the type for the specified builtin.
   1575   ///
   1576   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
   1577   /// arguments to the builtin that are required to be integer constant
   1578   /// expressions.
   1579   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
   1580                           unsigned *IntegerConstantArgs = nullptr) const;
   1581 
   1582 private:
   1583   CanQualType getFromTargetType(unsigned Type) const;
   1584   std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
   1585 
   1586   //===--------------------------------------------------------------------===//
   1587   //                         Type Predicates.
   1588   //===--------------------------------------------------------------------===//
   1589 
   1590 public:
   1591   /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
   1592   /// collection attributes.
   1593   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
   1594 
   1595   /// \brief Return true if the given vector types are of the same unqualified
   1596   /// type or if they are equivalent to the same GCC vector type.
   1597   ///
   1598   /// \note This ignores whether they are target-specific (AltiVec or Neon)
   1599   /// types.
   1600   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
   1601 
   1602   /// \brief Return true if this is an \c NSObject object with its \c NSObject
   1603   /// attribute set.
   1604   static bool isObjCNSObjectType(QualType Ty) {
   1605     return Ty->isObjCNSObjectType();
   1606   }
   1607 
   1608   //===--------------------------------------------------------------------===//
   1609   //                         Type Sizing and Analysis
   1610   //===--------------------------------------------------------------------===//
   1611 
   1612   /// \brief Return the APFloat 'semantics' for the specified scalar floating
   1613   /// point type.
   1614   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
   1615 
   1616   /// \brief Get the size and alignment of the specified complete type in bits.
   1617   std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
   1618   std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
   1619     return getTypeInfo(T.getTypePtr());
   1620   }
   1621 
   1622   /// \brief Return the size of the specified (complete) type \p T, in bits.
   1623   uint64_t getTypeSize(QualType T) const {
   1624     return getTypeInfo(T).first;
   1625   }
   1626   uint64_t getTypeSize(const Type *T) const {
   1627     return getTypeInfo(T).first;
   1628   }
   1629 
   1630   /// \brief Return the size of the character type, in bits.
   1631   uint64_t getCharWidth() const {
   1632     return getTypeSize(CharTy);
   1633   }
   1634 
   1635   /// \brief Convert a size in bits to a size in characters.
   1636   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
   1637 
   1638   /// \brief Convert a size in characters to a size in bits.
   1639   int64_t toBits(CharUnits CharSize) const;
   1640 
   1641   /// \brief Return the size of the specified (complete) type \p T, in
   1642   /// characters.
   1643   CharUnits getTypeSizeInChars(QualType T) const;
   1644   CharUnits getTypeSizeInChars(const Type *T) const;
   1645 
   1646   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
   1647   /// bits.
   1648   unsigned getTypeAlign(QualType T) const {
   1649     return getTypeInfo(T).second;
   1650   }
   1651   unsigned getTypeAlign(const Type *T) const {
   1652     return getTypeInfo(T).second;
   1653   }
   1654 
   1655   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
   1656   /// characters.
   1657   CharUnits getTypeAlignInChars(QualType T) const;
   1658   CharUnits getTypeAlignInChars(const Type *T) const;
   1659 
   1660   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
   1661   // type is a record, its data size is returned.
   1662   std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
   1663 
   1664   std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
   1665   std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
   1666 
   1667   /// \brief Return the "preferred" alignment of the specified type \p T for
   1668   /// the current target, in bits.
   1669   ///
   1670   /// This can be different than the ABI alignment in cases where it is
   1671   /// beneficial for performance to overalign a data type.
   1672   unsigned getPreferredTypeAlign(const Type *T) const;
   1673 
   1674   /// \brief Return the alignment in bits that should be given to a
   1675   /// global variable with type \p T.
   1676   unsigned getAlignOfGlobalVar(QualType T) const;
   1677 
   1678   /// \brief Return the alignment in characters that should be given to a
   1679   /// global variable with type \p T.
   1680   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
   1681 
   1682   /// \brief Return a conservative estimate of the alignment of the specified
   1683   /// decl \p D.
   1684   ///
   1685   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
   1686   /// alignment.
   1687   ///
   1688   /// If \p ForAlignof, references are treated like their underlying type
   1689   /// and  large arrays don't get any special treatment. If not \p ForAlignof
   1690   /// it computes the value expected by CodeGen: references are treated like
   1691   /// pointers and large arrays get extra alignment.
   1692   CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
   1693 
   1694   /// \brief Get or compute information about the layout of the specified
   1695   /// record (struct/union/class) \p D, which indicates its size and field
   1696   /// position information.
   1697   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
   1698   const ASTRecordLayout *BuildMicrosoftASTRecordLayout(const RecordDecl *D) const;
   1699 
   1700   /// \brief Get or compute information about the layout of the specified
   1701   /// Objective-C interface.
   1702   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
   1703     const;
   1704 
   1705   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
   1706                         bool Simple = false) const;
   1707 
   1708   /// \brief Get or compute information about the layout of the specified
   1709   /// Objective-C implementation.
   1710   ///
   1711   /// This may differ from the interface if synthesized ivars are present.
   1712   const ASTRecordLayout &
   1713   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
   1714 
   1715   /// \brief Get our current best idea for the key function of the
   1716   /// given record decl, or NULL if there isn't one.
   1717   ///
   1718   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
   1719   ///   ...the first non-pure virtual function that is not inline at the
   1720   ///   point of class definition.
   1721   ///
   1722   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
   1723   /// virtual functions that are defined 'inline', which means that
   1724   /// the result of this computation can change.
   1725   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
   1726 
   1727   /// \brief Observe that the given method cannot be a key function.
   1728   /// Checks the key-function cache for the method's class and clears it
   1729   /// if matches the given declaration.
   1730   ///
   1731   /// This is used in ABIs where out-of-line definitions marked
   1732   /// inline are not considered to be key functions.
   1733   ///
   1734   /// \param method should be the declaration from the class definition
   1735   void setNonKeyFunction(const CXXMethodDecl *method);
   1736 
   1737   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
   1738   uint64_t getFieldOffset(const ValueDecl *FD) const;
   1739 
   1740   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
   1741 
   1742   VTableContextBase *getVTableContext();
   1743 
   1744   MangleContext *createMangleContext();
   1745 
   1746   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
   1747                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
   1748 
   1749   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
   1750   void CollectInheritedProtocols(const Decl *CDecl,
   1751                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
   1752 
   1753   //===--------------------------------------------------------------------===//
   1754   //                            Type Operators
   1755   //===--------------------------------------------------------------------===//
   1756 
   1757   /// \brief Return the canonical (structural) type corresponding to the
   1758   /// specified potentially non-canonical type \p T.
   1759   ///
   1760   /// The non-canonical version of a type may have many "decorated" versions of
   1761   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
   1762   /// returned type is guaranteed to be free of any of these, allowing two
   1763   /// canonical types to be compared for exact equality with a simple pointer
   1764   /// comparison.
   1765   CanQualType getCanonicalType(QualType T) const {
   1766     return CanQualType::CreateUnsafe(T.getCanonicalType());
   1767   }
   1768 
   1769   const Type *getCanonicalType(const Type *T) const {
   1770     return T->getCanonicalTypeInternal().getTypePtr();
   1771   }
   1772 
   1773   /// \brief Return the canonical parameter type corresponding to the specific
   1774   /// potentially non-canonical one.
   1775   ///
   1776   /// Qualifiers are stripped off, functions are turned into function
   1777   /// pointers, and arrays decay one level into pointers.
   1778   CanQualType getCanonicalParamType(QualType T) const;
   1779 
   1780   /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
   1781   bool hasSameType(QualType T1, QualType T2) const {
   1782     return getCanonicalType(T1) == getCanonicalType(T2);
   1783   }
   1784 
   1785   bool hasSameType(const Type *T1, const Type *T2) const {
   1786     return getCanonicalType(T1) == getCanonicalType(T2);
   1787   }
   1788 
   1789   /// \brief Return this type as a completely-unqualified array type,
   1790   /// capturing the qualifiers in \p Quals.
   1791   ///
   1792   /// This will remove the minimal amount of sugaring from the types, similar
   1793   /// to the behavior of QualType::getUnqualifiedType().
   1794   ///
   1795   /// \param T is the qualified type, which may be an ArrayType
   1796   ///
   1797   /// \param Quals will receive the full set of qualifiers that were
   1798   /// applied to the array.
   1799   ///
   1800   /// \returns if this is an array type, the completely unqualified array type
   1801   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
   1802   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
   1803 
   1804   /// \brief Determine whether the given types are equivalent after
   1805   /// cvr-qualifiers have been removed.
   1806   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
   1807     return getCanonicalType(T1).getTypePtr() ==
   1808            getCanonicalType(T2).getTypePtr();
   1809   }
   1810 
   1811   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
   1812                            const ObjCMethodDecl *MethodImp);
   1813 
   1814   bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
   1815 
   1816   /// \brief Retrieves the "canonical" nested name specifier for a
   1817   /// given nested name specifier.
   1818   ///
   1819   /// The canonical nested name specifier is a nested name specifier
   1820   /// that uniquely identifies a type or namespace within the type
   1821   /// system. For example, given:
   1822   ///
   1823   /// \code
   1824   /// namespace N {
   1825   ///   struct S {
   1826   ///     template<typename T> struct X { typename T* type; };
   1827   ///   };
   1828   /// }
   1829   ///
   1830   /// template<typename T> struct Y {
   1831   ///   typename N::S::X<T>::type member;
   1832   /// };
   1833   /// \endcode
   1834   ///
   1835   /// Here, the nested-name-specifier for N::S::X<T>:: will be
   1836   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
   1837   /// by declarations in the type system and the canonical type for
   1838   /// the template type parameter 'T' is template-param-0-0.
   1839   NestedNameSpecifier *
   1840   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
   1841 
   1842   /// \brief Retrieves the default calling convention for the current target.
   1843   CallingConv getDefaultCallingConvention(bool isVariadic,
   1844                                           bool IsCXXMethod) const;
   1845 
   1846   /// \brief Retrieves the "canonical" template name that refers to a
   1847   /// given template.
   1848   ///
   1849   /// The canonical template name is the simplest expression that can
   1850   /// be used to refer to a given template. For most templates, this
   1851   /// expression is just the template declaration itself. For example,
   1852   /// the template std::vector can be referred to via a variety of
   1853   /// names---std::vector, \::std::vector, vector (if vector is in
   1854   /// scope), etc.---but all of these names map down to the same
   1855   /// TemplateDecl, which is used to form the canonical template name.
   1856   ///
   1857   /// Dependent template names are more interesting. Here, the
   1858   /// template name could be something like T::template apply or
   1859   /// std::allocator<T>::template rebind, where the nested name
   1860   /// specifier itself is dependent. In this case, the canonical
   1861   /// template name uses the shortest form of the dependent
   1862   /// nested-name-specifier, which itself contains all canonical
   1863   /// types, values, and templates.
   1864   TemplateName getCanonicalTemplateName(TemplateName Name) const;
   1865 
   1866   /// \brief Determine whether the given template names refer to the same
   1867   /// template.
   1868   bool hasSameTemplateName(TemplateName X, TemplateName Y);
   1869 
   1870   /// \brief Retrieve the "canonical" template argument.
   1871   ///
   1872   /// The canonical template argument is the simplest template argument
   1873   /// (which may be a type, value, expression, or declaration) that
   1874   /// expresses the value of the argument.
   1875   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
   1876     const;
   1877 
   1878   /// Type Query functions.  If the type is an instance of the specified class,
   1879   /// return the Type pointer for the underlying maximally pretty type.  This
   1880   /// is a member of ASTContext because this may need to do some amount of
   1881   /// canonicalization, e.g. to move type qualifiers into the element type.
   1882   const ArrayType *getAsArrayType(QualType T) const;
   1883   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
   1884     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
   1885   }
   1886   const VariableArrayType *getAsVariableArrayType(QualType T) const {
   1887     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
   1888   }
   1889   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
   1890     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
   1891   }
   1892   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
   1893     const {
   1894     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
   1895   }
   1896 
   1897   /// \brief Return the innermost element type of an array type.
   1898   ///
   1899   /// For example, will return "int" for int[m][n]
   1900   QualType getBaseElementType(const ArrayType *VAT) const;
   1901 
   1902   /// \brief Return the innermost element type of a type (which needn't
   1903   /// actually be an array type).
   1904   QualType getBaseElementType(QualType QT) const;
   1905 
   1906   /// \brief Return number of constant array elements.
   1907   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
   1908 
   1909   /// \brief Perform adjustment on the parameter type of a function.
   1910   ///
   1911   /// This routine adjusts the given parameter type @p T to the actual
   1912   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
   1913   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
   1914   QualType getAdjustedParameterType(QualType T) const;
   1915 
   1916   /// \brief Retrieve the parameter type as adjusted for use in the signature
   1917   /// of a function, decaying array and function types and removing top-level
   1918   /// cv-qualifiers.
   1919   QualType getSignatureParameterType(QualType T) const;
   1920 
   1921   /// \brief Return the properly qualified result of decaying the specified
   1922   /// array type to a pointer.
   1923   ///
   1924   /// This operation is non-trivial when handling typedefs etc.  The canonical
   1925   /// type of \p T must be an array type, this returns a pointer to a properly
   1926   /// qualified element of the array.
   1927   ///
   1928   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
   1929   QualType getArrayDecayedType(QualType T) const;
   1930 
   1931   /// \brief Return the type that \p PromotableType will promote to: C99
   1932   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
   1933   QualType getPromotedIntegerType(QualType PromotableType) const;
   1934 
   1935   /// \brief Recurses in pointer/array types until it finds an Objective-C
   1936   /// retainable type and returns its ownership.
   1937   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
   1938 
   1939   /// \brief Whether this is a promotable bitfield reference according
   1940   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
   1941   ///
   1942   /// \returns the type this bit-field will promote to, or NULL if no
   1943   /// promotion occurs.
   1944   QualType isPromotableBitField(Expr *E) const;
   1945 
   1946   /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
   1947   ///
   1948   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
   1949   /// \p LHS < \p RHS, return -1.
   1950   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
   1951 
   1952   /// \brief Compare the rank of the two specified floating point types,
   1953   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
   1954   ///
   1955   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
   1956   /// \p LHS < \p RHS, return -1.
   1957   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
   1958 
   1959   /// \brief Return a real floating point or a complex type (based on
   1960   /// \p typeDomain/\p typeSize).
   1961   ///
   1962   /// \param typeDomain a real floating point or complex type.
   1963   /// \param typeSize a real floating point or complex type.
   1964   QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
   1965                                              QualType typeDomain) const;
   1966 
   1967   unsigned getTargetAddressSpace(QualType T) const {
   1968     return getTargetAddressSpace(T.getQualifiers());
   1969   }
   1970 
   1971   unsigned getTargetAddressSpace(Qualifiers Q) const {
   1972     return getTargetAddressSpace(Q.getAddressSpace());
   1973   }
   1974 
   1975   unsigned getTargetAddressSpace(unsigned AS) const {
   1976     if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
   1977       return AS;
   1978     else
   1979       return (*AddrSpaceMap)[AS - LangAS::Offset];
   1980   }
   1981 
   1982   bool addressSpaceMapManglingFor(unsigned AS) const {
   1983     return AddrSpaceMapMangling ||
   1984            AS < LangAS::Offset ||
   1985            AS >= LangAS::Offset + LangAS::Count;
   1986   }
   1987 
   1988 private:
   1989   // Helper for integer ordering
   1990   unsigned getIntegerRank(const Type *T) const;
   1991 
   1992 public:
   1993 
   1994   //===--------------------------------------------------------------------===//
   1995   //                    Type Compatibility Predicates
   1996   //===--------------------------------------------------------------------===//
   1997 
   1998   /// Compatibility predicates used to check assignment expressions.
   1999   bool typesAreCompatible(QualType T1, QualType T2,
   2000                           bool CompareUnqualified = false); // C99 6.2.7p1
   2001 
   2002   bool propertyTypesAreCompatible(QualType, QualType);
   2003   bool typesAreBlockPointerCompatible(QualType, QualType);
   2004 
   2005   bool isObjCIdType(QualType T) const {
   2006     return T == getObjCIdType();
   2007   }
   2008   bool isObjCClassType(QualType T) const {
   2009     return T == getObjCClassType();
   2010   }
   2011   bool isObjCSelType(QualType T) const {
   2012     return T == getObjCSelType();
   2013   }
   2014   bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
   2015                                          bool ForCompare);
   2016 
   2017   bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
   2018 
   2019   // Check the safety of assignment from LHS to RHS
   2020   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
   2021                                const ObjCObjectPointerType *RHSOPT);
   2022   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
   2023                                const ObjCObjectType *RHS);
   2024   bool canAssignObjCInterfacesInBlockPointer(
   2025                                           const ObjCObjectPointerType *LHSOPT,
   2026                                           const ObjCObjectPointerType *RHSOPT,
   2027                                           bool BlockReturnType);
   2028   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
   2029   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
   2030                                    const ObjCObjectPointerType *RHSOPT);
   2031   bool canBindObjCObjectType(QualType To, QualType From);
   2032 
   2033   // Functions for calculating composite types
   2034   QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
   2035                       bool Unqualified = false, bool BlockReturnType = false);
   2036   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
   2037                               bool Unqualified = false);
   2038   QualType mergeFunctionParameterTypes(QualType, QualType,
   2039                                        bool OfBlockPointer = false,
   2040                                        bool Unqualified = false);
   2041   QualType mergeTransparentUnionType(QualType, QualType,
   2042                                      bool OfBlockPointer=false,
   2043                                      bool Unqualified = false);
   2044 
   2045   QualType mergeObjCGCQualifiers(QualType, QualType);
   2046 
   2047   bool FunctionTypesMatchOnNSConsumedAttrs(
   2048          const FunctionProtoType *FromFunctionType,
   2049          const FunctionProtoType *ToFunctionType);
   2050 
   2051   void ResetObjCLayout(const ObjCContainerDecl *CD) {
   2052     ObjCLayouts[CD] = nullptr;
   2053   }
   2054 
   2055   //===--------------------------------------------------------------------===//
   2056   //                    Integer Predicates
   2057   //===--------------------------------------------------------------------===//
   2058 
   2059   // The width of an integer, as defined in C99 6.2.6.2. This is the number
   2060   // of bits in an integer type excluding any padding bits.
   2061   unsigned getIntWidth(QualType T) const;
   2062 
   2063   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
   2064   // unsigned integer type.  This method takes a signed type, and returns the
   2065   // corresponding unsigned integer type.
   2066   QualType getCorrespondingUnsignedType(QualType T) const;
   2067 
   2068   //===--------------------------------------------------------------------===//
   2069   //                    Type Iterators.
   2070   //===--------------------------------------------------------------------===//
   2071   typedef llvm::iterator_range<SmallVectorImpl<Type *>::const_iterator>
   2072     type_const_range;
   2073 
   2074   type_const_range types() const {
   2075     return type_const_range(Types.begin(), Types.end());
   2076   }
   2077 
   2078   //===--------------------------------------------------------------------===//
   2079   //                    Integer Values
   2080   //===--------------------------------------------------------------------===//
   2081 
   2082   /// \brief Make an APSInt of the appropriate width and signedness for the
   2083   /// given \p Value and integer \p Type.
   2084   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
   2085     llvm::APSInt Res(getIntWidth(Type),
   2086                      !Type->isSignedIntegerOrEnumerationType());
   2087     Res = Value;
   2088     return Res;
   2089   }
   2090 
   2091   bool isSentinelNullExpr(const Expr *E);
   2092 
   2093   /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
   2094   /// none exists.
   2095   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
   2096   /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
   2097   /// none exists.
   2098   ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
   2099 
   2100   /// \brief Return true if there is at least one \@implementation in the TU.
   2101   bool AnyObjCImplementation() {
   2102     return !ObjCImpls.empty();
   2103   }
   2104 
   2105   /// \brief Set the implementation of ObjCInterfaceDecl.
   2106   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
   2107                              ObjCImplementationDecl *ImplD);
   2108   /// \brief Set the implementation of ObjCCategoryDecl.
   2109   void setObjCImplementation(ObjCCategoryDecl *CatD,
   2110                              ObjCCategoryImplDecl *ImplD);
   2111 
   2112   /// \brief Get the duplicate declaration of a ObjCMethod in the same
   2113   /// interface, or null if none exists.
   2114   const ObjCMethodDecl *getObjCMethodRedeclaration(
   2115                                                const ObjCMethodDecl *MD) const {
   2116     return ObjCMethodRedecls.lookup(MD);
   2117   }
   2118 
   2119   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
   2120                                   const ObjCMethodDecl *Redecl) {
   2121     assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
   2122     ObjCMethodRedecls[MD] = Redecl;
   2123   }
   2124 
   2125   /// \brief Returns the Objective-C interface that \p ND belongs to if it is
   2126   /// an Objective-C method/property/ivar etc. that is part of an interface,
   2127   /// otherwise returns null.
   2128   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
   2129 
   2130   /// \brief Set the copy inialization expression of a block var decl.
   2131   void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
   2132   /// \brief Get the copy initialization expression of the VarDecl \p VD, or
   2133   /// NULL if none exists.
   2134   Expr *getBlockVarCopyInits(const VarDecl* VD);
   2135 
   2136   /// \brief Allocate an uninitialized TypeSourceInfo.
   2137   ///
   2138   /// The caller should initialize the memory held by TypeSourceInfo using
   2139   /// the TypeLoc wrappers.
   2140   ///
   2141   /// \param T the type that will be the basis for type source info. This type
   2142   /// should refer to how the declarator was written in source code, not to
   2143   /// what type semantic analysis resolved the declarator to.
   2144   ///
   2145   /// \param Size the size of the type info to create, or 0 if the size
   2146   /// should be calculated based on the type.
   2147   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
   2148 
   2149   /// \brief Allocate a TypeSourceInfo where all locations have been
   2150   /// initialized to a given location, which defaults to the empty
   2151   /// location.
   2152   TypeSourceInfo *
   2153   getTrivialTypeSourceInfo(QualType T,
   2154                            SourceLocation Loc = SourceLocation()) const;
   2155 
   2156   TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
   2157 
   2158   /// \brief Add a deallocation callback that will be invoked when the
   2159   /// ASTContext is destroyed.
   2160   ///
   2161   /// \param Callback A callback function that will be invoked on destruction.
   2162   ///
   2163   /// \param Data Pointer data that will be provided to the callback function
   2164   /// when it is called.
   2165   void AddDeallocation(void (*Callback)(void*), void *Data);
   2166 
   2167   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
   2168   GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
   2169 
   2170   /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
   2171   /// lazily, only when used; this is only relevant for function or file scoped
   2172   /// var definitions.
   2173   ///
   2174   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
   2175   /// it is not used.
   2176   bool DeclMustBeEmitted(const Decl *D);
   2177 
   2178   void setManglingNumber(const NamedDecl *ND, unsigned Number);
   2179   unsigned getManglingNumber(const NamedDecl *ND) const;
   2180 
   2181   void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
   2182   unsigned getStaticLocalNumber(const VarDecl *VD) const;
   2183 
   2184   /// \brief Retrieve the context for computing mangling numbers in the given
   2185   /// DeclContext.
   2186   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
   2187 
   2188   MangleNumberingContext *createMangleNumberingContext() const;
   2189 
   2190   /// \brief Used by ParmVarDecl to store on the side the
   2191   /// index of the parameter when it exceeds the size of the normal bitfield.
   2192   void setParameterIndex(const ParmVarDecl *D, unsigned index);
   2193 
   2194   /// \brief Used by ParmVarDecl to retrieve on the side the
   2195   /// index of the parameter when it exceeds the size of the normal bitfield.
   2196   unsigned getParameterIndex(const ParmVarDecl *D) const;
   2197 
   2198   /// \brief Get the storage for the constant value of a materialized temporary
   2199   /// of static storage duration.
   2200   APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
   2201                                          bool MayCreate);
   2202 
   2203   //===--------------------------------------------------------------------===//
   2204   //                    Statistics
   2205   //===--------------------------------------------------------------------===//
   2206 
   2207   /// \brief The number of implicitly-declared default constructors.
   2208   static unsigned NumImplicitDefaultConstructors;
   2209 
   2210   /// \brief The number of implicitly-declared default constructors for
   2211   /// which declarations were built.
   2212   static unsigned NumImplicitDefaultConstructorsDeclared;
   2213 
   2214   /// \brief The number of implicitly-declared copy constructors.
   2215   static unsigned NumImplicitCopyConstructors;
   2216 
   2217   /// \brief The number of implicitly-declared copy constructors for
   2218   /// which declarations were built.
   2219   static unsigned NumImplicitCopyConstructorsDeclared;
   2220 
   2221   /// \brief The number of implicitly-declared move constructors.
   2222   static unsigned NumImplicitMoveConstructors;
   2223 
   2224   /// \brief The number of implicitly-declared move constructors for
   2225   /// which declarations were built.
   2226   static unsigned NumImplicitMoveConstructorsDeclared;
   2227 
   2228   /// \brief The number of implicitly-declared copy assignment operators.
   2229   static unsigned NumImplicitCopyAssignmentOperators;
   2230 
   2231   /// \brief The number of implicitly-declared copy assignment operators for
   2232   /// which declarations were built.
   2233   static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
   2234 
   2235   /// \brief The number of implicitly-declared move assignment operators.
   2236   static unsigned NumImplicitMoveAssignmentOperators;
   2237 
   2238   /// \brief The number of implicitly-declared move assignment operators for
   2239   /// which declarations were built.
   2240   static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
   2241 
   2242   /// \brief The number of implicitly-declared destructors.
   2243   static unsigned NumImplicitDestructors;
   2244 
   2245   /// \brief The number of implicitly-declared destructors for which
   2246   /// declarations were built.
   2247   static unsigned NumImplicitDestructorsDeclared;
   2248 
   2249 private:
   2250   ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
   2251   void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
   2252 
   2253 public:
   2254   /// \brief Initialize built-in types.
   2255   ///
   2256   /// This routine may only be invoked once for a given ASTContext object.
   2257   /// It is normally invoked after ASTContext construction.
   2258   ///
   2259   /// \param Target The target
   2260   void InitBuiltinTypes(const TargetInfo &Target);
   2261 
   2262 private:
   2263   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
   2264 
   2265   // Return the Objective-C type encoding for a given type.
   2266   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
   2267                                   bool ExpandPointedToStructures,
   2268                                   bool ExpandStructures,
   2269                                   const FieldDecl *Field,
   2270                                   bool OutermostType = false,
   2271                                   bool EncodingProperty = false,
   2272                                   bool StructField = false,
   2273                                   bool EncodeBlockParameters = false,
   2274                                   bool EncodeClassNames = false,
   2275                                   bool EncodePointerToObjCTypedef = false) const;
   2276 
   2277   // Adds the encoding of the structure's members.
   2278   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
   2279                                        const FieldDecl *Field,
   2280                                        bool includeVBases = true) const;
   2281 public:
   2282   // Adds the encoding of a method parameter or return type.
   2283   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
   2284                                          QualType T, std::string& S,
   2285                                          bool Extended) const;
   2286 
   2287 private:
   2288   const ASTRecordLayout &
   2289   getObjCLayout(const ObjCInterfaceDecl *D,
   2290                 const ObjCImplementationDecl *Impl) const;
   2291 
   2292   /// \brief A set of deallocations that should be performed when the
   2293   /// ASTContext is destroyed.
   2294   typedef llvm::SmallDenseMap<void(*)(void*), llvm::SmallVector<void*, 16> >
   2295     DeallocationMap;
   2296   DeallocationMap Deallocations;
   2297 
   2298   // FIXME: This currently contains the set of StoredDeclMaps used
   2299   // by DeclContext objects.  This probably should not be in ASTContext,
   2300   // but we include it here so that ASTContext can quickly deallocate them.
   2301   llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
   2302 
   2303   friend class DeclContext;
   2304   friend class DeclarationNameTable;
   2305   void ReleaseDeclContextMaps();
   2306   void ReleaseParentMapEntries();
   2307 
   2308   std::unique_ptr<ParentMap> AllParents;
   2309 
   2310   std::unique_ptr<VTableContextBase> VTContext;
   2311 };
   2312 
   2313 /// \brief Utility function for constructing a nullary selector.
   2314 static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
   2315   IdentifierInfo* II = &Ctx.Idents.get(name);
   2316   return Ctx.Selectors.getSelector(0, &II);
   2317 }
   2318 
   2319 /// \brief Utility function for constructing an unary selector.
   2320 static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
   2321   IdentifierInfo* II = &Ctx.Idents.get(name);
   2322   return Ctx.Selectors.getSelector(1, &II);
   2323 }
   2324 
   2325 }  // end namespace clang
   2326 
   2327 // operator new and delete aren't allowed inside namespaces.
   2328 
   2329 /// @brief Placement new for using the ASTContext's allocator.
   2330 ///
   2331 /// This placement form of operator new uses the ASTContext's allocator for
   2332 /// obtaining memory.
   2333 ///
   2334 /// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
   2335 /// here need to also be made there.
   2336 ///
   2337 /// We intentionally avoid using a nothrow specification here so that the calls
   2338 /// to this operator will not perform a null check on the result -- the
   2339 /// underlying allocator never returns null pointers.
   2340 ///
   2341 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
   2342 /// @code
   2343 /// // Default alignment (8)
   2344 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
   2345 /// // Specific alignment
   2346 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
   2347 /// @endcode
   2348 /// Please note that you cannot use delete on the pointer; it must be
   2349 /// deallocated using an explicit destructor call followed by
   2350 /// @c Context.Deallocate(Ptr).
   2351 ///
   2352 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
   2353 /// @param C The ASTContext that provides the allocator.
   2354 /// @param Alignment The alignment of the allocated memory (if the underlying
   2355 ///                  allocator supports it).
   2356 /// @return The allocated memory. Could be NULL.
   2357 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
   2358                           size_t Alignment) {
   2359   return C.Allocate(Bytes, Alignment);
   2360 }
   2361 /// @brief Placement delete companion to the new above.
   2362 ///
   2363 /// This operator is just a companion to the new above. There is no way of
   2364 /// invoking it directly; see the new operator for more details. This operator
   2365 /// is called implicitly by the compiler if a placement new expression using
   2366 /// the ASTContext throws in the object constructor.
   2367 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
   2368   C.Deallocate(Ptr);
   2369 }
   2370 
   2371 /// This placement form of operator new[] uses the ASTContext's allocator for
   2372 /// obtaining memory.
   2373 ///
   2374 /// We intentionally avoid using a nothrow specification here so that the calls
   2375 /// to this operator will not perform a null check on the result -- the
   2376 /// underlying allocator never returns null pointers.
   2377 ///
   2378 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
   2379 /// @code
   2380 /// // Default alignment (8)
   2381 /// char *data = new (Context) char[10];
   2382 /// // Specific alignment
   2383 /// char *data = new (Context, 4) char[10];
   2384 /// @endcode
   2385 /// Please note that you cannot use delete on the pointer; it must be
   2386 /// deallocated using an explicit destructor call followed by
   2387 /// @c Context.Deallocate(Ptr).
   2388 ///
   2389 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
   2390 /// @param C The ASTContext that provides the allocator.
   2391 /// @param Alignment The alignment of the allocated memory (if the underlying
   2392 ///                  allocator supports it).
   2393 /// @return The allocated memory. Could be NULL.
   2394 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
   2395                             size_t Alignment = 8) {
   2396   return C.Allocate(Bytes, Alignment);
   2397 }
   2398 
   2399 /// @brief Placement delete[] companion to the new[] above.
   2400 ///
   2401 /// This operator is just a companion to the new[] above. There is no way of
   2402 /// invoking it directly; see the new[] operator for more details. This operator
   2403 /// is called implicitly by the compiler if a placement new[] expression using
   2404 /// the ASTContext throws in the object constructor.
   2405 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
   2406   C.Deallocate(Ptr);
   2407 }
   2408 
   2409 /// \brief Create the representation of a LazyGenerationalUpdatePtr.
   2410 template <typename Owner, typename T,
   2411           void (clang::ExternalASTSource::*Update)(Owner)>
   2412 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
   2413     clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
   2414         const clang::ASTContext &Ctx, T Value) {
   2415   // Note, this is implemented here so that ExternalASTSource.h doesn't need to
   2416   // include ASTContext.h. We explicitly instantiate it for all relevant types
   2417   // in ASTContext.cpp.
   2418   if (auto *Source = Ctx.getExternalSource())
   2419     return new (Ctx) LazyData(Source, Value);
   2420   return Value;
   2421 }
   2422 
   2423 #endif
   2424