Home | History | Annotate | Download | only in target-arm
      1 #include <stdio.h>
      2 #include <stdlib.h>
      3 #include <string.h>
      4 
      5 #include "cpu.h"
      6 #include "exec/exec-all.h"
      7 #include "exec/gdbstub.h"
      8 #include "helper.h"
      9 #include "qemu-common.h"
     10 #include "qemu/host-utils.h"
     11 #if !defined(CONFIG_USER_ONLY)
     12 //#include "hw/loader.h"
     13 #endif
     14 
     15 static uint32_t cortexa9_cp15_c0_c1[8] =
     16 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
     17 
     18 static uint32_t cortexa9_cp15_c0_c2[8] =
     19 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
     20 
     21 static uint32_t cortexa8_cp15_c0_c1[8] =
     22 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
     23 
     24 static uint32_t cortexa8_cp15_c0_c2[8] =
     25 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
     26 
     27 static uint32_t cortexa8r2_cp15_c0_c2[8] =
     28 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00011142, 0, 0, 0 };
     29 
     30 static uint32_t mpcore_cp15_c0_c1[8] =
     31 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
     32 
     33 static uint32_t mpcore_cp15_c0_c2[8] =
     34 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
     35 
     36 static uint32_t arm1136_cp15_c0_c1[8] =
     37 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
     38 
     39 static uint32_t arm1136_cp15_c0_c2[8] =
     40 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
     41 
     42 static uint32_t arm1176_cp15_c0_c1[8] =
     43 { 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
     44 
     45 static uint32_t arm1176_cp15_c0_c2[8] =
     46 { 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
     47 
     48 static uint32_t cpu_arm_find_by_name(const char *name);
     49 
     50 static inline void set_feature(CPUARMState *env, int feature)
     51 {
     52     env->features |= 1u << feature;
     53 }
     54 
     55 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
     56 {
     57     env->cp15.c0_cpuid = id;
     58     switch (id) {
     59     case ARM_CPUID_ARM926:
     60         set_feature(env, ARM_FEATURE_V4T);
     61         set_feature(env, ARM_FEATURE_V5);
     62         set_feature(env, ARM_FEATURE_VFP);
     63         env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
     64         env->cp15.c0_cachetype = 0x1dd20d2;
     65         env->cp15.c1_sys = 0x00090078;
     66         break;
     67     case ARM_CPUID_ARM946:
     68         set_feature(env, ARM_FEATURE_V4T);
     69         set_feature(env, ARM_FEATURE_V5);
     70         set_feature(env, ARM_FEATURE_MPU);
     71         env->cp15.c0_cachetype = 0x0f004006;
     72         env->cp15.c1_sys = 0x00000078;
     73         break;
     74     case ARM_CPUID_ARM1026:
     75         set_feature(env, ARM_FEATURE_V4T);
     76         set_feature(env, ARM_FEATURE_V5);
     77         set_feature(env, ARM_FEATURE_VFP);
     78         set_feature(env, ARM_FEATURE_AUXCR);
     79         env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
     80         env->cp15.c0_cachetype = 0x1dd20d2;
     81         env->cp15.c1_sys = 0x00090078;
     82         break;
     83     case ARM_CPUID_ARM1136:
     84         /* This is the 1136 r1, which is a v6K core */
     85         set_feature(env, ARM_FEATURE_V6K);
     86         /* Fall through */
     87     case ARM_CPUID_ARM1136_R2:
     88         /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
     89          * older core than plain "arm1136". In particular this does not
     90          * have the v6K features.
     91          */
     92         set_feature(env, ARM_FEATURE_V4T);
     93         set_feature(env, ARM_FEATURE_V5);
     94         set_feature(env, ARM_FEATURE_V6);
     95         set_feature(env, ARM_FEATURE_VFP);
     96         set_feature(env, ARM_FEATURE_AUXCR);
     97         /* These ID register values are correct for 1136 but may be wrong
     98          * for 1136_r2 (in particular r0p2 does not actually implement most
     99          * of the ID registers).
    100          */
    101         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
    102         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
    103         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
    104         memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
    105         memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
    106         env->cp15.c0_cachetype = 0x1dd20d2;
    107         env->cp15.c1_sys = 0x00050078;
    108         break;
    109     case ARM_CPUID_ARM1176:
    110         set_feature(env, ARM_FEATURE_V4T);
    111         set_feature(env, ARM_FEATURE_V5);
    112         set_feature(env, ARM_FEATURE_V6);
    113         set_feature(env, ARM_FEATURE_V6K);
    114         set_feature(env, ARM_FEATURE_VFP);
    115         set_feature(env, ARM_FEATURE_AUXCR);
    116         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b5;
    117         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
    118         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
    119         memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t));
    120         memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t));
    121         env->cp15.c0_cachetype = 0x1dd20d2;
    122         env->cp15.c1_sys = 0x00050078;
    123         break;
    124     case ARM_CPUID_ARM11MPCORE:
    125         set_feature(env, ARM_FEATURE_V4T);
    126         set_feature(env, ARM_FEATURE_V5);
    127         set_feature(env, ARM_FEATURE_V6);
    128         set_feature(env, ARM_FEATURE_V6K);
    129         set_feature(env, ARM_FEATURE_VFP);
    130         set_feature(env, ARM_FEATURE_AUXCR);
    131         set_feature(env, ARM_FEATURE_VAPA);
    132         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
    133         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
    134         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
    135         memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
    136         memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
    137         env->cp15.c0_cachetype = 0x1dd20d2;
    138         break;
    139     case ARM_CPUID_CORTEXA8:
    140         set_feature(env, ARM_FEATURE_V4T);
    141         set_feature(env, ARM_FEATURE_V5);
    142         set_feature(env, ARM_FEATURE_V6);
    143         set_feature(env, ARM_FEATURE_V6K);
    144         set_feature(env, ARM_FEATURE_V7);
    145         set_feature(env, ARM_FEATURE_AUXCR);
    146         set_feature(env, ARM_FEATURE_THUMB2);
    147         set_feature(env, ARM_FEATURE_VFP);
    148         set_feature(env, ARM_FEATURE_VFP3);
    149         set_feature(env, ARM_FEATURE_NEON);
    150         set_feature(env, ARM_FEATURE_THUMB2EE);
    151         set_feature(env, ARM_FEATURE_TRUSTZONE);
    152         env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
    153         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
    154         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
    155         memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
    156         memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
    157         env->cp15.c0_cachetype = 0x82048004;
    158         env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
    159         env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
    160         env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
    161         env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
    162         env->cp15.c1_sys = 0x00c50078;
    163         break;
    164     case ARM_CPUID_CORTEXA8_R2:
    165         set_feature(env, ARM_FEATURE_V4T);
    166         set_feature(env, ARM_FEATURE_V5);
    167         set_feature(env, ARM_FEATURE_V6);
    168         set_feature(env, ARM_FEATURE_V6K);
    169         set_feature(env, ARM_FEATURE_V7);
    170         set_feature(env, ARM_FEATURE_AUXCR);
    171         set_feature(env, ARM_FEATURE_THUMB2);
    172         set_feature(env, ARM_FEATURE_VFP);
    173         set_feature(env, ARM_FEATURE_VFP3);
    174         set_feature(env, ARM_FEATURE_NEON);
    175         set_feature(env, ARM_FEATURE_THUMB2EE);
    176         set_feature(env, ARM_FEATURE_TRUSTZONE);
    177         env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c2;
    178         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
    179         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011111;
    180         memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
    181         memcpy(env->cp15.c0_c2, cortexa8r2_cp15_c0_c2, 8 * sizeof(uint32_t));
    182         env->cp15.c0_cachetype = 0x82048004;
    183         env->cp15.c0_clid = (1 << 27) | (2 << 24) | (4 << 3) | 3;
    184         env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
    185         env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
    186         env->cp15.c0_ccsid[2] = 0xf03fe03a; /* 256k L2 cache. */
    187         env->cp15.c1_sys = 0x00c50078;
    188         break;
    189     case ARM_CPUID_CORTEXA9:
    190         set_feature(env, ARM_FEATURE_V4T);
    191         set_feature(env, ARM_FEATURE_V5);
    192         set_feature(env, ARM_FEATURE_V6);
    193         set_feature(env, ARM_FEATURE_V6K);
    194         set_feature(env, ARM_FEATURE_V7);
    195         set_feature(env, ARM_FEATURE_AUXCR);
    196         set_feature(env, ARM_FEATURE_THUMB2);
    197         set_feature(env, ARM_FEATURE_VFP);
    198         set_feature(env, ARM_FEATURE_VFP3);
    199         set_feature(env, ARM_FEATURE_VFP_FP16);
    200         set_feature(env, ARM_FEATURE_NEON);
    201         set_feature(env, ARM_FEATURE_THUMB2EE);
    202         /* Note that A9 supports the MP extensions even for
    203          * A9UP and single-core A9MP (which are both different
    204          * and valid configurations; we don't model A9UP).
    205          */
    206         set_feature(env, ARM_FEATURE_V7MP);
    207         set_feature(env, ARM_FEATURE_TRUSTZONE);
    208         env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
    209         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
    210         env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
    211         memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
    212         memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
    213         env->cp15.c0_cachetype = 0x80038003;
    214         env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
    215         env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
    216         env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
    217         env->cp15.c1_sys = 0x00c50078;
    218         break;
    219     case ARM_CPUID_CORTEXM3:
    220         set_feature(env, ARM_FEATURE_V4T);
    221         set_feature(env, ARM_FEATURE_V5);
    222         set_feature(env, ARM_FEATURE_V6);
    223         set_feature(env, ARM_FEATURE_THUMB2);
    224         set_feature(env, ARM_FEATURE_V7);
    225         set_feature(env, ARM_FEATURE_M);
    226         set_feature(env, ARM_FEATURE_DIV);
    227         break;
    228     case ARM_CPUID_ANY: /* For userspace emulation.  */
    229         set_feature(env, ARM_FEATURE_V4T);
    230         set_feature(env, ARM_FEATURE_V5);
    231         set_feature(env, ARM_FEATURE_V6);
    232         set_feature(env, ARM_FEATURE_V6K);
    233         set_feature(env, ARM_FEATURE_V7);
    234         set_feature(env, ARM_FEATURE_THUMB2);
    235         set_feature(env, ARM_FEATURE_VFP);
    236         set_feature(env, ARM_FEATURE_VFP3);
    237         set_feature(env, ARM_FEATURE_VFP_FP16);
    238         set_feature(env, ARM_FEATURE_NEON);
    239         set_feature(env, ARM_FEATURE_THUMB2EE);
    240         set_feature(env, ARM_FEATURE_DIV);
    241         set_feature(env, ARM_FEATURE_V7MP);
    242         break;
    243     case ARM_CPUID_TI915T:
    244     case ARM_CPUID_TI925T:
    245         set_feature(env, ARM_FEATURE_V4T);
    246         set_feature(env, ARM_FEATURE_OMAPCP);
    247         env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
    248         env->cp15.c0_cachetype = 0x5109149;
    249         env->cp15.c1_sys = 0x00000070;
    250         env->cp15.c15_i_max = 0x000;
    251         env->cp15.c15_i_min = 0xff0;
    252         break;
    253     case ARM_CPUID_PXA250:
    254     case ARM_CPUID_PXA255:
    255     case ARM_CPUID_PXA260:
    256     case ARM_CPUID_PXA261:
    257     case ARM_CPUID_PXA262:
    258         set_feature(env, ARM_FEATURE_V4T);
    259         set_feature(env, ARM_FEATURE_V5);
    260         set_feature(env, ARM_FEATURE_XSCALE);
    261         /* JTAG_ID is ((id << 28) | 0x09265013) */
    262         env->cp15.c0_cachetype = 0xd172172;
    263         env->cp15.c1_sys = 0x00000078;
    264         break;
    265     case ARM_CPUID_PXA270_A0:
    266     case ARM_CPUID_PXA270_A1:
    267     case ARM_CPUID_PXA270_B0:
    268     case ARM_CPUID_PXA270_B1:
    269     case ARM_CPUID_PXA270_C0:
    270     case ARM_CPUID_PXA270_C5:
    271         set_feature(env, ARM_FEATURE_V4T);
    272         set_feature(env, ARM_FEATURE_V5);
    273         set_feature(env, ARM_FEATURE_XSCALE);
    274         /* JTAG_ID is ((id << 28) | 0x09265013) */
    275         set_feature(env, ARM_FEATURE_IWMMXT);
    276         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
    277         env->cp15.c0_cachetype = 0xd172172;
    278         env->cp15.c1_sys = 0x00000078;
    279         break;
    280     case ARM_CPUID_SA1100:
    281     case ARM_CPUID_SA1110:
    282         set_feature(env, ARM_FEATURE_STRONGARM);
    283         env->cp15.c1_sys = 0x00000070;
    284         break;
    285     default:
    286         cpu_abort(env, "Bad CPU ID: %x\n", id);
    287         break;
    288     }
    289 
    290     /* Some features automatically imply others: */
    291     if (arm_feature(env, ARM_FEATURE_V7)) {
    292         set_feature(env, ARM_FEATURE_VAPA);
    293     }
    294 }
    295 
    296 void cpu_reset(CPUState *cpu)
    297 {
    298     CPUARMState *env = cpu->env_ptr;
    299     uint32_t id;
    300 
    301     if (qemu_loglevel_mask(CPU_LOG_RESET)) {
    302         qemu_log("CPU Reset (CPU %d)\n", cpu->cpu_index);
    303         log_cpu_state(cpu, 0);
    304     }
    305 
    306     id = env->cp15.c0_cpuid;
    307     memset(env, 0, offsetof(CPUARMState, breakpoints));
    308     if (id)
    309         cpu_reset_model_id(env, id);
    310     /* DBGDIDR : we implement nothing, and just mirror the main ID
    311      * register's Variant and Revision fields.
    312      */
    313     env->cp14_dbgdidr = (id >> 16 & 0xf0) | 0xf;
    314 #if defined (CONFIG_USER_ONLY)
    315     env->uncached_cpsr = ARM_CPU_MODE_USR;
    316     /* For user mode we must enable access to coprocessors */
    317     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
    318     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
    319         env->cp15.c15_cpar = 3;
    320     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
    321         env->cp15.c15_cpar = 1;
    322     }
    323 #else
    324     /* SVC mode with interrupts disabled.  */
    325     env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
    326     /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
    327        clear at reset.  Initial SP and PC are loaded from ROM.  */
    328     if (IS_M(env)) {
    329         env->uncached_cpsr &= ~CPSR_I;
    330 #ifndef CONFIG_ANDROID  /* No hw/loader.h and no ROM support for now on Android */
    331         uint32_t pc;
    332         uint8_t *rom;
    333         rom = rom_ptr(0);
    334         if (rom) {
    335             /* We should really use ldl_phys here, in case the guest
    336                modified flash and reset itself.  However images
    337                loaded via -kenrel have not been copied yet, so load the
    338                values directly from there.  */
    339             env->regs[13] = ldl_p(rom);
    340             pc = ldl_p(rom + 4);
    341             env->thumb = pc & 1;
    342             env->regs[15] = pc & ~1;
    343         }
    344 #endif
    345     }
    346     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
    347     env->cp15.c2_base_mask = 0xffffc000u;
    348     /* v7 performance monitor control register: same implementor
    349      * field as main ID register, and we implement no event counters.
    350      */
    351     env->cp15.c9_pmcr = (id & 0xff000000);
    352 #endif
    353     set_flush_to_zero(1, &env->vfp.standard_fp_status);
    354     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
    355     set_default_nan_mode(1, &env->vfp.standard_fp_status);
    356     set_float_detect_tininess(float_tininess_before_rounding,
    357                               &env->vfp.fp_status);
    358     set_float_detect_tininess(float_tininess_before_rounding,
    359                               &env->vfp.standard_fp_status);
    360     tlb_flush(env, 1);
    361 }
    362 
    363 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
    364 {
    365     int nregs;
    366 
    367     /* VFP data registers are always little-endian.  */
    368     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    369     if (reg < nregs) {
    370         stfq_le_p(buf, env->vfp.regs[reg]);
    371         return 8;
    372     }
    373     if (arm_feature(env, ARM_FEATURE_NEON)) {
    374         /* Aliases for Q regs.  */
    375         nregs += 16;
    376         if (reg < nregs) {
    377             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
    378             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
    379             return 16;
    380         }
    381     }
    382     switch (reg - nregs) {
    383     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    384     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    385     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    386     }
    387     return 0;
    388 }
    389 
    390 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
    391 {
    392     int nregs;
    393 
    394     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    395     if (reg < nregs) {
    396         env->vfp.regs[reg] = ldfq_le_p(buf);
    397         return 8;
    398     }
    399     if (arm_feature(env, ARM_FEATURE_NEON)) {
    400         nregs += 16;
    401         if (reg < nregs) {
    402             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
    403             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
    404             return 16;
    405         }
    406     }
    407     switch (reg - nregs) {
    408     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    409     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
    410     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
    411     }
    412     return 0;
    413 }
    414 
    415 CPUARMState *cpu_arm_init(const char *cpu_model)
    416 {
    417     ARMCPU *arm_cpu;
    418     CPUARMState *env;
    419     uint32_t id;
    420     static int inited = 0;
    421 
    422     id = cpu_arm_find_by_name(cpu_model);
    423     if (id == 0)
    424         return NULL;
    425     arm_cpu = g_malloc0(sizeof(ARMCPU));
    426     env = &arm_cpu->env;
    427     ENV_GET_CPU(env)->env_ptr = env;
    428 
    429     CPUState *cpu = ENV_GET_CPU(env);
    430     cpu_exec_init(env);
    431     if (!inited) {
    432         inited = 1;
    433         arm_translate_init();
    434     }
    435 
    436     cpu->cpu_model_str = cpu_model;
    437     env->cp15.c0_cpuid = id;
    438     cpu_reset(cpu);
    439     if (arm_feature(env, ARM_FEATURE_NEON)) {
    440         gdb_register_coprocessor(cpu, vfp_gdb_get_reg, vfp_gdb_set_reg,
    441                                  51, "arm-neon.xml", 0);
    442     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
    443         gdb_register_coprocessor(cpu, vfp_gdb_get_reg, vfp_gdb_set_reg,
    444                                  35, "arm-vfp3.xml", 0);
    445     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
    446         gdb_register_coprocessor(cpu, vfp_gdb_get_reg, vfp_gdb_set_reg,
    447                                  19, "arm-vfp.xml", 0);
    448     }
    449     qemu_init_vcpu(cpu);
    450     return env;
    451 }
    452 
    453 struct arm_cpu_t {
    454     uint32_t id;
    455     const char *name;
    456 };
    457 
    458 static const struct arm_cpu_t arm_cpu_names[] = {
    459     { ARM_CPUID_ARM926, "arm926"},
    460     { ARM_CPUID_ARM946, "arm946"},
    461     { ARM_CPUID_ARM1026, "arm1026"},
    462     { ARM_CPUID_ARM1136, "arm1136"},
    463     { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
    464     { ARM_CPUID_ARM1176, "arm1176"},
    465     { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
    466     { ARM_CPUID_CORTEXM3, "cortex-m3"},
    467     { ARM_CPUID_CORTEXA8, "cortex-a8"},
    468     { ARM_CPUID_CORTEXA8_R2, "cortex-a8-r2"},
    469     { ARM_CPUID_CORTEXA9, "cortex-a9"},
    470     { ARM_CPUID_TI925T, "ti925t" },
    471     { ARM_CPUID_PXA250, "pxa250" },
    472     { ARM_CPUID_SA1100,    "sa1100" },
    473     { ARM_CPUID_SA1110,    "sa1110" },
    474     { ARM_CPUID_PXA255, "pxa255" },
    475     { ARM_CPUID_PXA260, "pxa260" },
    476     { ARM_CPUID_PXA261, "pxa261" },
    477     { ARM_CPUID_PXA262, "pxa262" },
    478     { ARM_CPUID_PXA270, "pxa270" },
    479     { ARM_CPUID_PXA270_A0, "pxa270-a0" },
    480     { ARM_CPUID_PXA270_A1, "pxa270-a1" },
    481     { ARM_CPUID_PXA270_B0, "pxa270-b0" },
    482     { ARM_CPUID_PXA270_B1, "pxa270-b1" },
    483     { ARM_CPUID_PXA270_C0, "pxa270-c0" },
    484     { ARM_CPUID_PXA270_C5, "pxa270-c5" },
    485     { ARM_CPUID_ANY, "any"},
    486     { 0, NULL}
    487 };
    488 
    489 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
    490 {
    491     int i;
    492 
    493     (*cpu_fprintf)(f, "Available CPUs:\n");
    494     for (i = 0; arm_cpu_names[i].name; i++) {
    495         (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
    496     }
    497 }
    498 
    499 /* return 0 if not found */
    500 static uint32_t cpu_arm_find_by_name(const char *name)
    501 {
    502     int i;
    503     uint32_t id;
    504 
    505     id = 0;
    506     for (i = 0; arm_cpu_names[i].name; i++) {
    507         if (strcmp(name, arm_cpu_names[i].name) == 0) {
    508             id = arm_cpu_names[i].id;
    509             break;
    510         }
    511     }
    512     return id;
    513 }
    514 
    515 void cpu_arm_close(CPUARMState *env)
    516 {
    517     free(env);
    518 }
    519 
    520 uint32_t cpsr_read(CPUARMState *env)
    521 {
    522     int ZF;
    523     ZF = (env->ZF == 0);
    524     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
    525         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
    526         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
    527         | ((env->condexec_bits & 0xfc) << 8)
    528         | (env->GE << 16);
    529 }
    530 
    531 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
    532 {
    533     if (mask & CPSR_NZCV) {
    534         env->ZF = (~val) & CPSR_Z;
    535         env->NF = val;
    536         env->CF = (val >> 29) & 1;
    537         env->VF = (val << 3) & 0x80000000;
    538     }
    539     if (mask & CPSR_Q)
    540         env->QF = ((val & CPSR_Q) != 0);
    541     if (mask & CPSR_T)
    542         env->thumb = ((val & CPSR_T) != 0);
    543     if (mask & CPSR_IT_0_1) {
    544         env->condexec_bits &= ~3;
    545         env->condexec_bits |= (val >> 25) & 3;
    546     }
    547     if (mask & CPSR_IT_2_7) {
    548         env->condexec_bits &= 3;
    549         env->condexec_bits |= (val >> 8) & 0xfc;
    550     }
    551     if (mask & CPSR_GE) {
    552         env->GE = (val >> 16) & 0xf;
    553     }
    554 
    555     if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
    556         switch_mode(env, val & CPSR_M);
    557     }
    558     mask &= ~CACHED_CPSR_BITS;
    559     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
    560 }
    561 
    562 /* Sign/zero extend */
    563 uint32_t HELPER(sxtb16)(uint32_t x)
    564 {
    565     uint32_t res;
    566     res = (uint16_t)(int8_t)x;
    567     res |= (uint32_t)(int8_t)(x >> 16) << 16;
    568     return res;
    569 }
    570 
    571 uint32_t HELPER(uxtb16)(uint32_t x)
    572 {
    573     uint32_t res;
    574     res = (uint16_t)(uint8_t)x;
    575     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    576     return res;
    577 }
    578 
    579 uint32_t HELPER(clz)(uint32_t x)
    580 {
    581     return clz32(x);
    582 }
    583 
    584 int32_t HELPER(sdiv)(int32_t num, int32_t den)
    585 {
    586     if (den == 0)
    587       return 0;
    588     if (num == INT_MIN && den == -1)
    589       return INT_MIN;
    590     return num / den;
    591 }
    592 
    593 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
    594 {
    595     if (den == 0)
    596       return 0;
    597     return num / den;
    598 }
    599 
    600 uint32_t HELPER(rbit)(uint32_t x)
    601 {
    602     x =  ((x & 0xff000000) >> 24)
    603        | ((x & 0x00ff0000) >> 8)
    604        | ((x & 0x0000ff00) << 8)
    605        | ((x & 0x000000ff) << 24);
    606     x =  ((x & 0xf0f0f0f0) >> 4)
    607        | ((x & 0x0f0f0f0f) << 4);
    608     x =  ((x & 0x88888888) >> 3)
    609        | ((x & 0x44444444) >> 1)
    610        | ((x & 0x22222222) << 1)
    611        | ((x & 0x11111111) << 3);
    612     return x;
    613 }
    614 
    615 uint32_t HELPER(abs)(uint32_t x)
    616 {
    617     return ((int32_t)x < 0) ? -x : x;
    618 }
    619 
    620 #if defined(CONFIG_USER_ONLY)
    621 
    622 void do_interrupt (CPUARMState *env)
    623 {
    624     env->exception_index = -1;
    625 }
    626 
    627 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
    628                               int mmu_idx)
    629 {
    630     if (rw == 2) {
    631         env->exception_index = EXCP_PREFETCH_ABORT;
    632         env->cp15.c6_insn = address;
    633     } else {
    634         env->exception_index = EXCP_DATA_ABORT;
    635         env->cp15.c6_data = address;
    636     }
    637     return 1;
    638 }
    639 
    640 /* These should probably raise undefined insn exceptions.  */
    641 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
    642 {
    643     cpu_abort(env, "cp15 insn %08x\n", insn);
    644 }
    645 
    646 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
    647 {
    648     cpu_abort(env, "cp15 insn %08x\n", insn);
    649     return 0;
    650 }
    651 
    652 /* These should probably raise undefined insn exceptions.  */
    653 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
    654 {
    655     cpu_abort(env, "v7m_mrs %d\n", reg);
    656 }
    657 
    658 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
    659 {
    660     cpu_abort(env, "v7m_mrs %d\n", reg);
    661     return 0;
    662 }
    663 
    664 void switch_mode(CPUARMState *env, int mode)
    665 {
    666     if (mode != ARM_CPU_MODE_USR)
    667         cpu_abort(env, "Tried to switch out of user mode\n");
    668 }
    669 
    670 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
    671 {
    672     cpu_abort(env, "banked r13 write\n");
    673 }
    674 
    675 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
    676 {
    677     cpu_abort(env, "banked r13 read\n");
    678     return 0;
    679 }
    680 
    681 #else
    682 
    683 extern int semihosting_enabled;
    684 
    685 /* Map CPU modes onto saved register banks.  */
    686 static inline int bank_number (CPUARMState *env, int mode)
    687 {
    688     switch (mode) {
    689     case ARM_CPU_MODE_USR:
    690     case ARM_CPU_MODE_SYS:
    691         return 0;
    692     case ARM_CPU_MODE_SVC:
    693         return 1;
    694     case ARM_CPU_MODE_ABT:
    695         return 2;
    696     case ARM_CPU_MODE_UND:
    697         return 3;
    698     case ARM_CPU_MODE_IRQ:
    699         return 4;
    700     case ARM_CPU_MODE_FIQ:
    701         return 5;
    702     case ARM_CPU_MODE_SMC:
    703         return 6;
    704     }
    705     cpu_abort(env, "Bad mode %x\n", mode);
    706     return -1;
    707 }
    708 
    709 void switch_mode(CPUARMState *env, int mode)
    710 {
    711     int old_mode;
    712     int i;
    713 
    714     old_mode = env->uncached_cpsr & CPSR_M;
    715     if (mode == old_mode)
    716         return;
    717 
    718     if (old_mode == ARM_CPU_MODE_FIQ) {
    719         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
    720         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
    721     } else if (mode == ARM_CPU_MODE_FIQ) {
    722         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
    723         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
    724     }
    725 
    726     i = bank_number(env, old_mode);
    727     env->banked_r13[i] = env->regs[13];
    728     env->banked_r14[i] = env->regs[14];
    729     env->banked_spsr[i] = env->spsr;
    730 
    731     i = bank_number(env, mode);
    732     env->regs[13] = env->banked_r13[i];
    733     env->regs[14] = env->banked_r14[i];
    734     env->spsr = env->banked_spsr[i];
    735 }
    736 
    737 static void v7m_push(CPUARMState *env, uint32_t val)
    738 {
    739     env->regs[13] -= 4;
    740     stl_phys(env->regs[13], val);
    741 }
    742 
    743 static uint32_t v7m_pop(CPUARMState *env)
    744 {
    745     uint32_t val;
    746     val = ldl_phys(env->regs[13]);
    747     env->regs[13] += 4;
    748     return val;
    749 }
    750 
    751 /* Switch to V7M main or process stack pointer.  */
    752 static void switch_v7m_sp(CPUARMState *env, int process)
    753 {
    754     uint32_t tmp;
    755     if (env->v7m.current_sp != process) {
    756         tmp = env->v7m.other_sp;
    757         env->v7m.other_sp = env->regs[13];
    758         env->regs[13] = tmp;
    759         env->v7m.current_sp = process;
    760     }
    761 }
    762 
    763 static void do_v7m_exception_exit(CPUARMState *env)
    764 {
    765     uint32_t type;
    766     uint32_t xpsr;
    767 
    768     type = env->regs[15];
    769     if (env->v7m.exception != 0)
    770         armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
    771 
    772     /* Switch to the target stack.  */
    773     switch_v7m_sp(env, (type & 4) != 0);
    774     /* Pop registers.  */
    775     env->regs[0] = v7m_pop(env);
    776     env->regs[1] = v7m_pop(env);
    777     env->regs[2] = v7m_pop(env);
    778     env->regs[3] = v7m_pop(env);
    779     env->regs[12] = v7m_pop(env);
    780     env->regs[14] = v7m_pop(env);
    781     env->regs[15] = v7m_pop(env);
    782     xpsr = v7m_pop(env);
    783     xpsr_write(env, xpsr, 0xfffffdff);
    784     /* Undo stack alignment.  */
    785     if (xpsr & 0x200)
    786         env->regs[13] |= 4;
    787     /* ??? The exception return type specifies Thread/Handler mode.  However
    788        this is also implied by the xPSR value. Not sure what to do
    789        if there is a mismatch.  */
    790     /* ??? Likewise for mismatches between the CONTROL register and the stack
    791        pointer.  */
    792 }
    793 
    794 static void do_interrupt_v7m(CPUARMState *env)
    795 {
    796     uint32_t xpsr = xpsr_read(env);
    797     uint32_t lr;
    798     uint32_t addr;
    799 
    800     lr = 0xfffffff1;
    801     if (env->v7m.current_sp)
    802         lr |= 4;
    803     if (env->v7m.exception == 0)
    804         lr |= 8;
    805 
    806     /* For exceptions we just mark as pending on the NVIC, and let that
    807        handle it.  */
    808     /* TODO: Need to escalate if the current priority is higher than the
    809        one we're raising.  */
    810     switch (env->exception_index) {
    811     case EXCP_UDEF:
    812         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
    813         return;
    814     case EXCP_SWI:
    815         env->regs[15] += 2;
    816         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
    817         return;
    818     case EXCP_PREFETCH_ABORT:
    819     case EXCP_DATA_ABORT:
    820         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
    821         return;
    822     case EXCP_BKPT:
    823         if (semihosting_enabled) {
    824             int nr;
    825             nr = cpu_lduw_code(env, env->regs[15]) & 0xff;
    826             if (nr == 0xab) {
    827                 env->regs[15] += 2;
    828                 env->regs[0] = do_arm_semihosting(env);
    829                 return;
    830             }
    831         }
    832         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
    833         return;
    834     case EXCP_IRQ:
    835         env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
    836         break;
    837     case EXCP_EXCEPTION_EXIT:
    838         do_v7m_exception_exit(env);
    839         return;
    840     default:
    841         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
    842         return; /* Never happens.  Keep compiler happy.  */
    843     }
    844 
    845     /* Align stack pointer.  */
    846     /* ??? Should only do this if Configuration Control Register
    847        STACKALIGN bit is set.  */
    848     if (env->regs[13] & 4) {
    849         env->regs[13] -= 4;
    850         xpsr |= 0x200;
    851     }
    852     /* Switch to the handler mode.  */
    853     v7m_push(env, xpsr);
    854     v7m_push(env, env->regs[15]);
    855     v7m_push(env, env->regs[14]);
    856     v7m_push(env, env->regs[12]);
    857     v7m_push(env, env->regs[3]);
    858     v7m_push(env, env->regs[2]);
    859     v7m_push(env, env->regs[1]);
    860     v7m_push(env, env->regs[0]);
    861     switch_v7m_sp(env, 0);
    862     env->uncached_cpsr &= ~CPSR_IT;
    863     env->regs[14] = lr;
    864     addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
    865     env->regs[15] = addr & 0xfffffffe;
    866     env->thumb = addr & 1;
    867 }
    868 
    869 /* Handle a CPU exception.  */
    870 void do_interrupt(CPUARMState *env)
    871 {
    872     uint32_t addr;
    873     uint32_t mask;
    874     int new_mode;
    875     uint32_t offset;
    876 
    877     if (IS_M(env)) {
    878         do_interrupt_v7m(env);
    879         return;
    880     }
    881     /* TODO: Vectored interrupt controller.  */
    882     switch (env->exception_index) {
    883     case EXCP_UDEF:
    884         new_mode = ARM_CPU_MODE_UND;
    885         addr = 0x04;
    886         mask = CPSR_I;
    887         if (env->thumb)
    888             offset = 2;
    889         else
    890             offset = 4;
    891         break;
    892     case EXCP_SWI:
    893         if (semihosting_enabled) {
    894             /* Check for semihosting interrupt.  */
    895             if (env->thumb) {
    896                 mask = cpu_lduw_code(env, env->regs[15] - 2) & 0xff;
    897             } else {
    898                 mask = cpu_ldl_code(env, env->regs[15] - 4) & 0xffffff;
    899             }
    900             /* Only intercept calls from privileged modes, to provide some
    901                semblance of security.  */
    902             if (((mask == 0x123456 && !env->thumb)
    903                     || (mask == 0xab && env->thumb))
    904                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
    905                 env->regs[0] = do_arm_semihosting(env);
    906                 return;
    907             }
    908         }
    909         new_mode = ARM_CPU_MODE_SVC;
    910         addr = 0x08;
    911         mask = CPSR_I;
    912         /* The PC already points to the next instruction.  */
    913         offset = 0;
    914         break;
    915     case EXCP_BKPT:
    916         /* See if this is a semihosting syscall.  */
    917         if (env->thumb && semihosting_enabled) {
    918             mask = cpu_lduw_code(env, env->regs[15]) & 0xff;
    919             if (mask == 0xab
    920                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
    921                 env->regs[15] += 2;
    922                 env->regs[0] = do_arm_semihosting(env);
    923                 return;
    924             }
    925         }
    926         /* Fall through to prefetch abort.  */
    927     case EXCP_PREFETCH_ABORT:
    928         new_mode = ARM_CPU_MODE_ABT;
    929         addr = 0x0c;
    930         mask = CPSR_A | CPSR_I;
    931         offset = 4;
    932         break;
    933     case EXCP_DATA_ABORT:
    934         new_mode = ARM_CPU_MODE_ABT;
    935         addr = 0x10;
    936         mask = CPSR_A | CPSR_I;
    937         offset = 8;
    938         break;
    939     case EXCP_IRQ:
    940         new_mode = ARM_CPU_MODE_IRQ;
    941         addr = 0x18;
    942         /* Disable IRQ and imprecise data aborts.  */
    943         mask = CPSR_A | CPSR_I;
    944         offset = 4;
    945         break;
    946     case EXCP_FIQ:
    947         new_mode = ARM_CPU_MODE_FIQ;
    948         addr = 0x1c;
    949         /* Disable FIQ, IRQ and imprecise data aborts.  */
    950         mask = CPSR_A | CPSR_I | CPSR_F;
    951         offset = 4;
    952         break;
    953     case EXCP_SMC:
    954         if (semihosting_enabled) {
    955             cpu_abort(env, "SMC handling under semihosting not implemented\n");
    956             return;
    957         }
    958         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SMC) {
    959             env->cp15.c1_secfg &= ~1;
    960         }
    961         offset = env->thumb ? 2 : 0;
    962         new_mode = ARM_CPU_MODE_SMC;
    963         addr = 0x08;
    964         mask = CPSR_A | CPSR_I | CPSR_F;
    965         break;
    966     default:
    967         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
    968         return; /* Never happens.  Keep compiler happy.  */
    969     }
    970     if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
    971         if (new_mode == ARM_CPU_MODE_SMC ||
    972             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SMC) {
    973             addr += env->cp15.c12_mvbar;
    974         } else {
    975             if (env->cp15.c1_sys & (1 << 13)) {
    976                 addr += 0xffff0000;
    977             } else {
    978                 addr += env->cp15.c12_vbar;
    979             }
    980         }
    981     } else {
    982     /* High vectors.  */
    983     if (env->cp15.c1_sys & (1 << 13)) {
    984         addr += 0xffff0000;
    985         }
    986     }
    987     switch_mode (env, new_mode);
    988     env->spsr = cpsr_read(env);
    989     /* Clear IT bits.  */
    990     env->condexec_bits = 0;
    991     /* Switch to the new mode, and to the correct instruction set.  */
    992     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
    993     env->uncached_cpsr |= mask;
    994     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
    995      * and we should just guard the thumb mode on V4 */
    996     if (arm_feature(env, ARM_FEATURE_V4T)) {
    997         env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
    998     }
    999     env->regs[14] = env->regs[15] + offset;
   1000     env->regs[15] = addr;
   1001     ENV_GET_CPU(env)->interrupt_request |= CPU_INTERRUPT_EXITTB;
   1002 }
   1003 
   1004 /* Check section/page access permissions.
   1005    Returns the page protection flags, or zero if the access is not
   1006    permitted.  */
   1007 static inline int check_ap(CPUARMState *env, int ap, int domain, int access_type,
   1008                            int is_user)
   1009 {
   1010   int prot_ro;
   1011 
   1012   if (domain == 3)
   1013     return PAGE_READ | PAGE_WRITE;
   1014 
   1015   if (access_type == 1)
   1016       prot_ro = 0;
   1017   else
   1018       prot_ro = PAGE_READ;
   1019 
   1020   switch (ap) {
   1021   case 0:
   1022       if (access_type == 1)
   1023           return 0;
   1024       switch ((env->cp15.c1_sys >> 8) & 3) {
   1025       case 1:
   1026           return is_user ? 0 : PAGE_READ;
   1027       case 2:
   1028           return PAGE_READ;
   1029       default:
   1030           return 0;
   1031       }
   1032   case 1:
   1033       return is_user ? 0 : PAGE_READ | PAGE_WRITE;
   1034   case 2:
   1035       if (is_user)
   1036           return prot_ro;
   1037       else
   1038           return PAGE_READ | PAGE_WRITE;
   1039   case 3:
   1040       return PAGE_READ | PAGE_WRITE;
   1041   case 4: /* Reserved.  */
   1042       return 0;
   1043   case 5:
   1044       return is_user ? 0 : prot_ro;
   1045   case 6:
   1046       return prot_ro;
   1047   case 7:
   1048       if (!arm_feature (env, ARM_FEATURE_V6K))
   1049           return 0;
   1050       return prot_ro;
   1051   default:
   1052       abort();
   1053   }
   1054 }
   1055 
   1056 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
   1057 {
   1058     uint32_t table;
   1059 
   1060     if (address & env->cp15.c2_mask)
   1061         table = env->cp15.c2_base1 & 0xffffc000;
   1062     else
   1063         table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
   1064 
   1065     table |= (address >> 18) & 0x3ffc;
   1066     return table;
   1067 }
   1068 
   1069 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
   1070 			    int is_user, uint32_t *phys_ptr, int *prot,
   1071                             target_ulong *page_size)
   1072 {
   1073     int code;
   1074     uint32_t table;
   1075     uint32_t desc;
   1076     int type;
   1077     int ap;
   1078     int domain;
   1079     uint32_t phys_addr;
   1080 
   1081     /* Pagetable walk.  */
   1082     /* Lookup l1 descriptor.  */
   1083     table = get_level1_table_address(env, address);
   1084     desc = ldl_phys(table);
   1085     type = (desc & 3);
   1086     domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
   1087     if (type == 0) {
   1088         /* Section translation fault.  */
   1089         code = 5;
   1090         goto do_fault;
   1091     }
   1092     if (domain == 0 || domain == 2) {
   1093         if (type == 2)
   1094             code = 9; /* Section domain fault.  */
   1095         else
   1096             code = 11; /* Page domain fault.  */
   1097         goto do_fault;
   1098     }
   1099     if (type == 2) {
   1100         /* 1Mb section.  */
   1101         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
   1102         ap = (desc >> 10) & 3;
   1103         code = 13;
   1104         *page_size = 1024 * 1024;
   1105     } else {
   1106         /* Lookup l2 entry.  */
   1107 	if (type == 1) {
   1108 	    /* Coarse pagetable.  */
   1109 	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
   1110 	} else {
   1111 	    /* Fine pagetable.  */
   1112 	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
   1113 	}
   1114         desc = ldl_phys(table);
   1115         switch (desc & 3) {
   1116         case 0: /* Page translation fault.  */
   1117             code = 7;
   1118             goto do_fault;
   1119         case 1: /* 64k page.  */
   1120             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
   1121             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
   1122             *page_size = 0x10000;
   1123             break;
   1124         case 2: /* 4k page.  */
   1125             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
   1126             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
   1127             *page_size = 0x1000;
   1128             break;
   1129         case 3: /* 1k page.  */
   1130 	    if (type == 1) {
   1131 		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
   1132 		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
   1133 		} else {
   1134 		    /* Page translation fault.  */
   1135 		    code = 7;
   1136 		    goto do_fault;
   1137 		}
   1138 	    } else {
   1139 		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
   1140 	    }
   1141             ap = (desc >> 4) & 3;
   1142             *page_size = 0x400;
   1143             break;
   1144         default:
   1145             /* Never happens, but compiler isn't smart enough to tell.  */
   1146             abort();
   1147         }
   1148         code = 15;
   1149     }
   1150     *prot = check_ap(env, ap, domain, access_type, is_user);
   1151     if (!*prot) {
   1152         /* Access permission fault.  */
   1153         goto do_fault;
   1154     }
   1155     *prot |= PAGE_EXEC;
   1156     *phys_ptr = phys_addr;
   1157     return 0;
   1158 do_fault:
   1159     return code | (domain << 4);
   1160 }
   1161 
   1162 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
   1163 			    int is_user, uint32_t *phys_ptr, int *prot,
   1164                             target_ulong *page_size)
   1165 {
   1166     int code;
   1167     uint32_t table;
   1168     uint32_t desc;
   1169     uint32_t xn;
   1170     int type;
   1171     int ap;
   1172     int domain;
   1173     uint32_t phys_addr;
   1174 
   1175     /* Pagetable walk.  */
   1176     /* Lookup l1 descriptor.  */
   1177     table = get_level1_table_address(env, address);
   1178     desc = ldl_phys(table);
   1179     type = (desc & 3);
   1180     if (type == 0 || type == 3) {
   1181         /* Section translation fault.  */
   1182         code = 5;
   1183         domain = 0;
   1184         goto do_fault;
   1185     } else if (type == 2 && (desc & (1 << 18))) {
   1186         /* Supersection.  */
   1187         domain = 0;
   1188     } else {
   1189         /* Section or page.  */
   1190         domain = (desc >> 4) & 0x1e;
   1191     }
   1192     domain = (env->cp15.c3 >> domain) & 3;
   1193     if (domain == 0 || domain == 2) {
   1194         if (type == 2)
   1195             code = 9; /* Section domain fault.  */
   1196         else
   1197             code = 11; /* Page domain fault.  */
   1198         goto do_fault;
   1199     }
   1200     if (type == 2) {
   1201         if (desc & (1 << 18)) {
   1202             /* Supersection.  */
   1203             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
   1204             *page_size = 0x1000000;
   1205         } else {
   1206             /* Section.  */
   1207             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
   1208             *page_size = 0x100000;
   1209         }
   1210         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
   1211         xn = desc & (1 << 4);
   1212         code = 13;
   1213     } else {
   1214         /* Lookup l2 entry.  */
   1215         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
   1216         desc = ldl_phys(table);
   1217         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
   1218         switch (desc & 3) {
   1219         case 0: /* Page translation fault.  */
   1220             code = 7;
   1221             goto do_fault;
   1222         case 1: /* 64k page.  */
   1223             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
   1224             xn = desc & (1 << 15);
   1225             *page_size = 0x10000;
   1226             break;
   1227         case 2: case 3: /* 4k page.  */
   1228             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
   1229             xn = desc & 1;
   1230             *page_size = 0x1000;
   1231             break;
   1232         default:
   1233             /* Never happens, but compiler isn't smart enough to tell.  */
   1234             abort();
   1235         }
   1236         code = 15;
   1237     }
   1238     if (domain == 3) {
   1239         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
   1240     } else {
   1241     if (xn && access_type == 2)
   1242         goto do_fault;
   1243 
   1244     /* The simplified model uses AP[0] as an access control bit.  */
   1245     if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
   1246         /* Access flag fault.  */
   1247         code = (code == 15) ? 6 : 3;
   1248         goto do_fault;
   1249     }
   1250     *prot = check_ap(env, ap, domain, access_type, is_user);
   1251     if (!*prot) {
   1252         /* Access permission fault.  */
   1253         goto do_fault;
   1254         }
   1255         if (!xn) {
   1256             *prot |= PAGE_EXEC;
   1257         }
   1258     }
   1259     *phys_ptr = phys_addr;
   1260     return 0;
   1261 do_fault:
   1262     return code | (domain << 4);
   1263 }
   1264 
   1265 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
   1266 			     int is_user, uint32_t *phys_ptr, int *prot)
   1267 {
   1268     int n;
   1269     uint32_t mask;
   1270     uint32_t base;
   1271 
   1272     *phys_ptr = address;
   1273     for (n = 7; n >= 0; n--) {
   1274 	base = env->cp15.c6_region[n];
   1275 	if ((base & 1) == 0)
   1276 	    continue;
   1277 	mask = 1 << ((base >> 1) & 0x1f);
   1278 	/* Keep this shift separate from the above to avoid an
   1279 	   (undefined) << 32.  */
   1280 	mask = (mask << 1) - 1;
   1281 	if (((base ^ address) & ~mask) == 0)
   1282 	    break;
   1283     }
   1284     if (n < 0)
   1285 	return 2;
   1286 
   1287     if (access_type == 2) {
   1288 	mask = env->cp15.c5_insn;
   1289     } else {
   1290 	mask = env->cp15.c5_data;
   1291     }
   1292     mask = (mask >> (n * 4)) & 0xf;
   1293     switch (mask) {
   1294     case 0:
   1295 	return 1;
   1296     case 1:
   1297 	if (is_user)
   1298 	  return 1;
   1299 	*prot = PAGE_READ | PAGE_WRITE;
   1300 	break;
   1301     case 2:
   1302 	*prot = PAGE_READ;
   1303 	if (!is_user)
   1304 	    *prot |= PAGE_WRITE;
   1305 	break;
   1306     case 3:
   1307 	*prot = PAGE_READ | PAGE_WRITE;
   1308 	break;
   1309     case 5:
   1310 	if (is_user)
   1311 	    return 1;
   1312 	*prot = PAGE_READ;
   1313 	break;
   1314     case 6:
   1315 	*prot = PAGE_READ;
   1316 	break;
   1317     default:
   1318 	/* Bad permission.  */
   1319 	return 1;
   1320     }
   1321     *prot |= PAGE_EXEC;
   1322     return 0;
   1323 }
   1324 
   1325 #ifdef CONFIG_GLES2
   1326 int get_phys_addr(CPUARMState *env, uint32_t address,
   1327                   int access_type, int is_user,
   1328                   uint32_t *phys_ptr, int *prot,
   1329                   target_ulong *page_size);
   1330 #else
   1331 static
   1332 #endif
   1333 int get_phys_addr(CPUARMState *env, uint32_t address,
   1334                   int access_type, int is_user,
   1335                   uint32_t *phys_ptr, int *prot,
   1336                   target_ulong *page_size)
   1337 {
   1338     /* Fast Context Switch Extension.  */
   1339     if (address < 0x02000000)
   1340         address += env->cp15.c13_fcse;
   1341 
   1342     if ((env->cp15.c1_sys & 1) == 0) {
   1343         /* MMU/MPU disabled.  */
   1344         *phys_ptr = address;
   1345         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
   1346         *page_size = TARGET_PAGE_SIZE;
   1347         return 0;
   1348     } else if (arm_feature(env, ARM_FEATURE_MPU)) {
   1349         *page_size = TARGET_PAGE_SIZE;
   1350     return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
   1351                              prot);
   1352     } else if (env->cp15.c1_sys & (1 << 23)) {
   1353         return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
   1354                                 prot, page_size);
   1355     } else {
   1356         return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
   1357                                 prot, page_size);
   1358     }
   1359 }
   1360 
   1361 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
   1362                               int access_type, int mmu_idx)
   1363 {
   1364     uint32_t phys_addr;
   1365     target_ulong page_size;
   1366     int prot;
   1367     int ret, is_user;
   1368 
   1369     is_user = mmu_idx == MMU_USER_IDX;
   1370     ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
   1371                         &page_size);
   1372     if (ret == 0) {
   1373         /* Map a single [sub]page.  */
   1374         phys_addr &= ~(uint32_t)0x3ff;
   1375         address &= ~(uint32_t)0x3ff;
   1376         tlb_set_page (env, address, phys_addr, prot | PAGE_EXEC, mmu_idx,
   1377                       page_size);
   1378         return 0;
   1379     }
   1380 
   1381     if (access_type == 2) {
   1382         env->cp15.c5_insn = ret;
   1383         env->cp15.c6_insn = address;
   1384         env->exception_index = EXCP_PREFETCH_ABORT;
   1385     } else {
   1386         env->cp15.c5_data = ret;
   1387         if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
   1388             env->cp15.c5_data |= (1 << 11);
   1389         env->cp15.c6_data = address;
   1390         env->exception_index = EXCP_DATA_ABORT;
   1391     }
   1392     return 1;
   1393 }
   1394 
   1395 hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
   1396 {
   1397     uint32_t phys_addr;
   1398     target_ulong page_size;
   1399     int prot;
   1400     int ret;
   1401 
   1402     ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
   1403 
   1404     if (ret != 0)
   1405         return -1;
   1406 
   1407     return phys_addr;
   1408 }
   1409 
   1410 /* Return basic MPU access permission bits.  */
   1411 static uint32_t simple_mpu_ap_bits(uint32_t val)
   1412 {
   1413     uint32_t ret;
   1414     uint32_t mask;
   1415     int i;
   1416     ret = 0;
   1417     mask = 3;
   1418     for (i = 0; i < 16; i += 2) {
   1419         ret |= (val >> i) & mask;
   1420         mask <<= 2;
   1421     }
   1422     return ret;
   1423 }
   1424 
   1425 /* Pad basic MPU access permission bits to extended format.  */
   1426 static uint32_t extended_mpu_ap_bits(uint32_t val)
   1427 {
   1428     uint32_t ret;
   1429     uint32_t mask;
   1430     int i;
   1431     ret = 0;
   1432     mask = 3;
   1433     for (i = 0; i < 16; i += 2) {
   1434         ret |= (val & mask) << i;
   1435         mask <<= 2;
   1436     }
   1437     return ret;
   1438 }
   1439 
   1440 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
   1441 {
   1442     int op1;
   1443     int op2;
   1444     int crm;
   1445 
   1446     op1 = (insn >> 21) & 7;
   1447     op2 = (insn >> 5) & 7;
   1448     crm = insn & 0xf;
   1449     switch ((insn >> 16) & 0xf) {
   1450     case 0:
   1451         /* ID codes.  */
   1452         if (arm_feature(env, ARM_FEATURE_XSCALE))
   1453             break;
   1454         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1455             break;
   1456         if (arm_feature(env, ARM_FEATURE_V7)
   1457                 && op1 == 2 && crm == 0 && op2 == 0) {
   1458             env->cp15.c0_cssel = val & 0xf;
   1459             break;
   1460         }
   1461         goto bad_reg;
   1462     case 1: /* System configuration.  */
   1463         switch (crm) {
   1464         case 0:
   1465         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1466             op2 = 0;
   1467         switch (op2) {
   1468         case 0:
   1469                 if (!arm_feature(env, ARM_FEATURE_XSCALE))
   1470                 env->cp15.c1_sys = val;
   1471             /* ??? Lots of these bits are not implemented.  */
   1472             /* This may enable/disable the MMU, so do a TLB flush.  */
   1473             tlb_flush(env, 1);
   1474             break;
   1475             case 1: /* Auxiliary control register.  */
   1476             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
   1477                 env->cp15.c1_xscaleauxcr = val;
   1478                 break;
   1479             }
   1480             /* Not implemented.  */
   1481             break;
   1482         case 2:
   1483             if (arm_feature(env, ARM_FEATURE_XSCALE))
   1484                 goto bad_reg;
   1485             if (env->cp15.c1_coproc != val) {
   1486                 env->cp15.c1_coproc = val;
   1487                 /* ??? Is this safe when called from within a TB?  */
   1488                 tb_flush(env);
   1489                 }
   1490                 break;
   1491             default:
   1492                 goto bad_reg;
   1493             }
   1494             break;
   1495         case 1:
   1496             if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)
   1497                 || (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)
   1498                 goto bad_reg;
   1499             switch (op2) {
   1500             case 0: /* Secure configuration register. */
   1501                 if (env->cp15.c1_secfg & 1)
   1502                     goto bad_reg;
   1503                 env->cp15.c1_secfg = val;
   1504                 break;
   1505             case 1: /* Secure debug enable register. */
   1506                 if (env->cp15.c1_secfg & 1)
   1507                     goto bad_reg;
   1508                 env->cp15.c1_sedbg = val;
   1509                 break;
   1510             case 2: /* Nonsecure access control register. */
   1511                 if (env->cp15.c1_secfg & 1)
   1512                     goto bad_reg;
   1513                 env->cp15.c1_nseac = val;
   1514                 break;
   1515             default:
   1516                 goto bad_reg;
   1517             }
   1518             break;
   1519         default:
   1520             goto bad_reg;
   1521         }
   1522         break;
   1523     case 2: /* MMU Page table control / MPU cache control.  */
   1524         if (arm_feature(env, ARM_FEATURE_MPU)) {
   1525             switch (op2) {
   1526             case 0:
   1527                 env->cp15.c2_data = val;
   1528                 break;
   1529             case 1:
   1530                 env->cp15.c2_insn = val;
   1531                 break;
   1532             default:
   1533                 goto bad_reg;
   1534             }
   1535         } else {
   1536 	    switch (op2) {
   1537 	    case 0:
   1538 		env->cp15.c2_base0 = val;
   1539 		break;
   1540 	    case 1:
   1541 		env->cp15.c2_base1 = val;
   1542 		break;
   1543 	    case 2:
   1544                 val &= 7;
   1545                 env->cp15.c2_control = val;
   1546 		env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
   1547                 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
   1548 		break;
   1549 	    default:
   1550 		goto bad_reg;
   1551 	    }
   1552         }
   1553         break;
   1554     case 3: /* MMU Domain access control / MPU write buffer control.  */
   1555         env->cp15.c3 = val;
   1556         tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
   1557         break;
   1558     case 4: /* Reserved.  */
   1559         goto bad_reg;
   1560     case 5: /* MMU Fault status / MPU access permission.  */
   1561         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1562             op2 = 0;
   1563         switch (op2) {
   1564         case 0:
   1565             if (arm_feature(env, ARM_FEATURE_MPU))
   1566                 val = extended_mpu_ap_bits(val);
   1567             env->cp15.c5_data = val;
   1568             break;
   1569         case 1:
   1570             if (arm_feature(env, ARM_FEATURE_MPU))
   1571                 val = extended_mpu_ap_bits(val);
   1572             env->cp15.c5_insn = val;
   1573             break;
   1574         case 2:
   1575             if (!arm_feature(env, ARM_FEATURE_MPU))
   1576                 goto bad_reg;
   1577             env->cp15.c5_data = val;
   1578             break;
   1579         case 3:
   1580             if (!arm_feature(env, ARM_FEATURE_MPU))
   1581                 goto bad_reg;
   1582             env->cp15.c5_insn = val;
   1583             break;
   1584         default:
   1585             goto bad_reg;
   1586         }
   1587         break;
   1588     case 6: /* MMU Fault address / MPU base/size.  */
   1589         if (arm_feature(env, ARM_FEATURE_MPU)) {
   1590             if (crm >= 8)
   1591                 goto bad_reg;
   1592             env->cp15.c6_region[crm] = val;
   1593         } else {
   1594             if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1595                 op2 = 0;
   1596             switch (op2) {
   1597             case 0:
   1598                 env->cp15.c6_data = val;
   1599                 break;
   1600             case 1: /* ??? This is WFAR on armv6 */
   1601             case 2:
   1602                 env->cp15.c6_insn = val;
   1603                 break;
   1604             default:
   1605                 goto bad_reg;
   1606             }
   1607         }
   1608         break;
   1609     case 7: /* Cache control.  */
   1610         env->cp15.c15_i_max = 0x000;
   1611         env->cp15.c15_i_min = 0xff0;
   1612         if (op1 != 0) {
   1613             goto bad_reg;
   1614         }
   1615         /* No cache, so nothing to do except VA->PA translations. */
   1616         if (arm_feature(env, ARM_FEATURE_VAPA)) {
   1617             switch (crm) {
   1618             case 4:
   1619                 if (arm_feature(env, ARM_FEATURE_V7)) {
   1620                     env->cp15.c7_par = val & 0xfffff6ff;
   1621                 } else {
   1622                     env->cp15.c7_par = val & 0xfffff1ff;
   1623                 }
   1624                 break;
   1625             case 8: {
   1626                 uint32_t phys_addr;
   1627                 target_ulong page_size;
   1628                 int prot;
   1629                 int ret, is_user = op2 & 2;
   1630                 int access_type = op2 & 1;
   1631 
   1632                 if (op2 & 4) {
   1633                     /* Other states are only available with TrustZone */
   1634                     goto bad_reg;
   1635                 }
   1636                 ret = get_phys_addr(env, val, access_type, is_user,
   1637                                     &phys_addr, &prot, &page_size);
   1638                 if (ret == 0) {
   1639                     /* We do not set any attribute bits in the PAR */
   1640                     if (page_size == (1 << 24)
   1641                         && arm_feature(env, ARM_FEATURE_V7)) {
   1642                         env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
   1643                     } else {
   1644                         env->cp15.c7_par = phys_addr & 0xfffff000;
   1645                     }
   1646                 } else {
   1647                     env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
   1648                                        ((ret & (12 << 1)) >> 6) |
   1649                                        ((ret & 0xf) << 1) | 1;
   1650                 }
   1651                 break;
   1652             }
   1653             }
   1654         }
   1655         break;
   1656     case 8: /* MMU TLB control.  */
   1657         switch (op2) {
   1658         case 0: /* Invalidate all.  */
   1659             tlb_flush(env, 0);
   1660             break;
   1661         case 1: /* Invalidate single TLB entry.  */
   1662             tlb_flush_page(env, val & TARGET_PAGE_MASK);
   1663             break;
   1664         case 2: /* Invalidate on ASID.  */
   1665             tlb_flush(env, val == 0);
   1666             break;
   1667         case 3: /* Invalidate single entry on MVA.  */
   1668             /* ??? This is like case 1, but ignores ASID.  */
   1669             tlb_flush(env, 1);
   1670             break;
   1671         default:
   1672             goto bad_reg;
   1673         }
   1674         break;
   1675     case 9:
   1676         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1677             break;
   1678         if (arm_feature(env, ARM_FEATURE_STRONGARM))
   1679             break; /* Ignore ReadBuffer access */
   1680         switch (crm) {
   1681         case 0: /* Cache lockdown.  */
   1682 	    switch (op1) {
   1683 	    case 0: /* L1 cache.  */
   1684 		switch (op2) {
   1685 		case 0:
   1686 		    env->cp15.c9_data = val;
   1687 		    break;
   1688 		case 1:
   1689 		    env->cp15.c9_insn = val;
   1690 		    break;
   1691 		default:
   1692 		    goto bad_reg;
   1693 		}
   1694 		break;
   1695 	    case 1: /* L2 cache.  */
   1696                 switch (op2) {
   1697                 case 0: /* L2 cache lockdown */
   1698                 case 2: /* L2 cache auxiliary control */
   1699                     /* ignore */
   1700                     break;
   1701                 default:
   1702                     goto bad_reg;
   1703                 }
   1704 		break;
   1705 	    default:
   1706 		goto bad_reg;
   1707 	    }
   1708 	    break;
   1709         case 1: /* TCM memory region registers.  */
   1710         case 2:
   1711             /* Not implemented.  */
   1712             goto bad_reg;
   1713         case 12: /* Performance monitor control */
   1714             /* Performance monitors are implementation defined in v7,
   1715              * but with an ARM recommended set of registers, which we
   1716              * follow (although we don't actually implement any counters)
   1717              */
   1718             if (!arm_feature(env, ARM_FEATURE_V7)) {
   1719                 goto bad_reg;
   1720             }
   1721             switch (op2) {
   1722             case 0: /* performance monitor control register */
   1723                 /* only the DP, X, D and E bits are writable */
   1724                 env->cp15.c9_pmcr &= ~0x39;
   1725                 env->cp15.c9_pmcr |= (val & 0x39);
   1726                 break;
   1727             case 1: /* Count enable set register */
   1728                 val &= (1 << 31);
   1729                 env->cp15.c9_pmcnten |= val;
   1730                 break;
   1731             case 2: /* Count enable clear */
   1732                 val &= (1 << 31);
   1733                 env->cp15.c9_pmcnten &= ~val;
   1734                 break;
   1735             case 3: /* Overflow flag status */
   1736                 env->cp15.c9_pmovsr &= ~val;
   1737                 break;
   1738             case 4: /* Software increment */
   1739                 /* RAZ/WI since we don't implement the software-count event */
   1740                 break;
   1741             case 5: /* Event counter selection register */
   1742                 /* Since we don't implement any events, writing to this register
   1743                  * is actually UNPREDICTABLE. So we choose to RAZ/WI.
   1744                  */
   1745                 break;
   1746             default:
   1747                 goto bad_reg;
   1748             }
   1749             break;
   1750         case 13: /* Performance counters */
   1751             if (!arm_feature(env, ARM_FEATURE_V7)) {
   1752                 goto bad_reg;
   1753             }
   1754             switch (op2) {
   1755             case 0: /* Cycle count register: not implemented, so RAZ/WI */
   1756                 break;
   1757             case 1: /* Event type select */
   1758                 env->cp15.c9_pmxevtyper = val & 0xff;
   1759                 break;
   1760             case 2: /* Event count register */
   1761                 /* Unimplemented (we have no events), RAZ/WI */
   1762                 break;
   1763             default:
   1764                 goto bad_reg;
   1765             }
   1766             break;
   1767         case 14: /* Performance monitor control */
   1768             if (!arm_feature(env, ARM_FEATURE_V7)) {
   1769                 goto bad_reg;
   1770             }
   1771             switch (op2) {
   1772             case 0: /* user enable */
   1773                 env->cp15.c9_pmuserenr = val & 1;
   1774                 /* changes access rights for cp registers, so flush tbs */
   1775                 tb_flush(env);
   1776                 break;
   1777             case 1: /* interrupt enable set */
   1778                 /* We have no event counters so only the C bit can be changed */
   1779                 val &= (1 << 31);
   1780                 env->cp15.c9_pminten |= val;
   1781                 break;
   1782             case 2: /* interrupt enable clear */
   1783                 val &= (1 << 31);
   1784                 env->cp15.c9_pminten &= ~val;
   1785                 break;
   1786             }
   1787             break;
   1788         default:
   1789             goto bad_reg;
   1790         }
   1791         break;
   1792     case 10: /* MMU TLB lockdown.  */
   1793         /* ??? TLB lockdown not implemented.  */
   1794         break;
   1795     case 12: /* Reserved.  */
   1796         if (!op1 && !crm) {
   1797             switch (op2) {
   1798             case 0:
   1799                 if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
   1800                     goto bad_reg;
   1801                 }
   1802                 env->cp15.c12_vbar = val & ~0x1f;
   1803                 break;
   1804             case 1:
   1805                 if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
   1806                     goto bad_reg;
   1807                 }
   1808                 if (!(env->cp15.c1_secfg & 1)) {
   1809                     env->cp15.c12_mvbar = val & ~0x1f;
   1810                 }
   1811                 break;
   1812             default:
   1813                 goto bad_reg;
   1814             }
   1815             break;
   1816         }
   1817         goto bad_reg;
   1818     case 13: /* Process ID.  */
   1819         switch (op2) {
   1820         case 0:
   1821             /* Unlike real hardware the qemu TLB uses virtual addresses,
   1822                not modified virtual addresses, so this causes a TLB flush.
   1823              */
   1824             if (env->cp15.c13_fcse != val)
   1825               tlb_flush(env, 1);
   1826             env->cp15.c13_fcse = val;
   1827             break;
   1828         case 1:
   1829             /* This changes the ASID, so do a TLB flush.  */
   1830             if (env->cp15.c13_context != val
   1831                 && !arm_feature(env, ARM_FEATURE_MPU))
   1832               tlb_flush(env, 0);
   1833             env->cp15.c13_context = val;
   1834             break;
   1835         default:
   1836             goto bad_reg;
   1837         }
   1838         break;
   1839     case 14: /* Reserved.  */
   1840         goto bad_reg;
   1841     case 15: /* Implementation specific.  */
   1842         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
   1843             if (op2 == 0 && crm == 1) {
   1844                 if (env->cp15.c15_cpar != (val & 0x3fff)) {
   1845                     /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
   1846                     tb_flush(env);
   1847                     env->cp15.c15_cpar = val & 0x3fff;
   1848                 }
   1849                 break;
   1850             }
   1851             goto bad_reg;
   1852         }
   1853         if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
   1854             switch (crm) {
   1855             case 0:
   1856                 break;
   1857             case 1: /* Set TI925T configuration.  */
   1858                 env->cp15.c15_ticonfig = val & 0xe7;
   1859                 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
   1860                         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
   1861                 break;
   1862             case 2: /* Set I_max.  */
   1863                 env->cp15.c15_i_max = val;
   1864                 break;
   1865             case 3: /* Set I_min.  */
   1866                 env->cp15.c15_i_min = val;
   1867                 break;
   1868             case 4: /* Set thread-ID.  */
   1869                 env->cp15.c15_threadid = val & 0xffff;
   1870                 break;
   1871             case 8: /* Wait-for-interrupt (deprecated).  */
   1872                 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_HALT);
   1873                 break;
   1874             default:
   1875                 goto bad_reg;
   1876             }
   1877         }
   1878         break;
   1879     }
   1880     return;
   1881 bad_reg:
   1882     /* ??? For debugging only.  Should raise illegal instruction exception.  */
   1883     cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
   1884               (insn >> 16) & 0xf, crm, op1, op2);
   1885 }
   1886 
   1887 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
   1888 {
   1889     int op1;
   1890     int op2;
   1891     int crm;
   1892 
   1893     op1 = (insn >> 21) & 7;
   1894     op2 = (insn >> 5) & 7;
   1895     crm = insn & 0xf;
   1896     switch ((insn >> 16) & 0xf) {
   1897     case 0: /* ID codes.  */
   1898         switch (op1) {
   1899         case 0:
   1900             switch (crm) {
   1901             case 0:
   1902                 switch (op2) {
   1903                 case 0: /* Device ID.  */
   1904                     return env->cp15.c0_cpuid;
   1905                 case 1: /* Cache Type.  */
   1906 		    return env->cp15.c0_cachetype;
   1907                 case 2: /* TCM status.  */
   1908                     return 0;
   1909                 case 3: /* TLB type register.  */
   1910                     return 0; /* No lockable TLB entries.  */
   1911                 case 5: /* MPIDR */
   1912                     /* The MPIDR was standardised in v7; prior to
   1913                      * this it was implemented only in the 11MPCore.
   1914                      * For all other pre-v7 cores it does not exist.
   1915                      */
   1916                     if (arm_feature(env, ARM_FEATURE_V7) ||
   1917                         ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
   1918                         int mpidr = ENV_GET_CPU(env)->cpu_index;
   1919                         /* We don't support setting cluster ID ([8..11])
   1920                          * so these bits always RAZ.
   1921                          */
   1922                         if (arm_feature(env, ARM_FEATURE_V7MP)) {
   1923                             mpidr |= (1 << 31);
   1924                             /* Cores which are uniprocessor (non-coherent)
   1925                              * but still implement the MP extensions set
   1926                              * bit 30. (For instance, A9UP.) However we do
   1927                              * not currently model any of those cores.
   1928                              */
   1929                         }
   1930                         return mpidr;
   1931                     }
   1932                     /* otherwise fall through to the unimplemented-reg case */
   1933                 default:
   1934                     goto bad_reg;
   1935                 }
   1936             case 1:
   1937                 if (!arm_feature(env, ARM_FEATURE_V6))
   1938                     goto bad_reg;
   1939                 return env->cp15.c0_c1[op2];
   1940             case 2:
   1941                 if (!arm_feature(env, ARM_FEATURE_V6))
   1942                     goto bad_reg;
   1943                 return env->cp15.c0_c2[op2];
   1944             case 3: case 4: case 5: case 6: case 7:
   1945                 return 0;
   1946             default:
   1947                 goto bad_reg;
   1948             }
   1949             break;
   1950         case 1:
   1951             /* These registers aren't documented on arm11 cores.  However
   1952                Linux looks at them anyway.  */
   1953             if (!arm_feature(env, ARM_FEATURE_V6))
   1954                 goto bad_reg;
   1955             if (crm != 0)
   1956                 goto bad_reg;
   1957             if (!arm_feature(env, ARM_FEATURE_V7))
   1958                 return 0;
   1959 
   1960             switch (op2) {
   1961             case 0:
   1962                 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
   1963             case 1:
   1964                 return env->cp15.c0_clid;
   1965             case 7:
   1966                 return 0;
   1967             }
   1968             goto bad_reg;
   1969         case 2:
   1970             if (op2 != 0 || crm != 0)
   1971                 goto bad_reg;
   1972             return env->cp15.c0_cssel;
   1973         default:
   1974             goto bad_reg;
   1975         }
   1976         break;
   1977     case 1: /* System configuration.  */
   1978         switch (crm) {
   1979         case 0:
   1980         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1981             op2 = 0;
   1982         switch (op2) {
   1983         case 0: /* Control register.  */
   1984             return env->cp15.c1_sys;
   1985         case 1: /* Auxiliary control register.  */
   1986             if (arm_feature(env, ARM_FEATURE_XSCALE))
   1987                 return env->cp15.c1_xscaleauxcr;
   1988             if (!arm_feature(env, ARM_FEATURE_AUXCR))
   1989                 goto bad_reg;
   1990             switch (ARM_CPUID(env)) {
   1991             case ARM_CPUID_ARM1026:
   1992                 return 1;
   1993             case ARM_CPUID_ARM1136:
   1994             case ARM_CPUID_ARM1136_R2:
   1995                 return 7;
   1996             case ARM_CPUID_ARM11MPCORE:
   1997                 return 1;
   1998             case ARM_CPUID_CORTEXA8:
   1999                 case ARM_CPUID_CORTEXA8_R2:
   2000                 return 2;
   2001                 case ARM_CPUID_CORTEXA9:
   2002                     return 0;
   2003             default:
   2004                 goto bad_reg;
   2005             }
   2006                 break;
   2007         case 2: /* Coprocessor access register.  */
   2008             if (arm_feature(env, ARM_FEATURE_XSCALE))
   2009                 goto bad_reg;
   2010             return env->cp15.c1_coproc;
   2011         default:
   2012             goto bad_reg;
   2013         }
   2014             break;
   2015         case 1:
   2016             if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)
   2017                 || (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)
   2018                 goto bad_reg;
   2019             switch (op2) {
   2020             case 0: /* Secure configuration register. */
   2021                 if (env->cp15.c1_secfg & 1)
   2022                     goto bad_reg;
   2023                 return env->cp15.c1_secfg;
   2024             case 1: /* Secure debug enable register. */
   2025                 if (env->cp15.c1_secfg & 1)
   2026                     goto bad_reg;
   2027                 return env->cp15.c1_sedbg;
   2028             case 2: /* Nonsecure access control register. */
   2029                 return env->cp15.c1_nseac;
   2030             default:
   2031                 goto bad_reg;
   2032             }
   2033             break;
   2034         default:
   2035             goto bad_reg;
   2036         }
   2037         break;
   2038     case 2: /* MMU Page table control / MPU cache control.  */
   2039         if (arm_feature(env, ARM_FEATURE_MPU)) {
   2040             switch (op2) {
   2041             case 0:
   2042                 return env->cp15.c2_data;
   2043                 break;
   2044             case 1:
   2045                 return env->cp15.c2_insn;
   2046                 break;
   2047             default:
   2048                 goto bad_reg;
   2049             }
   2050         } else {
   2051 	    switch (op2) {
   2052 	    case 0:
   2053 		return env->cp15.c2_base0;
   2054 	    case 1:
   2055 		return env->cp15.c2_base1;
   2056 	    case 2:
   2057                 return env->cp15.c2_control;
   2058 	    default:
   2059 		goto bad_reg;
   2060 	    }
   2061 	}
   2062     case 3: /* MMU Domain access control / MPU write buffer control.  */
   2063         return env->cp15.c3;
   2064     case 4: /* Reserved.  */
   2065         goto bad_reg;
   2066     case 5: /* MMU Fault status / MPU access permission.  */
   2067         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   2068             op2 = 0;
   2069         switch (op2) {
   2070         case 0:
   2071             if (arm_feature(env, ARM_FEATURE_MPU))
   2072                 return simple_mpu_ap_bits(env->cp15.c5_data);
   2073             return env->cp15.c5_data;
   2074         case 1:
   2075             if (arm_feature(env, ARM_FEATURE_MPU))
   2076                 return simple_mpu_ap_bits(env->cp15.c5_data);
   2077             return env->cp15.c5_insn;
   2078         case 2:
   2079             if (!arm_feature(env, ARM_FEATURE_MPU))
   2080                 goto bad_reg;
   2081             return env->cp15.c5_data;
   2082         case 3:
   2083             if (!arm_feature(env, ARM_FEATURE_MPU))
   2084                 goto bad_reg;
   2085             return env->cp15.c5_insn;
   2086         default:
   2087             goto bad_reg;
   2088         }
   2089     case 6: /* MMU Fault address.  */
   2090         if (arm_feature(env, ARM_FEATURE_MPU)) {
   2091             if (crm >= 8)
   2092                 goto bad_reg;
   2093             return env->cp15.c6_region[crm];
   2094         } else {
   2095             if (arm_feature(env, ARM_FEATURE_OMAPCP))
   2096                 op2 = 0;
   2097 	    switch (op2) {
   2098 	    case 0:
   2099 		return env->cp15.c6_data;
   2100 	    case 1:
   2101 		if (arm_feature(env, ARM_FEATURE_V6)) {
   2102 		    /* Watchpoint Fault Adrress.  */
   2103 		    return 0; /* Not implemented.  */
   2104                 }
   2105 		    /* Instruction Fault Adrress.  */
   2106 		    /* Arm9 doesn't have an IFAR, but implementing it anyway
   2107 		       shouldn't do any harm.  */
   2108 		    return env->cp15.c6_insn;
   2109 	    case 2:
   2110 		if (arm_feature(env, ARM_FEATURE_V6)) {
   2111 		    /* Instruction Fault Adrress.  */
   2112 		    return env->cp15.c6_insn;
   2113 		}
   2114                 goto bad_reg;
   2115 	    default:
   2116 		goto bad_reg;
   2117 	    }
   2118         }
   2119     case 7: /* Cache control.  */
   2120         if (crm == 4 && op1 == 0 && op2 == 0) {
   2121             return env->cp15.c7_par;
   2122         }
   2123         if (((insn >> 12) & 0xf) == 0xf) /* clear ZF only if destination is r15 */
   2124         env->ZF = 0;
   2125         return 0;
   2126     case 8: /* MMU TLB control.  */
   2127         goto bad_reg;
   2128     case 9:
   2129         switch (crm) {
   2130         case 0: /* Cache lockdown */
   2131             switch (op1) {
   2132             case 0: /* L1 cache.  */
   2133                 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
   2134                     return 0;
   2135                 }
   2136                 switch (op2) {
   2137                 case 0:
   2138                     return env->cp15.c9_data;
   2139                 case 1:
   2140                     return env->cp15.c9_insn;
   2141                 default:
   2142                     goto bad_reg;
   2143                 }
   2144             case 1: /* L2 cache */
   2145                 if (crm != 0) {
   2146                     goto bad_reg;
   2147                 }
   2148                 /* L2 Lockdown and Auxiliary control.  */
   2149                 return 0;
   2150             default:
   2151                 goto bad_reg;
   2152             }
   2153             break;
   2154         case 12: /* Performance monitor control */
   2155             if (!arm_feature(env, ARM_FEATURE_V7)) {
   2156                 goto bad_reg;
   2157             }
   2158             switch (op2) {
   2159             case 0: /* performance monitor control register */
   2160                 return env->cp15.c9_pmcr;
   2161             case 1: /* count enable set */
   2162             case 2: /* count enable clear */
   2163                 return env->cp15.c9_pmcnten;
   2164             case 3: /* overflow flag status */
   2165                 return env->cp15.c9_pmovsr;
   2166             case 4: /* software increment */
   2167             case 5: /* event counter selection register */
   2168                 return 0; /* Unimplemented, RAZ/WI */
   2169             default:
   2170                 goto bad_reg;
   2171             }
   2172         case 13: /* Performance counters */
   2173             if (!arm_feature(env, ARM_FEATURE_V7)) {
   2174                 goto bad_reg;
   2175             }
   2176             switch (op2) {
   2177             case 1: /* Event type select */
   2178                 return env->cp15.c9_pmxevtyper;
   2179             case 0: /* Cycle count register */
   2180             case 2: /* Event count register */
   2181                 /* Unimplemented, so RAZ/WI */
   2182                 return 0;
   2183             default:
   2184                 goto bad_reg;
   2185             }
   2186         case 14: /* Performance monitor control */
   2187             if (!arm_feature(env, ARM_FEATURE_V7)) {
   2188                 goto bad_reg;
   2189             }
   2190             switch (op2) {
   2191             case 0: /* user enable */
   2192                 return env->cp15.c9_pmuserenr;
   2193             case 1: /* interrupt enable set */
   2194             case 2: /* interrupt enable clear */
   2195                 return env->cp15.c9_pminten;
   2196             default:
   2197                 goto bad_reg;
   2198             }
   2199         default:
   2200             goto bad_reg;
   2201         }
   2202         break;
   2203     case 10: /* MMU TLB lockdown.  */
   2204         /* ??? TLB lockdown not implemented.  */
   2205         return 0;
   2206     case 11: /* TCM DMA control.  */
   2207     case 12: /* Reserved.  */
   2208         if (!op1 && !crm) {
   2209             switch (op2) {
   2210             case 0: /* secure or nonsecure vector base address */
   2211                 if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
   2212                     return env->cp15.c12_vbar;
   2213                 }
   2214                 break;
   2215             case 1: /* monitor vector base address */
   2216                 if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
   2217                     return env->cp15.c12_mvbar;
   2218                 }
   2219                 break;
   2220             default:
   2221                 break;
   2222             }
   2223         }
   2224         goto bad_reg;
   2225     case 13: /* Process ID.  */
   2226         switch (op2) {
   2227         case 0:
   2228             return env->cp15.c13_fcse;
   2229         case 1:
   2230             return env->cp15.c13_context;
   2231         default:
   2232             goto bad_reg;
   2233         }
   2234     case 14: /* Reserved.  */
   2235         goto bad_reg;
   2236     case 15: /* Implementation specific.  */
   2237         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
   2238             if (op2 == 0 && crm == 1)
   2239                 return env->cp15.c15_cpar;
   2240 
   2241             goto bad_reg;
   2242         }
   2243         if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
   2244             switch (crm) {
   2245             case 0:
   2246                 return 0;
   2247             case 1: /* Read TI925T configuration.  */
   2248                 return env->cp15.c15_ticonfig;
   2249             case 2: /* Read I_max.  */
   2250                 return env->cp15.c15_i_max;
   2251             case 3: /* Read I_min.  */
   2252                 return env->cp15.c15_i_min;
   2253             case 4: /* Read thread-ID.  */
   2254                 return env->cp15.c15_threadid;
   2255             case 8: /* TI925T_status */
   2256                 return 0;
   2257             }
   2258             /* TODO: Peripheral port remap register:
   2259              * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
   2260              * controller base address at $rn & ~0xfff and map size of
   2261              * 0x200 << ($rn & 0xfff), when MMU is off.  */
   2262             goto bad_reg;
   2263         }
   2264         return 0;
   2265     }
   2266 bad_reg:
   2267     /* ??? For debugging only.  Should raise illegal instruction exception.  */
   2268     cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
   2269               (insn >> 16) & 0xf, crm, op1, op2);
   2270     return 0;
   2271 }
   2272 
   2273 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
   2274 {
   2275     if ((env->uncached_cpsr & CPSR_M) == mode) {
   2276         env->regs[13] = val;
   2277     } else {
   2278     env->banked_r13[bank_number(env, mode)] = val;
   2279 }
   2280 }
   2281 
   2282 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
   2283 {
   2284     if ((env->uncached_cpsr & CPSR_M) == mode) {
   2285         return env->regs[13];
   2286     } else {
   2287     return env->banked_r13[bank_number(env, mode)];
   2288     }
   2289 }
   2290 
   2291 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
   2292 {
   2293     switch (reg) {
   2294     case 0: /* APSR */
   2295         return xpsr_read(env) & 0xf8000000;
   2296     case 1: /* IAPSR */
   2297         return xpsr_read(env) & 0xf80001ff;
   2298     case 2: /* EAPSR */
   2299         return xpsr_read(env) & 0xff00fc00;
   2300     case 3: /* xPSR */
   2301         return xpsr_read(env) & 0xff00fdff;
   2302     case 5: /* IPSR */
   2303         return xpsr_read(env) & 0x000001ff;
   2304     case 6: /* EPSR */
   2305         return xpsr_read(env) & 0x0700fc00;
   2306     case 7: /* IEPSR */
   2307         return xpsr_read(env) & 0x0700edff;
   2308     case 8: /* MSP */
   2309         return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
   2310     case 9: /* PSP */
   2311         return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
   2312     case 16: /* PRIMASK */
   2313         return (env->uncached_cpsr & CPSR_I) != 0;
   2314     case 17: /* BASEPRI */
   2315     case 18: /* BASEPRI_MAX */
   2316         return env->v7m.basepri;
   2317     case 19: /* FAULTMASK */
   2318         return (env->uncached_cpsr & CPSR_F) != 0;
   2319     case 20: /* CONTROL */
   2320         return env->v7m.control;
   2321     default:
   2322         /* ??? For debugging only.  */
   2323         cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
   2324         return 0;
   2325     }
   2326 }
   2327 
   2328 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
   2329 {
   2330     switch (reg) {
   2331     case 0: /* APSR */
   2332         xpsr_write(env, val, 0xf8000000);
   2333         break;
   2334     case 1: /* IAPSR */
   2335         xpsr_write(env, val, 0xf8000000);
   2336         break;
   2337     case 2: /* EAPSR */
   2338         xpsr_write(env, val, 0xfe00fc00);
   2339         break;
   2340     case 3: /* xPSR */
   2341         xpsr_write(env, val, 0xfe00fc00);
   2342         break;
   2343     case 5: /* IPSR */
   2344         /* IPSR bits are readonly.  */
   2345         break;
   2346     case 6: /* EPSR */
   2347         xpsr_write(env, val, 0x0600fc00);
   2348         break;
   2349     case 7: /* IEPSR */
   2350         xpsr_write(env, val, 0x0600fc00);
   2351         break;
   2352     case 8: /* MSP */
   2353         if (env->v7m.current_sp)
   2354             env->v7m.other_sp = val;
   2355         else
   2356             env->regs[13] = val;
   2357         break;
   2358     case 9: /* PSP */
   2359         if (env->v7m.current_sp)
   2360             env->regs[13] = val;
   2361         else
   2362             env->v7m.other_sp = val;
   2363         break;
   2364     case 16: /* PRIMASK */
   2365         if (val & 1)
   2366             env->uncached_cpsr |= CPSR_I;
   2367         else
   2368             env->uncached_cpsr &= ~CPSR_I;
   2369         break;
   2370     case 17: /* BASEPRI */
   2371         env->v7m.basepri = val & 0xff;
   2372         break;
   2373     case 18: /* BASEPRI_MAX */
   2374         val &= 0xff;
   2375         if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
   2376             env->v7m.basepri = val;
   2377         break;
   2378     case 19: /* FAULTMASK */
   2379         if (val & 1)
   2380             env->uncached_cpsr |= CPSR_F;
   2381         else
   2382             env->uncached_cpsr &= ~CPSR_F;
   2383         break;
   2384     case 20: /* CONTROL */
   2385         env->v7m.control = val & 3;
   2386         switch_v7m_sp(env, (val & 2) != 0);
   2387         break;
   2388     default:
   2389         /* ??? For debugging only.  */
   2390         cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
   2391         return;
   2392     }
   2393 }
   2394 
   2395 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
   2396                 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
   2397                 void *opaque)
   2398 {
   2399     if (cpnum < 0 || cpnum > 14) {
   2400         cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
   2401         return;
   2402     }
   2403 
   2404     env->cp[cpnum].cp_read = cp_read;
   2405     env->cp[cpnum].cp_write = cp_write;
   2406     env->cp[cpnum].opaque = opaque;
   2407 }
   2408 
   2409 #endif
   2410 
   2411 /* Note that signed overflow is undefined in C.  The following routines are
   2412    careful to use unsigned types where modulo arithmetic is required.
   2413    Failure to do so _will_ break on newer gcc.  */
   2414 
   2415 /* Signed saturating arithmetic.  */
   2416 
   2417 /* Perform 16-bit signed saturating addition.  */
   2418 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
   2419 {
   2420     uint16_t res;
   2421 
   2422     res = a + b;
   2423     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
   2424         if (a & 0x8000)
   2425             res = 0x8000;
   2426         else
   2427             res = 0x7fff;
   2428     }
   2429     return res;
   2430 }
   2431 
   2432 /* Perform 8-bit signed saturating addition.  */
   2433 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
   2434 {
   2435     uint8_t res;
   2436 
   2437     res = a + b;
   2438     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
   2439         if (a & 0x80)
   2440             res = 0x80;
   2441         else
   2442             res = 0x7f;
   2443     }
   2444     return res;
   2445 }
   2446 
   2447 /* Perform 16-bit signed saturating subtraction.  */
   2448 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
   2449 {
   2450     uint16_t res;
   2451 
   2452     res = a - b;
   2453     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
   2454         if (a & 0x8000)
   2455             res = 0x8000;
   2456         else
   2457             res = 0x7fff;
   2458     }
   2459     return res;
   2460 }
   2461 
   2462 /* Perform 8-bit signed saturating subtraction.  */
   2463 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
   2464 {
   2465     uint8_t res;
   2466 
   2467     res = a - b;
   2468     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
   2469         if (a & 0x80)
   2470             res = 0x80;
   2471         else
   2472             res = 0x7f;
   2473     }
   2474     return res;
   2475 }
   2476 
   2477 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
   2478 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
   2479 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
   2480 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
   2481 #define PFX q
   2482 
   2483 #include "op_addsub.h"
   2484 
   2485 /* Unsigned saturating arithmetic.  */
   2486 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
   2487 {
   2488     uint16_t res;
   2489     res = a + b;
   2490     if (res < a)
   2491         res = 0xffff;
   2492     return res;
   2493 }
   2494 
   2495 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
   2496 {
   2497     if (a > b)
   2498         return a - b;
   2499     else
   2500         return 0;
   2501 }
   2502 
   2503 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
   2504 {
   2505     uint8_t res;
   2506     res = a + b;
   2507     if (res < a)
   2508         res = 0xff;
   2509     return res;
   2510 }
   2511 
   2512 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
   2513 {
   2514     if (a > b)
   2515         return a - b;
   2516     else
   2517         return 0;
   2518 }
   2519 
   2520 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
   2521 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
   2522 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
   2523 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
   2524 #define PFX uq
   2525 
   2526 #include "op_addsub.h"
   2527 
   2528 /* Signed modulo arithmetic.  */
   2529 #define SARITH16(a, b, n, op) do { \
   2530     int32_t sum; \
   2531     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
   2532     RESULT(sum, n, 16); \
   2533     if (sum >= 0) \
   2534         ge |= 3 << (n * 2); \
   2535     } while(0)
   2536 
   2537 #define SARITH8(a, b, n, op) do { \
   2538     int32_t sum; \
   2539     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
   2540     RESULT(sum, n, 8); \
   2541     if (sum >= 0) \
   2542         ge |= 1 << n; \
   2543     } while(0)
   2544 
   2545 
   2546 #define ADD16(a, b, n) SARITH16(a, b, n, +)
   2547 #define SUB16(a, b, n) SARITH16(a, b, n, -)
   2548 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
   2549 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
   2550 #define PFX s
   2551 #define ARITH_GE
   2552 
   2553 #include "op_addsub.h"
   2554 
   2555 /* Unsigned modulo arithmetic.  */
   2556 #define ADD16(a, b, n) do { \
   2557     uint32_t sum; \
   2558     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
   2559     RESULT(sum, n, 16); \
   2560     if ((sum >> 16) == 1) \
   2561         ge |= 3 << (n * 2); \
   2562     } while(0)
   2563 
   2564 #define ADD8(a, b, n) do { \
   2565     uint32_t sum; \
   2566     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
   2567     RESULT(sum, n, 8); \
   2568     if ((sum >> 8) == 1) \
   2569         ge |= 1 << n; \
   2570     } while(0)
   2571 
   2572 #define SUB16(a, b, n) do { \
   2573     uint32_t sum; \
   2574     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
   2575     RESULT(sum, n, 16); \
   2576     if ((sum >> 16) == 0) \
   2577         ge |= 3 << (n * 2); \
   2578     } while(0)
   2579 
   2580 #define SUB8(a, b, n) do { \
   2581     uint32_t sum; \
   2582     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
   2583     RESULT(sum, n, 8); \
   2584     if ((sum >> 8) == 0) \
   2585         ge |= 1 << n; \
   2586     } while(0)
   2587 
   2588 #define PFX u
   2589 #define ARITH_GE
   2590 
   2591 #include "op_addsub.h"
   2592 
   2593 /* Halved signed arithmetic.  */
   2594 #define ADD16(a, b, n) \
   2595   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
   2596 #define SUB16(a, b, n) \
   2597   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
   2598 #define ADD8(a, b, n) \
   2599   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
   2600 #define SUB8(a, b, n) \
   2601   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
   2602 #define PFX sh
   2603 
   2604 #include "op_addsub.h"
   2605 
   2606 /* Halved unsigned arithmetic.  */
   2607 #define ADD16(a, b, n) \
   2608   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
   2609 #define SUB16(a, b, n) \
   2610   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
   2611 #define ADD8(a, b, n) \
   2612   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
   2613 #define SUB8(a, b, n) \
   2614   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
   2615 #define PFX uh
   2616 
   2617 #include "op_addsub.h"
   2618 
   2619 static inline uint8_t do_usad(uint8_t a, uint8_t b)
   2620 {
   2621     if (a > b)
   2622         return a - b;
   2623     else
   2624         return b - a;
   2625 }
   2626 
   2627 /* Unsigned sum of absolute byte differences.  */
   2628 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
   2629 {
   2630     uint32_t sum;
   2631     sum = do_usad(a, b);
   2632     sum += do_usad(a >> 8, b >> 8);
   2633     sum += do_usad(a >> 16, b >>16);
   2634     sum += do_usad(a >> 24, b >> 24);
   2635     return sum;
   2636 }
   2637 
   2638 /* For ARMv6 SEL instruction.  */
   2639 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
   2640 {
   2641     uint32_t mask;
   2642 
   2643     mask = 0;
   2644     if (flags & 1)
   2645         mask |= 0xff;
   2646     if (flags & 2)
   2647         mask |= 0xff00;
   2648     if (flags & 4)
   2649         mask |= 0xff0000;
   2650     if (flags & 8)
   2651         mask |= 0xff000000;
   2652     return (a & mask) | (b & ~mask);
   2653 }
   2654 
   2655 uint32_t HELPER(logicq_cc)(uint64_t val)
   2656 {
   2657     return (val >> 32) | (val != 0);
   2658 }
   2659 
   2660 /* VFP support.  We follow the convention used for VFP instrunctions:
   2661    Single precition routines have a "s" suffix, double precision a
   2662    "d" suffix.  */
   2663 
   2664 /* Convert host exception flags to vfp form.  */
   2665 static inline int vfp_exceptbits_from_host(int host_bits)
   2666 {
   2667     int target_bits = 0;
   2668 
   2669     if (host_bits & float_flag_invalid)
   2670         target_bits |= 1;
   2671     if (host_bits & float_flag_divbyzero)
   2672         target_bits |= 2;
   2673     if (host_bits & float_flag_overflow)
   2674         target_bits |= 4;
   2675     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
   2676         target_bits |= 8;
   2677     if (host_bits & float_flag_inexact)
   2678         target_bits |= 0x10;
   2679     if (host_bits & float_flag_input_denormal)
   2680         target_bits |= 0x80;
   2681     return target_bits;
   2682 }
   2683 
   2684 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
   2685 {
   2686     int i;
   2687     uint32_t fpscr;
   2688 
   2689     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
   2690             | (env->vfp.vec_len << 16)
   2691             | (env->vfp.vec_stride << 20);
   2692     i = get_float_exception_flags(&env->vfp.fp_status);
   2693     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
   2694     fpscr |= vfp_exceptbits_from_host(i);
   2695     return fpscr;
   2696 }
   2697 
   2698 uint32_t vfp_get_fpscr(CPUARMState *env)
   2699 {
   2700     return HELPER(vfp_get_fpscr)(env);
   2701 }
   2702 
   2703 /* Convert vfp exception flags to target form.  */
   2704 static inline int vfp_exceptbits_to_host(int target_bits)
   2705 {
   2706     int host_bits = 0;
   2707 
   2708     if (target_bits & 1)
   2709         host_bits |= float_flag_invalid;
   2710     if (target_bits & 2)
   2711         host_bits |= float_flag_divbyzero;
   2712     if (target_bits & 4)
   2713         host_bits |= float_flag_overflow;
   2714     if (target_bits & 8)
   2715         host_bits |= float_flag_underflow;
   2716     if (target_bits & 0x10)
   2717         host_bits |= float_flag_inexact;
   2718     if (target_bits & 0x80)
   2719         host_bits |= float_flag_input_denormal;
   2720     return host_bits;
   2721 }
   2722 
   2723 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
   2724 {
   2725     int i;
   2726     uint32_t changed;
   2727 
   2728     changed = env->vfp.xregs[ARM_VFP_FPSCR];
   2729     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
   2730     env->vfp.vec_len = (val >> 16) & 7;
   2731     env->vfp.vec_stride = (val >> 20) & 3;
   2732 
   2733     changed ^= val;
   2734     if (changed & (3 << 22)) {
   2735         i = (val >> 22) & 3;
   2736         switch (i) {
   2737         case 0:
   2738             i = float_round_nearest_even;
   2739             break;
   2740         case 1:
   2741             i = float_round_up;
   2742             break;
   2743         case 2:
   2744             i = float_round_down;
   2745             break;
   2746         case 3:
   2747             i = float_round_to_zero;
   2748             break;
   2749         }
   2750         set_float_rounding_mode(i, &env->vfp.fp_status);
   2751     }
   2752     if (changed & (1 << 24)) {
   2753         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
   2754         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
   2755     }
   2756     if (changed & (1 << 25))
   2757         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
   2758 
   2759     i = vfp_exceptbits_to_host(val);
   2760     set_float_exception_flags(i, &env->vfp.fp_status);
   2761     set_float_exception_flags(0, &env->vfp.standard_fp_status);
   2762 }
   2763 
   2764 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
   2765 {
   2766     HELPER(vfp_set_fpscr)(env, val);
   2767 }
   2768 
   2769 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
   2770 
   2771 #define VFP_BINOP(name) \
   2772 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
   2773 { \
   2774     float_status *fpst = fpstp; \
   2775     return float32_ ## name (a, b, fpst); \
   2776 } \
   2777 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
   2778 { \
   2779     float_status *fpst = fpstp; \
   2780     return float64_ ## name (a, b, fpst); \
   2781 }
   2782 VFP_BINOP(add)
   2783 VFP_BINOP(sub)
   2784 VFP_BINOP(mul)
   2785 VFP_BINOP(div)
   2786 #undef VFP_BINOP
   2787 
   2788 float32 VFP_HELPER(neg, s)(float32 a)
   2789 {
   2790     return float32_chs(a);
   2791 }
   2792 
   2793 float64 VFP_HELPER(neg, d)(float64 a)
   2794 {
   2795     return float64_chs(a);
   2796 }
   2797 
   2798 float32 VFP_HELPER(abs, s)(float32 a)
   2799 {
   2800     return float32_abs(a);
   2801 }
   2802 
   2803 float64 VFP_HELPER(abs, d)(float64 a)
   2804 {
   2805     return float64_abs(a);
   2806 }
   2807 
   2808 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
   2809 {
   2810     return float32_sqrt(a, &env->vfp.fp_status);
   2811 }
   2812 
   2813 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
   2814 {
   2815     return float64_sqrt(a, &env->vfp.fp_status);
   2816 }
   2817 
   2818 /* XXX: check quiet/signaling case */
   2819 #define DO_VFP_cmp(p, type) \
   2820 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
   2821 { \
   2822     uint32_t flags; \
   2823     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
   2824     case 0: flags = 0x6; break; \
   2825     case -1: flags = 0x8; break; \
   2826     case 1: flags = 0x2; break; \
   2827     default: case 2: flags = 0x3; break; \
   2828     } \
   2829     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
   2830         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
   2831 } \
   2832 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
   2833 { \
   2834     uint32_t flags; \
   2835     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
   2836     case 0: flags = 0x6; break; \
   2837     case -1: flags = 0x8; break; \
   2838     case 1: flags = 0x2; break; \
   2839     default: case 2: flags = 0x3; break; \
   2840     } \
   2841     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
   2842         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
   2843 }
   2844 DO_VFP_cmp(s, float32)
   2845 DO_VFP_cmp(d, float64)
   2846 #undef DO_VFP_cmp
   2847 
   2848 /* Integer to float and float to integer conversions */
   2849 
   2850 #define CONV_ITOF(name, fsz, sign) \
   2851     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
   2852 { \
   2853     float_status *fpst = fpstp; \
   2854     return sign##int32_to_##float##fsz(x, fpst); \
   2855 }
   2856 
   2857 #define CONV_FTOI(name, fsz, sign, round) \
   2858 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
   2859 { \
   2860     float_status *fpst = fpstp; \
   2861     if (float##fsz##_is_any_nan(x)) { \
   2862         float_raise(float_flag_invalid, fpst); \
   2863         return 0; \
   2864     } \
   2865     return float##fsz##_to_##sign##int32##round(x, fpst); \
   2866 }
   2867 
   2868 #define FLOAT_CONVS(name, p, fsz, sign) \
   2869 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
   2870 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
   2871 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
   2872 
   2873 FLOAT_CONVS(si, s, 32, )
   2874 FLOAT_CONVS(si, d, 64, )
   2875 FLOAT_CONVS(ui, s, 32, u)
   2876 FLOAT_CONVS(ui, d, 64, u)
   2877 
   2878 #undef CONV_ITOF
   2879 #undef CONV_FTOI
   2880 #undef FLOAT_CONVS
   2881 
   2882 /* floating point conversion */
   2883 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
   2884 {
   2885     float64 r = float32_to_float64(x, &env->vfp.fp_status);
   2886     /* ARM requires that S<->D conversion of any kind of NaN generates
   2887      * a quiet NaN by forcing the most significant frac bit to 1.
   2888      */
   2889     return float64_maybe_silence_nan(r);
   2890 }
   2891 
   2892 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
   2893 {
   2894     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
   2895     /* ARM requires that S<->D conversion of any kind of NaN generates
   2896      * a quiet NaN by forcing the most significant frac bit to 1.
   2897      */
   2898     return float32_maybe_silence_nan(r);
   2899 }
   2900 
   2901 /* VFP3 fixed point conversion.  */
   2902 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
   2903 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t  x, uint32_t shift, \
   2904                                     void *fpstp) \
   2905 { \
   2906     float_status *fpst = fpstp; \
   2907     float##fsz tmp; \
   2908     tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
   2909     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
   2910 } \
   2911 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
   2912                                        void *fpstp) \
   2913 { \
   2914     float_status *fpst = fpstp; \
   2915     float##fsz tmp; \
   2916     if (float##fsz##_is_any_nan(x)) { \
   2917         float_raise(float_flag_invalid, fpst); \
   2918         return 0; \
   2919     } \
   2920     tmp = float##fsz##_scalbn(x, shift, fpst); \
   2921     return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
   2922 }
   2923 
   2924 VFP_CONV_FIX(sh, d, 64, int16, )
   2925 VFP_CONV_FIX(sl, d, 64, int32, )
   2926 VFP_CONV_FIX(uh, d, 64, uint16, u)
   2927 VFP_CONV_FIX(ul, d, 64, uint32, u)
   2928 VFP_CONV_FIX(sh, s, 32, int16, )
   2929 VFP_CONV_FIX(sl, s, 32, int32, )
   2930 VFP_CONV_FIX(uh, s, 32, uint16, u)
   2931 VFP_CONV_FIX(ul, s, 32, uint32, u)
   2932 #undef VFP_CONV_FIX
   2933 
   2934 /* Half precision conversions.  */
   2935 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
   2936 {
   2937     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
   2938     float32 r = float16_to_float32(make_float16(a), ieee, s);
   2939     if (ieee) {
   2940         return float32_maybe_silence_nan(r);
   2941     }
   2942     return r;
   2943 }
   2944 
   2945 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
   2946 {
   2947     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
   2948     float16 r = float32_to_float16(a, ieee, s);
   2949     if (ieee) {
   2950         r = float16_maybe_silence_nan(r);
   2951     }
   2952     return float16_val(r);
   2953 }
   2954 
   2955 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
   2956 {
   2957     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
   2958 }
   2959 
   2960 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
   2961 {
   2962     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
   2963 }
   2964 
   2965 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
   2966 {
   2967     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
   2968 }
   2969 
   2970 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
   2971 {
   2972     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
   2973 }
   2974 
   2975 #define float32_two make_float32(0x40000000)
   2976 #define float32_three make_float32(0x40400000)
   2977 #define float32_one_point_five make_float32(0x3fc00000)
   2978 
   2979 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
   2980 {
   2981     float_status *s = &env->vfp.standard_fp_status;
   2982     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
   2983         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
   2984         if (!(float32_is_zero(a) || float32_is_zero(b))) {
   2985             float_raise(float_flag_input_denormal, s);
   2986         }
   2987         return float32_two;
   2988     }
   2989     return float32_sub(float32_two, float32_mul(a, b, s), s);
   2990 }
   2991 
   2992 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
   2993 {
   2994     float_status *s = &env->vfp.standard_fp_status;
   2995     float32 product;
   2996     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
   2997         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
   2998         if (!(float32_is_zero(a) || float32_is_zero(b))) {
   2999             float_raise(float_flag_input_denormal, s);
   3000         }
   3001         return float32_one_point_five;
   3002     }
   3003     product = float32_mul(a, b, s);
   3004     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
   3005 }
   3006 
   3007 /* NEON helpers.  */
   3008 
   3009 /* Constants 256 and 512 are used in some helpers; we avoid relying on
   3010  * int->float conversions at run-time.  */
   3011 #define float64_256 make_float64(0x4070000000000000LL)
   3012 #define float64_512 make_float64(0x4080000000000000LL)
   3013 
   3014 /* The algorithm that must be used to calculate the estimate
   3015  * is specified by the ARM ARM.
   3016  */
   3017 static float64 recip_estimate(float64 a, CPUARMState *env)
   3018 {
   3019     /* These calculations mustn't set any fp exception flags,
   3020      * so we use a local copy of the fp_status.
   3021      */
   3022     float_status dummy_status = env->vfp.standard_fp_status;
   3023     float_status *s = &dummy_status;
   3024     /* q = (int)(a * 512.0) */
   3025     float64 q = float64_mul(float64_512, a, s);
   3026     int64_t q_int = float64_to_int64_round_to_zero(q, s);
   3027 
   3028     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
   3029     q = int64_to_float64(q_int, s);
   3030     q = float64_add(q, float64_half, s);
   3031     q = float64_div(q, float64_512, s);
   3032     q = float64_div(float64_one, q, s);
   3033 
   3034     /* s = (int)(256.0 * r + 0.5) */
   3035     q = float64_mul(q, float64_256, s);
   3036     q = float64_add(q, float64_half, s);
   3037     q_int = float64_to_int64_round_to_zero(q, s);
   3038 
   3039     /* return (double)s / 256.0 */
   3040     return float64_div(int64_to_float64(q_int, s), float64_256, s);
   3041 }
   3042 
   3043 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
   3044 {
   3045     float_status *s = &env->vfp.standard_fp_status;
   3046     float64 f64;
   3047     uint32_t val32 = float32_val(a);
   3048 
   3049     int result_exp;
   3050     int a_exp = (val32  & 0x7f800000) >> 23;
   3051     int sign = val32 & 0x80000000;
   3052 
   3053     if (float32_is_any_nan(a)) {
   3054         if (float32_is_signaling_nan(a)) {
   3055             float_raise(float_flag_invalid, s);
   3056         }
   3057         return float32_default_nan;
   3058     } else if (float32_is_infinity(a)) {
   3059         return float32_set_sign(float32_zero, float32_is_neg(a));
   3060     } else if (float32_is_zero_or_denormal(a)) {
   3061         if (!float32_is_zero(a)) {
   3062             float_raise(float_flag_input_denormal, s);
   3063         }
   3064         float_raise(float_flag_divbyzero, s);
   3065         return float32_set_sign(float32_infinity, float32_is_neg(a));
   3066     } else if (a_exp >= 253) {
   3067         float_raise(float_flag_underflow, s);
   3068         return float32_set_sign(float32_zero, float32_is_neg(a));
   3069     }
   3070 
   3071     f64 = make_float64((0x3feULL << 52)
   3072                        | ((int64_t)(val32 & 0x7fffff) << 29));
   3073 
   3074     result_exp = 253 - a_exp;
   3075 
   3076     f64 = recip_estimate(f64, env);
   3077 
   3078     val32 = sign
   3079         | ((result_exp & 0xff) << 23)
   3080         | ((float64_val(f64) >> 29) & 0x7fffff);
   3081     return make_float32(val32);
   3082 }
   3083 
   3084 /* The algorithm that must be used to calculate the estimate
   3085  * is specified by the ARM ARM.
   3086  */
   3087 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
   3088 {
   3089     /* These calculations mustn't set any fp exception flags,
   3090      * so we use a local copy of the fp_status.
   3091      */
   3092     float_status dummy_status = env->vfp.standard_fp_status;
   3093     float_status *s = &dummy_status;
   3094     float64 q;
   3095     int64_t q_int;
   3096 
   3097     if (float64_lt(a, float64_half, s)) {
   3098         /* range 0.25 <= a < 0.5 */
   3099 
   3100         /* a in units of 1/512 rounded down */
   3101         /* q0 = (int)(a * 512.0);  */
   3102         q = float64_mul(float64_512, a, s);
   3103         q_int = float64_to_int64_round_to_zero(q, s);
   3104 
   3105         /* reciprocal root r */
   3106         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
   3107         q = int64_to_float64(q_int, s);
   3108         q = float64_add(q, float64_half, s);
   3109         q = float64_div(q, float64_512, s);
   3110         q = float64_sqrt(q, s);
   3111         q = float64_div(float64_one, q, s);
   3112     } else {
   3113         /* range 0.5 <= a < 1.0 */
   3114 
   3115         /* a in units of 1/256 rounded down */
   3116         /* q1 = (int)(a * 256.0); */
   3117         q = float64_mul(float64_256, a, s);
   3118         int64_t q_int = float64_to_int64_round_to_zero(q, s);
   3119 
   3120         /* reciprocal root r */
   3121         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
   3122         q = int64_to_float64(q_int, s);
   3123         q = float64_add(q, float64_half, s);
   3124         q = float64_div(q, float64_256, s);
   3125         q = float64_sqrt(q, s);
   3126         q = float64_div(float64_one, q, s);
   3127     }
   3128     /* r in units of 1/256 rounded to nearest */
   3129     /* s = (int)(256.0 * r + 0.5); */
   3130 
   3131     q = float64_mul(q, float64_256,s );
   3132     q = float64_add(q, float64_half, s);
   3133     q_int = float64_to_int64_round_to_zero(q, s);
   3134 
   3135     /* return (double)s / 256.0;*/
   3136     return float64_div(int64_to_float64(q_int, s), float64_256, s);
   3137 }
   3138 
   3139 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
   3140 {
   3141     float_status *s = &env->vfp.standard_fp_status;
   3142     int result_exp;
   3143     float64 f64;
   3144     uint32_t val;
   3145     uint64_t val64;
   3146 
   3147     val = float32_val(a);
   3148 
   3149     if (float32_is_any_nan(a)) {
   3150         if (float32_is_signaling_nan(a)) {
   3151             float_raise(float_flag_invalid, s);
   3152         }
   3153         return float32_default_nan;
   3154     } else if (float32_is_zero_or_denormal(a)) {
   3155         if (!float32_is_zero(a)) {
   3156             float_raise(float_flag_input_denormal, s);
   3157         }
   3158         float_raise(float_flag_divbyzero, s);
   3159         return float32_set_sign(float32_infinity, float32_is_neg(a));
   3160     } else if (float32_is_neg(a)) {
   3161         float_raise(float_flag_invalid, s);
   3162         return float32_default_nan;
   3163     } else if (float32_is_infinity(a)) {
   3164         return float32_zero;
   3165     }
   3166 
   3167     /* Normalize to a double-precision value between 0.25 and 1.0,
   3168      * preserving the parity of the exponent.  */
   3169     if ((val & 0x800000) == 0) {
   3170         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
   3171                            | (0x3feULL << 52)
   3172                            | ((uint64_t)(val & 0x7fffff) << 29));
   3173     } else {
   3174         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
   3175                            | (0x3fdULL << 52)
   3176                            | ((uint64_t)(val & 0x7fffff) << 29));
   3177     }
   3178 
   3179     result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
   3180 
   3181     f64 = recip_sqrt_estimate(f64, env);
   3182 
   3183     val64 = float64_val(f64);
   3184 
   3185     val = ((val64 >> 63)  & 0x80000000)
   3186         | ((result_exp & 0xff) << 23)
   3187         | ((val64 >> 29)  & 0x7fffff);
   3188     return make_float32(val);
   3189 }
   3190 
   3191 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
   3192 {
   3193     float64 f64;
   3194 
   3195     if ((a & 0x80000000) == 0) {
   3196         return 0xffffffff;
   3197     }
   3198 
   3199     f64 = make_float64((0x3feULL << 52)
   3200                        | ((int64_t)(a & 0x7fffffff) << 21));
   3201 
   3202     f64 = recip_estimate (f64, env);
   3203 
   3204     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
   3205 }
   3206 
   3207 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
   3208 {
   3209     float64 f64;
   3210 
   3211     if ((a & 0xc0000000) == 0) {
   3212         return 0xffffffff;
   3213     }
   3214 
   3215     if (a & 0x80000000) {
   3216         f64 = make_float64((0x3feULL << 52)
   3217                            | ((uint64_t)(a & 0x7fffffff) << 21));
   3218     } else { /* bits 31-30 == '01' */
   3219         f64 = make_float64((0x3fdULL << 52)
   3220                            | ((uint64_t)(a & 0x3fffffff) << 22));
   3221     }
   3222 
   3223     f64 = recip_sqrt_estimate(f64, env);
   3224 
   3225     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
   3226 }
   3227 
   3228 void HELPER(set_teecr)(CPUARMState *env, uint32_t val)
   3229 {
   3230     val &= 1;
   3231     if (env->teecr != val) {
   3232         env->teecr = val;
   3233         tb_flush(env);
   3234     }
   3235 }
   3236