1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the generic AliasAnalysis interface, which is used as the 11 // common interface used by all clients of alias analysis information, and 12 // implemented by all alias analysis implementations. Mod/Ref information is 13 // also captured by this interface. 14 // 15 // Implementations of this interface must implement the various virtual methods, 16 // which automatically provides functionality for the entire suite of client 17 // APIs. 18 // 19 // This API identifies memory regions with the Location class. The pointer 20 // component specifies the base memory address of the region. The Size specifies 21 // the maximum size (in address units) of the memory region, or UnknownSize if 22 // the size is not known. The TBAA tag identifies the "type" of the memory 23 // reference; see the TypeBasedAliasAnalysis class for details. 24 // 25 // Some non-obvious details include: 26 // - Pointers that point to two completely different objects in memory never 27 // alias, regardless of the value of the Size component. 28 // - NoAlias doesn't imply inequal pointers. The most obvious example of this 29 // is two pointers to constant memory. Even if they are equal, constant 30 // memory is never stored to, so there will never be any dependencies. 31 // In this and other situations, the pointers may be both NoAlias and 32 // MustAlias at the same time. The current API can only return one result, 33 // though this is rarely a problem in practice. 34 // 35 //===----------------------------------------------------------------------===// 36 37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H 38 #define LLVM_ANALYSIS_ALIASANALYSIS_H 39 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/IR/CallSite.h" 42 43 namespace llvm { 44 45 class LoadInst; 46 class StoreInst; 47 class VAArgInst; 48 class DataLayout; 49 class TargetLibraryInfo; 50 class Pass; 51 class AnalysisUsage; 52 class MemTransferInst; 53 class MemIntrinsic; 54 class DominatorTree; 55 56 class AliasAnalysis { 57 protected: 58 const DataLayout *DL; 59 const TargetLibraryInfo *TLI; 60 61 private: 62 AliasAnalysis *AA; // Previous Alias Analysis to chain to. 63 64 protected: 65 /// InitializeAliasAnalysis - Subclasses must call this method to initialize 66 /// the AliasAnalysis interface before any other methods are called. This is 67 /// typically called by the run* methods of these subclasses. This may be 68 /// called multiple times. 69 /// 70 void InitializeAliasAnalysis(Pass *P); 71 72 /// getAnalysisUsage - All alias analysis implementations should invoke this 73 /// directly (using AliasAnalysis::getAnalysisUsage(AU)). 74 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 75 76 public: 77 static char ID; // Class identification, replacement for typeinfo 78 AliasAnalysis() : DL(nullptr), TLI(nullptr), AA(nullptr) {} 79 virtual ~AliasAnalysis(); // We want to be subclassed 80 81 /// UnknownSize - This is a special value which can be used with the 82 /// size arguments in alias queries to indicate that the caller does not 83 /// know the sizes of the potential memory references. 84 static uint64_t const UnknownSize = ~UINT64_C(0); 85 86 /// getDataLayout - Return a pointer to the current DataLayout object, or 87 /// null if no DataLayout object is available. 88 /// 89 const DataLayout *getDataLayout() const { return DL; } 90 91 /// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo 92 /// object, or null if no TargetLibraryInfo object is available. 93 /// 94 const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; } 95 96 /// getTypeStoreSize - Return the DataLayout store size for the given type, 97 /// if known, or a conservative value otherwise. 98 /// 99 uint64_t getTypeStoreSize(Type *Ty); 100 101 //===--------------------------------------------------------------------===// 102 /// Alias Queries... 103 /// 104 105 /// Location - A description of a memory location. 106 struct Location { 107 /// Ptr - The address of the start of the location. 108 const Value *Ptr; 109 /// Size - The maximum size of the location, in address-units, or 110 /// UnknownSize if the size is not known. Note that an unknown size does 111 /// not mean the pointer aliases the entire virtual address space, because 112 /// there are restrictions on stepping out of one object and into another. 113 /// See http://llvm.org/docs/LangRef.html#pointeraliasing 114 uint64_t Size; 115 /// TBAATag - The metadata node which describes the TBAA type of 116 /// the location, or null if there is no known unique tag. 117 const MDNode *TBAATag; 118 119 explicit Location(const Value *P = nullptr, uint64_t S = UnknownSize, 120 const MDNode *N = nullptr) 121 : Ptr(P), Size(S), TBAATag(N) {} 122 123 Location getWithNewPtr(const Value *NewPtr) const { 124 Location Copy(*this); 125 Copy.Ptr = NewPtr; 126 return Copy; 127 } 128 129 Location getWithNewSize(uint64_t NewSize) const { 130 Location Copy(*this); 131 Copy.Size = NewSize; 132 return Copy; 133 } 134 135 Location getWithoutTBAATag() const { 136 Location Copy(*this); 137 Copy.TBAATag = nullptr; 138 return Copy; 139 } 140 }; 141 142 /// getLocation - Fill in Loc with information about the memory reference by 143 /// the given instruction. 144 Location getLocation(const LoadInst *LI); 145 Location getLocation(const StoreInst *SI); 146 Location getLocation(const VAArgInst *VI); 147 Location getLocation(const AtomicCmpXchgInst *CXI); 148 Location getLocation(const AtomicRMWInst *RMWI); 149 static Location getLocationForSource(const MemTransferInst *MTI); 150 static Location getLocationForDest(const MemIntrinsic *MI); 151 152 /// Alias analysis result - Either we know for sure that it does not alias, we 153 /// know for sure it must alias, or we don't know anything: The two pointers 154 /// _might_ alias. This enum is designed so you can do things like: 155 /// if (AA.alias(P1, P2)) { ... } 156 /// to check to see if two pointers might alias. 157 /// 158 /// See docs/AliasAnalysis.html for more information on the specific meanings 159 /// of these values. 160 /// 161 enum AliasResult { 162 NoAlias = 0, ///< No dependencies. 163 MayAlias, ///< Anything goes. 164 PartialAlias, ///< Pointers differ, but pointees overlap. 165 MustAlias ///< Pointers are equal. 166 }; 167 168 /// alias - The main low level interface to the alias analysis implementation. 169 /// Returns an AliasResult indicating whether the two pointers are aliased to 170 /// each other. This is the interface that must be implemented by specific 171 /// alias analysis implementations. 172 virtual AliasResult alias(const Location &LocA, const Location &LocB); 173 174 /// alias - A convenience wrapper. 175 AliasResult alias(const Value *V1, uint64_t V1Size, 176 const Value *V2, uint64_t V2Size) { 177 return alias(Location(V1, V1Size), Location(V2, V2Size)); 178 } 179 180 /// alias - A convenience wrapper. 181 AliasResult alias(const Value *V1, const Value *V2) { 182 return alias(V1, UnknownSize, V2, UnknownSize); 183 } 184 185 /// isNoAlias - A trivial helper function to check to see if the specified 186 /// pointers are no-alias. 187 bool isNoAlias(const Location &LocA, const Location &LocB) { 188 return alias(LocA, LocB) == NoAlias; 189 } 190 191 /// isNoAlias - A convenience wrapper. 192 bool isNoAlias(const Value *V1, uint64_t V1Size, 193 const Value *V2, uint64_t V2Size) { 194 return isNoAlias(Location(V1, V1Size), Location(V2, V2Size)); 195 } 196 197 /// isNoAlias - A convenience wrapper. 198 bool isNoAlias(const Value *V1, const Value *V2) { 199 return isNoAlias(Location(V1), Location(V2)); 200 } 201 202 /// isMustAlias - A convenience wrapper. 203 bool isMustAlias(const Location &LocA, const Location &LocB) { 204 return alias(LocA, LocB) == MustAlias; 205 } 206 207 /// isMustAlias - A convenience wrapper. 208 bool isMustAlias(const Value *V1, const Value *V2) { 209 return alias(V1, 1, V2, 1) == MustAlias; 210 } 211 212 /// pointsToConstantMemory - If the specified memory location is 213 /// known to be constant, return true. If OrLocal is true and the 214 /// specified memory location is known to be "local" (derived from 215 /// an alloca), return true. Otherwise return false. 216 virtual bool pointsToConstantMemory(const Location &Loc, 217 bool OrLocal = false); 218 219 /// pointsToConstantMemory - A convenient wrapper. 220 bool pointsToConstantMemory(const Value *P, bool OrLocal = false) { 221 return pointsToConstantMemory(Location(P), OrLocal); 222 } 223 224 //===--------------------------------------------------------------------===// 225 /// Simple mod/ref information... 226 /// 227 228 /// ModRefResult - Represent the result of a mod/ref query. Mod and Ref are 229 /// bits which may be or'd together. 230 /// 231 enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 }; 232 233 /// These values define additional bits used to define the 234 /// ModRefBehavior values. 235 enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees }; 236 237 /// ModRefBehavior - Summary of how a function affects memory in the program. 238 /// Loads from constant globals are not considered memory accesses for this 239 /// interface. Also, functions may freely modify stack space local to their 240 /// invocation without having to report it through these interfaces. 241 enum ModRefBehavior { 242 /// DoesNotAccessMemory - This function does not perform any non-local loads 243 /// or stores to memory. 244 /// 245 /// This property corresponds to the GCC 'const' attribute. 246 /// This property corresponds to the LLVM IR 'readnone' attribute. 247 /// This property corresponds to the IntrNoMem LLVM intrinsic flag. 248 DoesNotAccessMemory = Nowhere | NoModRef, 249 250 /// OnlyReadsArgumentPointees - The only memory references in this function 251 /// (if it has any) are non-volatile loads from objects pointed to by its 252 /// pointer-typed arguments, with arbitrary offsets. 253 /// 254 /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag. 255 OnlyReadsArgumentPointees = ArgumentPointees | Ref, 256 257 /// OnlyAccessesArgumentPointees - The only memory references in this 258 /// function (if it has any) are non-volatile loads and stores from objects 259 /// pointed to by its pointer-typed arguments, with arbitrary offsets. 260 /// 261 /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag. 262 OnlyAccessesArgumentPointees = ArgumentPointees | ModRef, 263 264 /// OnlyReadsMemory - This function does not perform any non-local stores or 265 /// volatile loads, but may read from any memory location. 266 /// 267 /// This property corresponds to the GCC 'pure' attribute. 268 /// This property corresponds to the LLVM IR 'readonly' attribute. 269 /// This property corresponds to the IntrReadMem LLVM intrinsic flag. 270 OnlyReadsMemory = Anywhere | Ref, 271 272 /// UnknownModRefBehavior - This indicates that the function could not be 273 /// classified into one of the behaviors above. 274 UnknownModRefBehavior = Anywhere | ModRef 275 }; 276 277 /// Get the location associated with a pointer argument of a callsite. 278 /// The mask bits are set to indicate the allowed aliasing ModRef kinds. 279 /// Note that these mask bits do not necessarily account for the overall 280 /// behavior of the function, but rather only provide additional 281 /// per-argument information. 282 virtual Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, 283 ModRefResult &Mask); 284 285 /// getModRefBehavior - Return the behavior when calling the given call site. 286 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); 287 288 /// getModRefBehavior - Return the behavior when calling the given function. 289 /// For use when the call site is not known. 290 virtual ModRefBehavior getModRefBehavior(const Function *F); 291 292 /// doesNotAccessMemory - If the specified call is known to never read or 293 /// write memory, return true. If the call only reads from known-constant 294 /// memory, it is also legal to return true. Calls that unwind the stack 295 /// are legal for this predicate. 296 /// 297 /// Many optimizations (such as CSE and LICM) can be performed on such calls 298 /// without worrying about aliasing properties, and many calls have this 299 /// property (e.g. calls to 'sin' and 'cos'). 300 /// 301 /// This property corresponds to the GCC 'const' attribute. 302 /// 303 bool doesNotAccessMemory(ImmutableCallSite CS) { 304 return getModRefBehavior(CS) == DoesNotAccessMemory; 305 } 306 307 /// doesNotAccessMemory - If the specified function is known to never read or 308 /// write memory, return true. For use when the call site is not known. 309 /// 310 bool doesNotAccessMemory(const Function *F) { 311 return getModRefBehavior(F) == DoesNotAccessMemory; 312 } 313 314 /// onlyReadsMemory - If the specified call is known to only read from 315 /// non-volatile memory (or not access memory at all), return true. Calls 316 /// that unwind the stack are legal for this predicate. 317 /// 318 /// This property allows many common optimizations to be performed in the 319 /// absence of interfering store instructions, such as CSE of strlen calls. 320 /// 321 /// This property corresponds to the GCC 'pure' attribute. 322 /// 323 bool onlyReadsMemory(ImmutableCallSite CS) { 324 return onlyReadsMemory(getModRefBehavior(CS)); 325 } 326 327 /// onlyReadsMemory - If the specified function is known to only read from 328 /// non-volatile memory (or not access memory at all), return true. For use 329 /// when the call site is not known. 330 /// 331 bool onlyReadsMemory(const Function *F) { 332 return onlyReadsMemory(getModRefBehavior(F)); 333 } 334 335 /// onlyReadsMemory - Return true if functions with the specified behavior are 336 /// known to only read from non-volatile memory (or not access memory at all). 337 /// 338 static bool onlyReadsMemory(ModRefBehavior MRB) { 339 return !(MRB & Mod); 340 } 341 342 /// onlyAccessesArgPointees - Return true if functions with the specified 343 /// behavior are known to read and write at most from objects pointed to by 344 /// their pointer-typed arguments (with arbitrary offsets). 345 /// 346 static bool onlyAccessesArgPointees(ModRefBehavior MRB) { 347 return !(MRB & Anywhere & ~ArgumentPointees); 348 } 349 350 /// doesAccessArgPointees - Return true if functions with the specified 351 /// behavior are known to potentially read or write from objects pointed 352 /// to be their pointer-typed arguments (with arbitrary offsets). 353 /// 354 static bool doesAccessArgPointees(ModRefBehavior MRB) { 355 return (MRB & ModRef) && (MRB & ArgumentPointees); 356 } 357 358 /// getModRefInfo - Return information about whether or not an instruction may 359 /// read or write the specified memory location. An instruction 360 /// that doesn't read or write memory may be trivially LICM'd for example. 361 ModRefResult getModRefInfo(const Instruction *I, 362 const Location &Loc) { 363 switch (I->getOpcode()) { 364 case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc); 365 case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc); 366 case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc); 367 case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc); 368 case Instruction::AtomicCmpXchg: 369 return getModRefInfo((const AtomicCmpXchgInst*)I, Loc); 370 case Instruction::AtomicRMW: 371 return getModRefInfo((const AtomicRMWInst*)I, Loc); 372 case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc); 373 case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc); 374 default: return NoModRef; 375 } 376 } 377 378 /// getModRefInfo - A convenience wrapper. 379 ModRefResult getModRefInfo(const Instruction *I, 380 const Value *P, uint64_t Size) { 381 return getModRefInfo(I, Location(P, Size)); 382 } 383 384 /// getModRefInfo (for call sites) - Return information about whether 385 /// a particular call site modifies or reads the specified memory location. 386 virtual ModRefResult getModRefInfo(ImmutableCallSite CS, 387 const Location &Loc); 388 389 /// getModRefInfo (for call sites) - A convenience wrapper. 390 ModRefResult getModRefInfo(ImmutableCallSite CS, 391 const Value *P, uint64_t Size) { 392 return getModRefInfo(CS, Location(P, Size)); 393 } 394 395 /// getModRefInfo (for calls) - Return information about whether 396 /// a particular call modifies or reads the specified memory location. 397 ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) { 398 return getModRefInfo(ImmutableCallSite(C), Loc); 399 } 400 401 /// getModRefInfo (for calls) - A convenience wrapper. 402 ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) { 403 return getModRefInfo(C, Location(P, Size)); 404 } 405 406 /// getModRefInfo (for invokes) - Return information about whether 407 /// a particular invoke modifies or reads the specified memory location. 408 ModRefResult getModRefInfo(const InvokeInst *I, 409 const Location &Loc) { 410 return getModRefInfo(ImmutableCallSite(I), Loc); 411 } 412 413 /// getModRefInfo (for invokes) - A convenience wrapper. 414 ModRefResult getModRefInfo(const InvokeInst *I, 415 const Value *P, uint64_t Size) { 416 return getModRefInfo(I, Location(P, Size)); 417 } 418 419 /// getModRefInfo (for loads) - Return information about whether 420 /// a particular load modifies or reads the specified memory location. 421 ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc); 422 423 /// getModRefInfo (for loads) - A convenience wrapper. 424 ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) { 425 return getModRefInfo(L, Location(P, Size)); 426 } 427 428 /// getModRefInfo (for stores) - Return information about whether 429 /// a particular store modifies or reads the specified memory location. 430 ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc); 431 432 /// getModRefInfo (for stores) - A convenience wrapper. 433 ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){ 434 return getModRefInfo(S, Location(P, Size)); 435 } 436 437 /// getModRefInfo (for fences) - Return information about whether 438 /// a particular store modifies or reads the specified memory location. 439 ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) { 440 // Conservatively correct. (We could possibly be a bit smarter if 441 // Loc is a alloca that doesn't escape.) 442 return ModRef; 443 } 444 445 /// getModRefInfo (for fences) - A convenience wrapper. 446 ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){ 447 return getModRefInfo(S, Location(P, Size)); 448 } 449 450 /// getModRefInfo (for cmpxchges) - Return information about whether 451 /// a particular cmpxchg modifies or reads the specified memory location. 452 ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc); 453 454 /// getModRefInfo (for cmpxchges) - A convenience wrapper. 455 ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, 456 const Value *P, unsigned Size) { 457 return getModRefInfo(CX, Location(P, Size)); 458 } 459 460 /// getModRefInfo (for atomicrmws) - Return information about whether 461 /// a particular atomicrmw modifies or reads the specified memory location. 462 ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc); 463 464 /// getModRefInfo (for atomicrmws) - A convenience wrapper. 465 ModRefResult getModRefInfo(const AtomicRMWInst *RMW, 466 const Value *P, unsigned Size) { 467 return getModRefInfo(RMW, Location(P, Size)); 468 } 469 470 /// getModRefInfo (for va_args) - Return information about whether 471 /// a particular va_arg modifies or reads the specified memory location. 472 ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc); 473 474 /// getModRefInfo (for va_args) - A convenience wrapper. 475 ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){ 476 return getModRefInfo(I, Location(P, Size)); 477 } 478 479 /// getModRefInfo - Return information about whether two call sites may refer 480 /// to the same set of memory locations. See 481 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo 482 /// for details. 483 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, 484 ImmutableCallSite CS2); 485 486 /// callCapturesBefore - Return information about whether a particular call 487 /// site modifies or reads the specified memory location. 488 ModRefResult callCapturesBefore(const Instruction *I, 489 const AliasAnalysis::Location &MemLoc, 490 DominatorTree *DT); 491 492 /// callCapturesBefore - A convenience wrapper. 493 ModRefResult callCapturesBefore(const Instruction *I, const Value *P, 494 uint64_t Size, DominatorTree *DT) { 495 return callCapturesBefore(I, Location(P, Size), DT); 496 } 497 498 //===--------------------------------------------------------------------===// 499 /// Higher level methods for querying mod/ref information. 500 /// 501 502 /// canBasicBlockModify - Return true if it is possible for execution of the 503 /// specified basic block to modify the value pointed to by Ptr. 504 bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc); 505 506 /// canBasicBlockModify - A convenience wrapper. 507 bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){ 508 return canBasicBlockModify(BB, Location(P, Size)); 509 } 510 511 /// canInstructionRangeModify - Return true if it is possible for the 512 /// execution of the specified instructions to modify the value pointed to by 513 /// Ptr. The instructions to consider are all of the instructions in the 514 /// range of [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block. 515 bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2, 516 const Location &Loc); 517 518 /// canInstructionRangeModify - A convenience wrapper. 519 bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2, 520 const Value *Ptr, uint64_t Size) { 521 return canInstructionRangeModify(I1, I2, Location(Ptr, Size)); 522 } 523 524 //===--------------------------------------------------------------------===// 525 /// Methods that clients should call when they transform the program to allow 526 /// alias analyses to update their internal data structures. Note that these 527 /// methods may be called on any instruction, regardless of whether or not 528 /// they have pointer-analysis implications. 529 /// 530 531 /// deleteValue - This method should be called whenever an LLVM Value is 532 /// deleted from the program, for example when an instruction is found to be 533 /// redundant and is eliminated. 534 /// 535 virtual void deleteValue(Value *V); 536 537 /// copyValue - This method should be used whenever a preexisting value in the 538 /// program is copied or cloned, introducing a new value. Note that analysis 539 /// implementations should tolerate clients that use this method to introduce 540 /// the same value multiple times: if the analysis already knows about a 541 /// value, it should ignore the request. 542 /// 543 virtual void copyValue(Value *From, Value *To); 544 545 /// addEscapingUse - This method should be used whenever an escaping use is 546 /// added to a pointer value. Analysis implementations may either return 547 /// conservative responses for that value in the future, or may recompute 548 /// some or all internal state to continue providing precise responses. 549 /// 550 /// Escaping uses are considered by anything _except_ the following: 551 /// - GEPs or bitcasts of the pointer 552 /// - Loads through the pointer 553 /// - Stores through (but not of) the pointer 554 virtual void addEscapingUse(Use &U); 555 556 /// replaceWithNewValue - This method is the obvious combination of the two 557 /// above, and it provided as a helper to simplify client code. 558 /// 559 void replaceWithNewValue(Value *Old, Value *New) { 560 copyValue(Old, New); 561 deleteValue(Old); 562 } 563 }; 564 565 // Specialize DenseMapInfo for Location. 566 template<> 567 struct DenseMapInfo<AliasAnalysis::Location> { 568 static inline AliasAnalysis::Location getEmptyKey() { 569 return 570 AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(), 571 0, nullptr); 572 } 573 static inline AliasAnalysis::Location getTombstoneKey() { 574 return 575 AliasAnalysis::Location(DenseMapInfo<const Value *>::getTombstoneKey(), 576 0, nullptr); 577 } 578 static unsigned getHashValue(const AliasAnalysis::Location &Val) { 579 return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^ 580 DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^ 581 DenseMapInfo<const MDNode *>::getHashValue(Val.TBAATag); 582 } 583 static bool isEqual(const AliasAnalysis::Location &LHS, 584 const AliasAnalysis::Location &RHS) { 585 return LHS.Ptr == RHS.Ptr && 586 LHS.Size == RHS.Size && 587 LHS.TBAATag == RHS.TBAATag; 588 } 589 }; 590 591 /// isNoAliasCall - Return true if this pointer is returned by a noalias 592 /// function. 593 bool isNoAliasCall(const Value *V); 594 595 /// isNoAliasArgument - Return true if this is an argument with the noalias 596 /// attribute. 597 bool isNoAliasArgument(const Value *V); 598 599 /// isIdentifiedObject - Return true if this pointer refers to a distinct and 600 /// identifiable object. This returns true for: 601 /// Global Variables and Functions (but not Global Aliases) 602 /// Allocas 603 /// ByVal and NoAlias Arguments 604 /// NoAlias returns (e.g. calls to malloc) 605 /// 606 bool isIdentifiedObject(const Value *V); 607 608 } // End llvm namespace 609 610 #endif 611