Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the generic AliasAnalysis interface, which is used as the
     11 // common interface used by all clients of alias analysis information, and
     12 // implemented by all alias analysis implementations.  Mod/Ref information is
     13 // also captured by this interface.
     14 //
     15 // Implementations of this interface must implement the various virtual methods,
     16 // which automatically provides functionality for the entire suite of client
     17 // APIs.
     18 //
     19 // This API identifies memory regions with the Location class. The pointer
     20 // component specifies the base memory address of the region. The Size specifies
     21 // the maximum size (in address units) of the memory region, or UnknownSize if
     22 // the size is not known. The TBAA tag identifies the "type" of the memory
     23 // reference; see the TypeBasedAliasAnalysis class for details.
     24 //
     25 // Some non-obvious details include:
     26 //  - Pointers that point to two completely different objects in memory never
     27 //    alias, regardless of the value of the Size component.
     28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
     29 //    is two pointers to constant memory. Even if they are equal, constant
     30 //    memory is never stored to, so there will never be any dependencies.
     31 //    In this and other situations, the pointers may be both NoAlias and
     32 //    MustAlias at the same time. The current API can only return one result,
     33 //    though this is rarely a problem in practice.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 
     37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
     38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
     39 
     40 #include "llvm/ADT/DenseMap.h"
     41 #include "llvm/IR/CallSite.h"
     42 
     43 namespace llvm {
     44 
     45 class LoadInst;
     46 class StoreInst;
     47 class VAArgInst;
     48 class DataLayout;
     49 class TargetLibraryInfo;
     50 class Pass;
     51 class AnalysisUsage;
     52 class MemTransferInst;
     53 class MemIntrinsic;
     54 class DominatorTree;
     55 
     56 class AliasAnalysis {
     57 protected:
     58   const DataLayout *DL;
     59   const TargetLibraryInfo *TLI;
     60 
     61 private:
     62   AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
     63 
     64 protected:
     65   /// InitializeAliasAnalysis - Subclasses must call this method to initialize
     66   /// the AliasAnalysis interface before any other methods are called.  This is
     67   /// typically called by the run* methods of these subclasses.  This may be
     68   /// called multiple times.
     69   ///
     70   void InitializeAliasAnalysis(Pass *P);
     71 
     72   /// getAnalysisUsage - All alias analysis implementations should invoke this
     73   /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
     74   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     75 
     76 public:
     77   static char ID; // Class identification, replacement for typeinfo
     78   AliasAnalysis() : DL(nullptr), TLI(nullptr), AA(nullptr) {}
     79   virtual ~AliasAnalysis();  // We want to be subclassed
     80 
     81   /// UnknownSize - This is a special value which can be used with the
     82   /// size arguments in alias queries to indicate that the caller does not
     83   /// know the sizes of the potential memory references.
     84   static uint64_t const UnknownSize = ~UINT64_C(0);
     85 
     86   /// getDataLayout - Return a pointer to the current DataLayout object, or
     87   /// null if no DataLayout object is available.
     88   ///
     89   const DataLayout *getDataLayout() const { return DL; }
     90 
     91   /// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo
     92   /// object, or null if no TargetLibraryInfo object is available.
     93   ///
     94   const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
     95 
     96   /// getTypeStoreSize - Return the DataLayout store size for the given type,
     97   /// if known, or a conservative value otherwise.
     98   ///
     99   uint64_t getTypeStoreSize(Type *Ty);
    100 
    101   //===--------------------------------------------------------------------===//
    102   /// Alias Queries...
    103   ///
    104 
    105   /// Location - A description of a memory location.
    106   struct Location {
    107     /// Ptr - The address of the start of the location.
    108     const Value *Ptr;
    109     /// Size - The maximum size of the location, in address-units, or
    110     /// UnknownSize if the size is not known.  Note that an unknown size does
    111     /// not mean the pointer aliases the entire virtual address space, because
    112     /// there are restrictions on stepping out of one object and into another.
    113     /// See http://llvm.org/docs/LangRef.html#pointeraliasing
    114     uint64_t Size;
    115     /// TBAATag - The metadata node which describes the TBAA type of
    116     /// the location, or null if there is no known unique tag.
    117     const MDNode *TBAATag;
    118 
    119     explicit Location(const Value *P = nullptr, uint64_t S = UnknownSize,
    120                       const MDNode *N = nullptr)
    121       : Ptr(P), Size(S), TBAATag(N) {}
    122 
    123     Location getWithNewPtr(const Value *NewPtr) const {
    124       Location Copy(*this);
    125       Copy.Ptr = NewPtr;
    126       return Copy;
    127     }
    128 
    129     Location getWithNewSize(uint64_t NewSize) const {
    130       Location Copy(*this);
    131       Copy.Size = NewSize;
    132       return Copy;
    133     }
    134 
    135     Location getWithoutTBAATag() const {
    136       Location Copy(*this);
    137       Copy.TBAATag = nullptr;
    138       return Copy;
    139     }
    140   };
    141 
    142   /// getLocation - Fill in Loc with information about the memory reference by
    143   /// the given instruction.
    144   Location getLocation(const LoadInst *LI);
    145   Location getLocation(const StoreInst *SI);
    146   Location getLocation(const VAArgInst *VI);
    147   Location getLocation(const AtomicCmpXchgInst *CXI);
    148   Location getLocation(const AtomicRMWInst *RMWI);
    149   static Location getLocationForSource(const MemTransferInst *MTI);
    150   static Location getLocationForDest(const MemIntrinsic *MI);
    151 
    152   /// Alias analysis result - Either we know for sure that it does not alias, we
    153   /// know for sure it must alias, or we don't know anything: The two pointers
    154   /// _might_ alias.  This enum is designed so you can do things like:
    155   ///     if (AA.alias(P1, P2)) { ... }
    156   /// to check to see if two pointers might alias.
    157   ///
    158   /// See docs/AliasAnalysis.html for more information on the specific meanings
    159   /// of these values.
    160   ///
    161   enum AliasResult {
    162     NoAlias = 0,        ///< No dependencies.
    163     MayAlias,           ///< Anything goes.
    164     PartialAlias,       ///< Pointers differ, but pointees overlap.
    165     MustAlias           ///< Pointers are equal.
    166   };
    167 
    168   /// alias - The main low level interface to the alias analysis implementation.
    169   /// Returns an AliasResult indicating whether the two pointers are aliased to
    170   /// each other.  This is the interface that must be implemented by specific
    171   /// alias analysis implementations.
    172   virtual AliasResult alias(const Location &LocA, const Location &LocB);
    173 
    174   /// alias - A convenience wrapper.
    175   AliasResult alias(const Value *V1, uint64_t V1Size,
    176                     const Value *V2, uint64_t V2Size) {
    177     return alias(Location(V1, V1Size), Location(V2, V2Size));
    178   }
    179 
    180   /// alias - A convenience wrapper.
    181   AliasResult alias(const Value *V1, const Value *V2) {
    182     return alias(V1, UnknownSize, V2, UnknownSize);
    183   }
    184 
    185   /// isNoAlias - A trivial helper function to check to see if the specified
    186   /// pointers are no-alias.
    187   bool isNoAlias(const Location &LocA, const Location &LocB) {
    188     return alias(LocA, LocB) == NoAlias;
    189   }
    190 
    191   /// isNoAlias - A convenience wrapper.
    192   bool isNoAlias(const Value *V1, uint64_t V1Size,
    193                  const Value *V2, uint64_t V2Size) {
    194     return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
    195   }
    196 
    197   /// isNoAlias - A convenience wrapper.
    198   bool isNoAlias(const Value *V1, const Value *V2) {
    199     return isNoAlias(Location(V1), Location(V2));
    200   }
    201 
    202   /// isMustAlias - A convenience wrapper.
    203   bool isMustAlias(const Location &LocA, const Location &LocB) {
    204     return alias(LocA, LocB) == MustAlias;
    205   }
    206 
    207   /// isMustAlias - A convenience wrapper.
    208   bool isMustAlias(const Value *V1, const Value *V2) {
    209     return alias(V1, 1, V2, 1) == MustAlias;
    210   }
    211 
    212   /// pointsToConstantMemory - If the specified memory location is
    213   /// known to be constant, return true. If OrLocal is true and the
    214   /// specified memory location is known to be "local" (derived from
    215   /// an alloca), return true. Otherwise return false.
    216   virtual bool pointsToConstantMemory(const Location &Loc,
    217                                       bool OrLocal = false);
    218 
    219   /// pointsToConstantMemory - A convenient wrapper.
    220   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
    221     return pointsToConstantMemory(Location(P), OrLocal);
    222   }
    223 
    224   //===--------------------------------------------------------------------===//
    225   /// Simple mod/ref information...
    226   ///
    227 
    228   /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
    229   /// bits which may be or'd together.
    230   ///
    231   enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
    232 
    233   /// These values define additional bits used to define the
    234   /// ModRefBehavior values.
    235   enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
    236 
    237   /// ModRefBehavior - Summary of how a function affects memory in the program.
    238   /// Loads from constant globals are not considered memory accesses for this
    239   /// interface.  Also, functions may freely modify stack space local to their
    240   /// invocation without having to report it through these interfaces.
    241   enum ModRefBehavior {
    242     /// DoesNotAccessMemory - This function does not perform any non-local loads
    243     /// or stores to memory.
    244     ///
    245     /// This property corresponds to the GCC 'const' attribute.
    246     /// This property corresponds to the LLVM IR 'readnone' attribute.
    247     /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
    248     DoesNotAccessMemory = Nowhere | NoModRef,
    249 
    250     /// OnlyReadsArgumentPointees - The only memory references in this function
    251     /// (if it has any) are non-volatile loads from objects pointed to by its
    252     /// pointer-typed arguments, with arbitrary offsets.
    253     ///
    254     /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
    255     OnlyReadsArgumentPointees = ArgumentPointees | Ref,
    256 
    257     /// OnlyAccessesArgumentPointees - The only memory references in this
    258     /// function (if it has any) are non-volatile loads and stores from objects
    259     /// pointed to by its pointer-typed arguments, with arbitrary offsets.
    260     ///
    261     /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
    262     OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
    263 
    264     /// OnlyReadsMemory - This function does not perform any non-local stores or
    265     /// volatile loads, but may read from any memory location.
    266     ///
    267     /// This property corresponds to the GCC 'pure' attribute.
    268     /// This property corresponds to the LLVM IR 'readonly' attribute.
    269     /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
    270     OnlyReadsMemory = Anywhere | Ref,
    271 
    272     /// UnknownModRefBehavior - This indicates that the function could not be
    273     /// classified into one of the behaviors above.
    274     UnknownModRefBehavior = Anywhere | ModRef
    275   };
    276 
    277   /// Get the location associated with a pointer argument of a callsite.
    278   /// The mask bits are set to indicate the allowed aliasing ModRef kinds.
    279   /// Note that these mask bits do not necessarily account for the overall
    280   /// behavior of the function, but rather only provide additional
    281   /// per-argument information.
    282   virtual Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
    283                                   ModRefResult &Mask);
    284 
    285   /// getModRefBehavior - Return the behavior when calling the given call site.
    286   virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
    287 
    288   /// getModRefBehavior - Return the behavior when calling the given function.
    289   /// For use when the call site is not known.
    290   virtual ModRefBehavior getModRefBehavior(const Function *F);
    291 
    292   /// doesNotAccessMemory - If the specified call is known to never read or
    293   /// write memory, return true.  If the call only reads from known-constant
    294   /// memory, it is also legal to return true.  Calls that unwind the stack
    295   /// are legal for this predicate.
    296   ///
    297   /// Many optimizations (such as CSE and LICM) can be performed on such calls
    298   /// without worrying about aliasing properties, and many calls have this
    299   /// property (e.g. calls to 'sin' and 'cos').
    300   ///
    301   /// This property corresponds to the GCC 'const' attribute.
    302   ///
    303   bool doesNotAccessMemory(ImmutableCallSite CS) {
    304     return getModRefBehavior(CS) == DoesNotAccessMemory;
    305   }
    306 
    307   /// doesNotAccessMemory - If the specified function is known to never read or
    308   /// write memory, return true.  For use when the call site is not known.
    309   ///
    310   bool doesNotAccessMemory(const Function *F) {
    311     return getModRefBehavior(F) == DoesNotAccessMemory;
    312   }
    313 
    314   /// onlyReadsMemory - If the specified call is known to only read from
    315   /// non-volatile memory (or not access memory at all), return true.  Calls
    316   /// that unwind the stack are legal for this predicate.
    317   ///
    318   /// This property allows many common optimizations to be performed in the
    319   /// absence of interfering store instructions, such as CSE of strlen calls.
    320   ///
    321   /// This property corresponds to the GCC 'pure' attribute.
    322   ///
    323   bool onlyReadsMemory(ImmutableCallSite CS) {
    324     return onlyReadsMemory(getModRefBehavior(CS));
    325   }
    326 
    327   /// onlyReadsMemory - If the specified function is known to only read from
    328   /// non-volatile memory (or not access memory at all), return true.  For use
    329   /// when the call site is not known.
    330   ///
    331   bool onlyReadsMemory(const Function *F) {
    332     return onlyReadsMemory(getModRefBehavior(F));
    333   }
    334 
    335   /// onlyReadsMemory - Return true if functions with the specified behavior are
    336   /// known to only read from non-volatile memory (or not access memory at all).
    337   ///
    338   static bool onlyReadsMemory(ModRefBehavior MRB) {
    339     return !(MRB & Mod);
    340   }
    341 
    342   /// onlyAccessesArgPointees - Return true if functions with the specified
    343   /// behavior are known to read and write at most from objects pointed to by
    344   /// their pointer-typed arguments (with arbitrary offsets).
    345   ///
    346   static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
    347     return !(MRB & Anywhere & ~ArgumentPointees);
    348   }
    349 
    350   /// doesAccessArgPointees - Return true if functions with the specified
    351   /// behavior are known to potentially read or write from objects pointed
    352   /// to be their pointer-typed arguments (with arbitrary offsets).
    353   ///
    354   static bool doesAccessArgPointees(ModRefBehavior MRB) {
    355     return (MRB & ModRef) && (MRB & ArgumentPointees);
    356   }
    357 
    358   /// getModRefInfo - Return information about whether or not an instruction may
    359   /// read or write the specified memory location.  An instruction
    360   /// that doesn't read or write memory may be trivially LICM'd for example.
    361   ModRefResult getModRefInfo(const Instruction *I,
    362                              const Location &Loc) {
    363     switch (I->getOpcode()) {
    364     case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
    365     case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
    366     case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
    367     case Instruction::Fence:  return getModRefInfo((const FenceInst*)I, Loc);
    368     case Instruction::AtomicCmpXchg:
    369       return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
    370     case Instruction::AtomicRMW:
    371       return getModRefInfo((const AtomicRMWInst*)I, Loc);
    372     case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
    373     case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
    374     default:                  return NoModRef;
    375     }
    376   }
    377 
    378   /// getModRefInfo - A convenience wrapper.
    379   ModRefResult getModRefInfo(const Instruction *I,
    380                              const Value *P, uint64_t Size) {
    381     return getModRefInfo(I, Location(P, Size));
    382   }
    383 
    384   /// getModRefInfo (for call sites) - Return information about whether
    385   /// a particular call site modifies or reads the specified memory location.
    386   virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
    387                                      const Location &Loc);
    388 
    389   /// getModRefInfo (for call sites) - A convenience wrapper.
    390   ModRefResult getModRefInfo(ImmutableCallSite CS,
    391                              const Value *P, uint64_t Size) {
    392     return getModRefInfo(CS, Location(P, Size));
    393   }
    394 
    395   /// getModRefInfo (for calls) - Return information about whether
    396   /// a particular call modifies or reads the specified memory location.
    397   ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
    398     return getModRefInfo(ImmutableCallSite(C), Loc);
    399   }
    400 
    401   /// getModRefInfo (for calls) - A convenience wrapper.
    402   ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
    403     return getModRefInfo(C, Location(P, Size));
    404   }
    405 
    406   /// getModRefInfo (for invokes) - Return information about whether
    407   /// a particular invoke modifies or reads the specified memory location.
    408   ModRefResult getModRefInfo(const InvokeInst *I,
    409                              const Location &Loc) {
    410     return getModRefInfo(ImmutableCallSite(I), Loc);
    411   }
    412 
    413   /// getModRefInfo (for invokes) - A convenience wrapper.
    414   ModRefResult getModRefInfo(const InvokeInst *I,
    415                              const Value *P, uint64_t Size) {
    416     return getModRefInfo(I, Location(P, Size));
    417   }
    418 
    419   /// getModRefInfo (for loads) - Return information about whether
    420   /// a particular load modifies or reads the specified memory location.
    421   ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
    422 
    423   /// getModRefInfo (for loads) - A convenience wrapper.
    424   ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
    425     return getModRefInfo(L, Location(P, Size));
    426   }
    427 
    428   /// getModRefInfo (for stores) - Return information about whether
    429   /// a particular store modifies or reads the specified memory location.
    430   ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
    431 
    432   /// getModRefInfo (for stores) - A convenience wrapper.
    433   ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
    434     return getModRefInfo(S, Location(P, Size));
    435   }
    436 
    437   /// getModRefInfo (for fences) - Return information about whether
    438   /// a particular store modifies or reads the specified memory location.
    439   ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) {
    440     // Conservatively correct.  (We could possibly be a bit smarter if
    441     // Loc is a alloca that doesn't escape.)
    442     return ModRef;
    443   }
    444 
    445   /// getModRefInfo (for fences) - A convenience wrapper.
    446   ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){
    447     return getModRefInfo(S, Location(P, Size));
    448   }
    449 
    450   /// getModRefInfo (for cmpxchges) - Return information about whether
    451   /// a particular cmpxchg modifies or reads the specified memory location.
    452   ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc);
    453 
    454   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
    455   ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
    456                              const Value *P, unsigned Size) {
    457     return getModRefInfo(CX, Location(P, Size));
    458   }
    459 
    460   /// getModRefInfo (for atomicrmws) - Return information about whether
    461   /// a particular atomicrmw modifies or reads the specified memory location.
    462   ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc);
    463 
    464   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
    465   ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
    466                              const Value *P, unsigned Size) {
    467     return getModRefInfo(RMW, Location(P, Size));
    468   }
    469 
    470   /// getModRefInfo (for va_args) - Return information about whether
    471   /// a particular va_arg modifies or reads the specified memory location.
    472   ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
    473 
    474   /// getModRefInfo (for va_args) - A convenience wrapper.
    475   ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
    476     return getModRefInfo(I, Location(P, Size));
    477   }
    478 
    479   /// getModRefInfo - Return information about whether two call sites may refer
    480   /// to the same set of memory locations.  See
    481   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
    482   /// for details.
    483   virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
    484                                      ImmutableCallSite CS2);
    485 
    486   /// callCapturesBefore - Return information about whether a particular call
    487   /// site modifies or reads the specified memory location.
    488   ModRefResult callCapturesBefore(const Instruction *I,
    489                                   const AliasAnalysis::Location &MemLoc,
    490                                   DominatorTree *DT);
    491 
    492   /// callCapturesBefore - A convenience wrapper.
    493   ModRefResult callCapturesBefore(const Instruction *I, const Value *P,
    494                                   uint64_t Size, DominatorTree *DT) {
    495     return callCapturesBefore(I, Location(P, Size), DT);
    496   }
    497 
    498   //===--------------------------------------------------------------------===//
    499   /// Higher level methods for querying mod/ref information.
    500   ///
    501 
    502   /// canBasicBlockModify - Return true if it is possible for execution of the
    503   /// specified basic block to modify the value pointed to by Ptr.
    504   bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
    505 
    506   /// canBasicBlockModify - A convenience wrapper.
    507   bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
    508     return canBasicBlockModify(BB, Location(P, Size));
    509   }
    510 
    511   /// canInstructionRangeModify - Return true if it is possible for the
    512   /// execution of the specified instructions to modify the value pointed to by
    513   /// Ptr.  The instructions to consider are all of the instructions in the
    514   /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
    515   bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
    516                                  const Location &Loc);
    517 
    518   /// canInstructionRangeModify - A convenience wrapper.
    519   bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
    520                                  const Value *Ptr, uint64_t Size) {
    521     return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
    522   }
    523 
    524   //===--------------------------------------------------------------------===//
    525   /// Methods that clients should call when they transform the program to allow
    526   /// alias analyses to update their internal data structures.  Note that these
    527   /// methods may be called on any instruction, regardless of whether or not
    528   /// they have pointer-analysis implications.
    529   ///
    530 
    531   /// deleteValue - This method should be called whenever an LLVM Value is
    532   /// deleted from the program, for example when an instruction is found to be
    533   /// redundant and is eliminated.
    534   ///
    535   virtual void deleteValue(Value *V);
    536 
    537   /// copyValue - This method should be used whenever a preexisting value in the
    538   /// program is copied or cloned, introducing a new value.  Note that analysis
    539   /// implementations should tolerate clients that use this method to introduce
    540   /// the same value multiple times: if the analysis already knows about a
    541   /// value, it should ignore the request.
    542   ///
    543   virtual void copyValue(Value *From, Value *To);
    544 
    545   /// addEscapingUse - This method should be used whenever an escaping use is
    546   /// added to a pointer value.  Analysis implementations may either return
    547   /// conservative responses for that value in the future, or may recompute
    548   /// some or all internal state to continue providing precise responses.
    549   ///
    550   /// Escaping uses are considered by anything _except_ the following:
    551   ///  - GEPs or bitcasts of the pointer
    552   ///  - Loads through the pointer
    553   ///  - Stores through (but not of) the pointer
    554   virtual void addEscapingUse(Use &U);
    555 
    556   /// replaceWithNewValue - This method is the obvious combination of the two
    557   /// above, and it provided as a helper to simplify client code.
    558   ///
    559   void replaceWithNewValue(Value *Old, Value *New) {
    560     copyValue(Old, New);
    561     deleteValue(Old);
    562   }
    563 };
    564 
    565 // Specialize DenseMapInfo for Location.
    566 template<>
    567 struct DenseMapInfo<AliasAnalysis::Location> {
    568   static inline AliasAnalysis::Location getEmptyKey() {
    569     return
    570       AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(),
    571                               0, nullptr);
    572   }
    573   static inline AliasAnalysis::Location getTombstoneKey() {
    574     return
    575       AliasAnalysis::Location(DenseMapInfo<const Value *>::getTombstoneKey(),
    576                               0, nullptr);
    577   }
    578   static unsigned getHashValue(const AliasAnalysis::Location &Val) {
    579     return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
    580            DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^
    581            DenseMapInfo<const MDNode *>::getHashValue(Val.TBAATag);
    582   }
    583   static bool isEqual(const AliasAnalysis::Location &LHS,
    584                       const AliasAnalysis::Location &RHS) {
    585     return LHS.Ptr == RHS.Ptr &&
    586            LHS.Size == RHS.Size &&
    587            LHS.TBAATag == RHS.TBAATag;
    588   }
    589 };
    590 
    591 /// isNoAliasCall - Return true if this pointer is returned by a noalias
    592 /// function.
    593 bool isNoAliasCall(const Value *V);
    594 
    595 /// isNoAliasArgument - Return true if this is an argument with the noalias
    596 /// attribute.
    597 bool isNoAliasArgument(const Value *V);
    598 
    599 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
    600 /// identifiable object.  This returns true for:
    601 ///    Global Variables and Functions (but not Global Aliases)
    602 ///    Allocas
    603 ///    ByVal and NoAlias Arguments
    604 ///    NoAlias returns (e.g. calls to malloc)
    605 ///
    606 bool isIdentifiedObject(const Value *V);
    607 
    608 } // End llvm namespace
    609 
    610 #endif
    611