1 /* 2 * i386 emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "config.h" 20 #include "cpu.h" 21 #include "disas/disas.h" 22 #include "tcg.h" 23 #include "sysemu/kvm.h" 24 #include "exec/hax.h" 25 #include "qemu/atomic.h" 26 27 #if !defined(CONFIG_SOFTMMU) 28 #undef EAX 29 #undef ECX 30 #undef EDX 31 #undef EBX 32 #undef ESP 33 #undef EBP 34 #undef ESI 35 #undef EDI 36 #undef EIP 37 #include <signal.h> 38 #ifdef __linux__ 39 #include <sys/ucontext.h> 40 #endif 41 #endif 42 43 int tb_invalidated_flag; 44 45 //#define CONFIG_DEBUG_EXEC 46 //#define DEBUG_SIGNAL 47 48 bool qemu_cpu_has_work(CPUState *cpu) 49 { 50 return cpu_has_work(cpu); 51 } 52 53 void cpu_loop_exit(CPUArchState* env) 54 { 55 env->current_tb = NULL; 56 longjmp(env->jmp_env, 1); 57 } 58 59 /* exit the current TB from a signal handler. The host registers are 60 restored in a state compatible with the CPU emulator 61 */ 62 void cpu_resume_from_signal(CPUArchState *env, void *puc) 63 { 64 #if !defined(CONFIG_SOFTMMU) 65 #ifdef __linux__ 66 struct ucontext *uc = puc; 67 #elif defined(__OpenBSD__) 68 struct sigcontext *uc = puc; 69 #endif 70 #endif 71 72 /* XXX: restore cpu registers saved in host registers */ 73 74 #if !defined(CONFIG_SOFTMMU) 75 if (puc) { 76 /* XXX: use siglongjmp ? */ 77 #ifdef __linux__ 78 #ifdef __ia64 79 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL); 80 #else 81 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 82 #endif 83 #elif defined(__OpenBSD__) 84 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL); 85 #endif 86 } 87 #endif 88 env->exception_index = -1; 89 longjmp(env->jmp_env, 1); 90 } 91 92 /* Execute the code without caching the generated code. An interpreter 93 could be used if available. */ 94 static void cpu_exec_nocache(CPUArchState *env, int max_cycles, TranslationBlock *orig_tb) 95 { 96 tcg_target_ulong next_tb; 97 TranslationBlock *tb; 98 99 /* Should never happen. 100 We only end up here when an existing TB is too long. */ 101 if (max_cycles > CF_COUNT_MASK) 102 max_cycles = CF_COUNT_MASK; 103 104 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, 105 max_cycles); 106 env->current_tb = tb; 107 /* execute the generated code */ 108 next_tb = tcg_qemu_tb_exec(env, tb->tc_ptr); 109 env->current_tb = NULL; 110 111 if ((next_tb & 3) == 2) { 112 /* Restore PC. This may happen if async event occurs before 113 the TB starts executing. */ 114 cpu_pc_from_tb(env, tb); 115 } 116 tb_phys_invalidate(tb, -1); 117 tb_free(tb); 118 } 119 120 static TranslationBlock *tb_find_slow(CPUArchState *env, 121 target_ulong pc, 122 target_ulong cs_base, 123 uint64_t flags) 124 { 125 TranslationBlock *tb, **ptb1; 126 unsigned int h; 127 target_ulong phys_pc, phys_page1, phys_page2, virt_page2; 128 129 tb_invalidated_flag = 0; 130 131 /* find translated block using physical mappings */ 132 phys_pc = get_page_addr_code(env, pc); 133 phys_page1 = phys_pc & TARGET_PAGE_MASK; 134 phys_page2 = -1; 135 h = tb_phys_hash_func(phys_pc); 136 ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h]; 137 for(;;) { 138 tb = *ptb1; 139 if (!tb) 140 goto not_found; 141 if (tb->pc == pc && 142 tb->page_addr[0] == phys_page1 && 143 tb->cs_base == cs_base && 144 tb->flags == flags) { 145 /* check next page if needed */ 146 if (tb->page_addr[1] != -1) { 147 virt_page2 = (pc & TARGET_PAGE_MASK) + 148 TARGET_PAGE_SIZE; 149 phys_page2 = get_page_addr_code(env, virt_page2); 150 if (tb->page_addr[1] == phys_page2) 151 goto found; 152 } else { 153 goto found; 154 } 155 } 156 ptb1 = &tb->phys_hash_next; 157 } 158 not_found: 159 /* if no translated code available, then translate it now */ 160 tb = tb_gen_code(env, pc, cs_base, flags, 0); 161 162 found: 163 /* Move the last found TB to the head of the list */ 164 if (likely(*ptb1)) { 165 *ptb1 = tb->phys_hash_next; 166 tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h]; 167 tcg_ctx.tb_ctx.tb_phys_hash[h] = tb; 168 } 169 /* we add the TB in the virtual pc hash table */ 170 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; 171 return tb; 172 } 173 174 static inline TranslationBlock *tb_find_fast(CPUArchState *env) 175 { 176 TranslationBlock *tb; 177 target_ulong cs_base, pc; 178 int flags; 179 180 /* we record a subset of the CPU state. It will 181 always be the same before a given translated block 182 is executed. */ 183 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 184 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; 185 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || 186 tb->flags != flags)) { 187 tb = tb_find_slow(env, pc, cs_base, flags); 188 } 189 return tb; 190 } 191 192 static CPUDebugExcpHandler *debug_excp_handler; 193 194 void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler) 195 { 196 debug_excp_handler = handler; 197 } 198 199 static void cpu_handle_debug_exception(CPUOldState *env) 200 { 201 CPUWatchpoint *wp; 202 203 if (!env->watchpoint_hit) { 204 QTAILQ_FOREACH(wp, &env->watchpoints, entry) { 205 wp->flags &= ~BP_WATCHPOINT_HIT; 206 } 207 } 208 if (debug_excp_handler) { 209 debug_excp_handler(env); 210 } 211 } 212 213 /* main execution loop */ 214 215 volatile sig_atomic_t exit_request; 216 217 /* 218 * Qemu emulation can happen because of MMIO or emulation mode, 219 * i.e. non-PG mode. For MMIO cases, the pending interrupt should not 220 * be emulated in qemu because MMIO is emulated for only one 221 * instruction now and then back to the HAX kernel module. 222 */ 223 int need_handle_intr_request(CPUOldState *env) 224 { 225 CPUState *cpu = ENV_GET_CPU(env); 226 #ifdef CONFIG_HAX 227 if (!hax_enabled() || hax_vcpu_emulation_mode(cpu)) 228 return cpu->interrupt_request; 229 return 0; 230 #else 231 return cpu->interrupt_request; 232 #endif 233 } 234 235 int cpu_exec(CPUOldState *env) 236 { 237 int ret, interrupt_request; 238 TranslationBlock *tb; 239 uint8_t *tc_ptr; 240 tcg_target_ulong next_tb; 241 CPUState *cpu = ENV_GET_CPU(env); 242 243 if (cpu->halted) { 244 if (!cpu_has_work(cpu)) { 245 return EXCP_HALTED; 246 } 247 248 cpu->halted = 0; 249 } 250 251 current_cpu = cpu; 252 //cpu_single_env = env; 253 254 if (unlikely(exit_request)) { 255 cpu->exit_request = 1; 256 } 257 258 #if defined(TARGET_I386) 259 if (!kvm_enabled()) { 260 /* put eflags in CPU temporary format */ 261 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); 262 DF = 1 - (2 * ((env->eflags >> 10) & 1)); 263 CC_OP = CC_OP_EFLAGS; 264 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); 265 } 266 #elif defined(TARGET_SPARC) 267 #elif defined(TARGET_M68K) 268 env->cc_op = CC_OP_FLAGS; 269 env->cc_dest = env->sr & 0xf; 270 env->cc_x = (env->sr >> 4) & 1; 271 #elif defined(TARGET_ALPHA) 272 #elif defined(TARGET_ARM) 273 #elif defined(TARGET_UNICORE32) 274 #elif defined(TARGET_PPC) 275 #elif defined(TARGET_LM32) 276 #elif defined(TARGET_MICROBLAZE) 277 #elif defined(TARGET_MIPS) 278 #elif defined(TARGET_SH4) 279 #elif defined(TARGET_CRIS) 280 #elif defined(TARGET_S390X) 281 /* XXXXX */ 282 #else 283 #error unsupported target CPU 284 #endif 285 env->exception_index = -1; 286 287 /* prepare setjmp context for exception handling */ 288 for(;;) { 289 if (setjmp(env->jmp_env) == 0) { 290 /* if an exception is pending, we execute it here */ 291 if (env->exception_index >= 0) { 292 if (env->exception_index >= EXCP_INTERRUPT) { 293 /* exit request from the cpu execution loop */ 294 ret = env->exception_index; 295 if (ret == EXCP_DEBUG) { 296 cpu_handle_debug_exception(env); 297 } 298 break; 299 } else { 300 #if defined(CONFIG_USER_ONLY) 301 /* if user mode only, we simulate a fake exception 302 which will be handled outside the cpu execution 303 loop */ 304 #if defined(TARGET_I386) 305 do_interrupt(env); 306 #endif 307 ret = env->exception_index; 308 break; 309 #else 310 do_interrupt(env); 311 env->exception_index = -1; 312 #endif 313 } 314 } 315 316 #ifdef CONFIG_HAX 317 if (hax_enabled() && !hax_vcpu_exec(cpu)) 318 longjmp(env->jmp_env, 1); 319 #endif 320 321 if (kvm_enabled()) { 322 kvm_cpu_exec(cpu); 323 longjmp(env->jmp_env, 1); 324 } 325 326 next_tb = 0; /* force lookup of first TB */ 327 for(;;) { 328 interrupt_request = cpu->interrupt_request; 329 if (unlikely(need_handle_intr_request(env))) { 330 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 331 /* Mask out external interrupts for this step. */ 332 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 333 } 334 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 335 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 336 env->exception_index = EXCP_DEBUG; 337 cpu_loop_exit(env); 338 } 339 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ 340 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \ 341 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32) 342 if (interrupt_request & CPU_INTERRUPT_HALT) { 343 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 344 cpu->halted = 1; 345 env->exception_index = EXCP_HLT; 346 cpu_loop_exit(env); 347 } 348 #endif 349 #if defined(TARGET_I386) 350 if (interrupt_request & CPU_INTERRUPT_INIT) { 351 svm_check_intercept(env, SVM_EXIT_INIT); 352 do_cpu_init(env); 353 env->exception_index = EXCP_HALTED; 354 cpu_loop_exit(env); 355 } else if (interrupt_request & CPU_INTERRUPT_SIPI) { 356 do_cpu_sipi(env); 357 } else if (env->hflags2 & HF2_GIF_MASK) { 358 if ((interrupt_request & CPU_INTERRUPT_SMI) && 359 !(env->hflags & HF_SMM_MASK)) { 360 svm_check_intercept(env, SVM_EXIT_SMI); 361 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 362 do_smm_enter(env); 363 next_tb = 0; 364 } else if ((interrupt_request & CPU_INTERRUPT_NMI) && 365 !(env->hflags2 & HF2_NMI_MASK)) { 366 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 367 env->hflags2 |= HF2_NMI_MASK; 368 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1); 369 next_tb = 0; 370 } else if (interrupt_request & CPU_INTERRUPT_MCE) { 371 cpu->interrupt_request &= ~CPU_INTERRUPT_MCE; 372 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0); 373 next_tb = 0; 374 } else if ((interrupt_request & CPU_INTERRUPT_HARD) && 375 (((env->hflags2 & HF2_VINTR_MASK) && 376 (env->hflags2 & HF2_HIF_MASK)) || 377 (!(env->hflags2 & HF2_VINTR_MASK) && 378 (env->eflags & IF_MASK && 379 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { 380 int intno; 381 svm_check_intercept(env, SVM_EXIT_INTR); 382 cpu->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); 383 intno = cpu_get_pic_interrupt(env); 384 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno); 385 do_interrupt_x86_hardirq(env, intno, 1); 386 /* ensure that no TB jump will be modified as 387 the program flow was changed */ 388 next_tb = 0; 389 #if !defined(CONFIG_USER_ONLY) 390 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && 391 (env->eflags & IF_MASK) && 392 !(env->hflags & HF_INHIBIT_IRQ_MASK)) { 393 int intno; 394 /* FIXME: this should respect TPR */ 395 svm_check_intercept(env, SVM_EXIT_VINTR); 396 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); 397 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno); 398 do_interrupt_x86_hardirq(env, intno, 1); 399 cpu->interrupt_request &= ~CPU_INTERRUPT_VIRQ; 400 next_tb = 0; 401 #endif 402 } 403 } 404 #elif defined(TARGET_PPC) 405 #if 0 406 if ((interrupt_request & CPU_INTERRUPT_RESET)) { 407 cpu_reset(env); 408 } 409 #endif 410 if (interrupt_request & CPU_INTERRUPT_HARD) { 411 ppc_hw_interrupt(env); 412 if (env->pending_interrupts == 0) 413 env->interrupt_request &= ~CPU_INTERRUPT_HARD; 414 next_tb = 0; 415 } 416 #elif defined(TARGET_LM32) 417 if ((interrupt_request & CPU_INTERRUPT_HARD) 418 && (env->ie & IE_IE)) { 419 env->exception_index = EXCP_IRQ; 420 do_interrupt(env); 421 next_tb = 0; 422 } 423 #elif defined(TARGET_MICROBLAZE) 424 if ((interrupt_request & CPU_INTERRUPT_HARD) 425 && (env->sregs[SR_MSR] & MSR_IE) 426 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP)) 427 && !(env->iflags & (D_FLAG | IMM_FLAG))) { 428 env->exception_index = EXCP_IRQ; 429 do_interrupt(env); 430 next_tb = 0; 431 } 432 #elif defined(TARGET_MIPS) 433 if ((interrupt_request & CPU_INTERRUPT_HARD) && 434 cpu_mips_hw_interrupts_pending(env)) { 435 /* Raise it */ 436 env->exception_index = EXCP_EXT_INTERRUPT; 437 env->error_code = 0; 438 do_interrupt(env); 439 next_tb = 0; 440 } 441 #elif defined(TARGET_SPARC) 442 if (interrupt_request & CPU_INTERRUPT_HARD) { 443 if (cpu_interrupts_enabled(env) && 444 env->interrupt_index > 0) { 445 int pil = env->interrupt_index & 0xf; 446 int type = env->interrupt_index & 0xf0; 447 448 if (((type == TT_EXTINT) && 449 cpu_pil_allowed(env, pil)) || 450 type != TT_EXTINT) { 451 env->exception_index = env->interrupt_index; 452 do_interrupt(env); 453 next_tb = 0; 454 } 455 } 456 } 457 #elif defined(TARGET_ARM) 458 if (interrupt_request & CPU_INTERRUPT_FIQ 459 && !(env->uncached_cpsr & CPSR_F)) { 460 env->exception_index = EXCP_FIQ; 461 do_interrupt(env); 462 next_tb = 0; 463 } 464 /* ARMv7-M interrupt return works by loading a magic value 465 into the PC. On real hardware the load causes the 466 return to occur. The qemu implementation performs the 467 jump normally, then does the exception return when the 468 CPU tries to execute code at the magic address. 469 This will cause the magic PC value to be pushed to 470 the stack if an interrupt occurred at the wrong time. 471 We avoid this by disabling interrupts when 472 pc contains a magic address. */ 473 if (interrupt_request & CPU_INTERRUPT_HARD 474 && ((IS_M(env) && env->regs[15] < 0xfffffff0) 475 || !(env->uncached_cpsr & CPSR_I))) { 476 env->exception_index = EXCP_IRQ; 477 do_interrupt(env); 478 next_tb = 0; 479 } 480 #elif defined(TARGET_UNICORE32) 481 if (interrupt_request & CPU_INTERRUPT_HARD 482 && !(env->uncached_asr & ASR_I)) { 483 do_interrupt(env); 484 next_tb = 0; 485 } 486 #elif defined(TARGET_SH4) 487 if (interrupt_request & CPU_INTERRUPT_HARD) { 488 do_interrupt(env); 489 next_tb = 0; 490 } 491 #elif defined(TARGET_ALPHA) 492 if (interrupt_request & CPU_INTERRUPT_HARD) { 493 do_interrupt(env); 494 next_tb = 0; 495 } 496 #elif defined(TARGET_CRIS) 497 if (interrupt_request & CPU_INTERRUPT_HARD 498 && (env->pregs[PR_CCS] & I_FLAG) 499 && !env->locked_irq) { 500 env->exception_index = EXCP_IRQ; 501 do_interrupt(env); 502 next_tb = 0; 503 } 504 if (interrupt_request & CPU_INTERRUPT_NMI 505 && (env->pregs[PR_CCS] & M_FLAG)) { 506 env->exception_index = EXCP_NMI; 507 do_interrupt(env); 508 next_tb = 0; 509 } 510 #elif defined(TARGET_M68K) 511 if (interrupt_request & CPU_INTERRUPT_HARD 512 && ((env->sr & SR_I) >> SR_I_SHIFT) 513 < env->pending_level) { 514 /* Real hardware gets the interrupt vector via an 515 IACK cycle at this point. Current emulated 516 hardware doesn't rely on this, so we 517 provide/save the vector when the interrupt is 518 first signalled. */ 519 env->exception_index = env->pending_vector; 520 do_interrupt_m68k_hardirq(env, 1); 521 next_tb = 0; 522 } 523 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY) 524 if ((interrupt_request & CPU_INTERRUPT_HARD) && 525 (env->psw.mask & PSW_MASK_EXT)) { 526 do_interrupt(env); 527 next_tb = 0; 528 } 529 #endif 530 /* Don't use the cached interrupt_request value, 531 do_interrupt may have updated the EXITTB flag. */ 532 if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB) { 533 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 534 /* ensure that no TB jump will be modified as 535 the program flow was changed */ 536 next_tb = 0; 537 } 538 } 539 if (unlikely(cpu->exit_request)) { 540 cpu->exit_request = 0; 541 env->exception_index = EXCP_INTERRUPT; 542 cpu_loop_exit(env); 543 } 544 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC) 545 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 546 /* restore flags in standard format */ 547 #if defined(TARGET_I386) 548 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP) 549 | (DF & DF_MASK); 550 log_cpu_state(cpu, X86_DUMP_CCOP); 551 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); 552 #elif defined(TARGET_M68K) 553 cpu_m68k_flush_flags(env, env->cc_op); 554 env->cc_op = CC_OP_FLAGS; 555 env->sr = (env->sr & 0xffe0) 556 | env->cc_dest | (env->cc_x << 4); 557 log_cpu_state(cpu, 0); 558 #else 559 log_cpu_state(cpu, 0); 560 #endif 561 } 562 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */ 563 spin_lock(&tcg_ctx.tb_ctx.tb_lock); 564 tb = tb_find_fast(env); 565 /* Note: we do it here to avoid a gcc bug on Mac OS X when 566 doing it in tb_find_slow */ 567 if (tb_invalidated_flag) { 568 /* as some TB could have been invalidated because 569 of memory exceptions while generating the code, we 570 must recompute the hash index here */ 571 next_tb = 0; 572 tb_invalidated_flag = 0; 573 } 574 #ifdef CONFIG_DEBUG_EXEC 575 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", 576 (long)tb->tc_ptr, tb->pc, 577 lookup_symbol(tb->pc)); 578 #endif 579 /* see if we can patch the calling TB. When the TB 580 spans two pages, we cannot safely do a direct 581 jump. */ 582 if (next_tb != 0 && tb->page_addr[1] == -1) { 583 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb); 584 } 585 spin_unlock(&tcg_ctx.tb_ctx.tb_lock); 586 587 /* cpu_interrupt might be called while translating the 588 TB, but before it is linked into a potentially 589 infinite loop and becomes env->current_tb. Avoid 590 starting execution if there is a pending interrupt. */ 591 env->current_tb = tb; 592 barrier(); 593 if (likely(!cpu->exit_request)) { 594 tc_ptr = tb->tc_ptr; 595 /* execute the generated code */ 596 next_tb = tcg_qemu_tb_exec(env, tc_ptr); 597 if ((next_tb & 3) == 2) { 598 /* Instruction counter expired. */ 599 int insns_left; 600 tb = (TranslationBlock *)(long)(next_tb & ~3); 601 /* Restore PC. */ 602 cpu_pc_from_tb(env, tb); 603 insns_left = env->icount_decr.u32; 604 if (env->icount_extra && insns_left >= 0) { 605 /* Refill decrementer and continue execution. */ 606 env->icount_extra += insns_left; 607 if (env->icount_extra > 0xffff) { 608 insns_left = 0xffff; 609 } else { 610 insns_left = env->icount_extra; 611 } 612 env->icount_extra -= insns_left; 613 env->icount_decr.u16.low = insns_left; 614 } else { 615 if (insns_left > 0) { 616 /* Execute remaining instructions. */ 617 cpu_exec_nocache(env, insns_left, tb); 618 } 619 env->exception_index = EXCP_INTERRUPT; 620 next_tb = 0; 621 cpu_loop_exit(env); 622 } 623 } 624 } 625 env->current_tb = NULL; 626 #ifdef CONFIG_HAX 627 if (hax_enabled() && hax_stop_emulation(cpu)) 628 cpu_loop_exit(env); 629 #endif 630 /* reset soft MMU for next block (it can currently 631 only be set by a memory fault) */ 632 } /* for(;;) */ 633 } else { 634 /* Reload env after longjmp - the compiler may have smashed all 635 * local variables as longjmp is marked 'noreturn'. */ 636 env = cpu_single_env; 637 } 638 } /* for(;;) */ 639 640 641 #if defined(TARGET_I386) 642 /* restore flags in standard format */ 643 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP) 644 | (DF & DF_MASK); 645 #elif defined(TARGET_ARM) 646 /* XXX: Save/restore host fpu exception state?. */ 647 #elif defined(TARGET_UNICORE32) 648 #elif defined(TARGET_SPARC) 649 #elif defined(TARGET_PPC) 650 #elif defined(TARGET_LM32) 651 #elif defined(TARGET_M68K) 652 cpu_m68k_flush_flags(env, env->cc_op); 653 env->cc_op = CC_OP_FLAGS; 654 env->sr = (env->sr & 0xffe0) 655 | env->cc_dest | (env->cc_x << 4); 656 #elif defined(TARGET_MICROBLAZE) 657 #elif defined(TARGET_MIPS) 658 #elif defined(TARGET_SH4) 659 #elif defined(TARGET_ALPHA) 660 #elif defined(TARGET_CRIS) 661 #elif defined(TARGET_S390X) 662 /* XXXXX */ 663 #else 664 #error unsupported target CPU 665 #endif 666 667 /* fail safe : never use cpu_single_env outside cpu_exec() */ 668 current_cpu = NULL; 669 return ret; 670 } 671 672 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) 673 674 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) 675 { 676 CPUX86State *saved_env; 677 678 saved_env = env; 679 env = s; 680 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { 681 selector &= 0xffff; 682 cpu_x86_load_seg_cache(env, seg_reg, selector, 683 (selector << 4), 0xffff, 0); 684 } else { 685 helper_load_seg(seg_reg, selector); 686 } 687 env = saved_env; 688 } 689 690 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32) 691 { 692 CPUX86State *saved_env; 693 694 saved_env = env; 695 env = s; 696 697 helper_fsave(ptr, data32); 698 699 env = saved_env; 700 } 701 702 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32) 703 { 704 CPUX86State *saved_env; 705 706 saved_env = env; 707 env = s; 708 709 helper_frstor(ptr, data32); 710 711 env = saved_env; 712 } 713 714 #endif /* TARGET_I386 */ 715 716 #if !defined(CONFIG_SOFTMMU) 717 718 #if defined(TARGET_I386) 719 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code) 720 #else 721 #define EXCEPTION_ACTION cpu_loop_exit(env) 722 #endif 723 724 /* 'pc' is the host PC at which the exception was raised. 'address' is 725 the effective address of the memory exception. 'is_write' is 1 if a 726 write caused the exception and otherwise 0'. 'old_set' is the 727 signal set which should be restored */ 728 static inline int handle_cpu_signal(unsigned long pc, unsigned long address, 729 int is_write, sigset_t *old_set, 730 void *puc) 731 { 732 TranslationBlock *tb; 733 int ret; 734 735 if (cpu_single_env) 736 env = cpu_single_env; /* XXX: find a correct solution for multithread */ 737 #if defined(DEBUG_SIGNAL) 738 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 739 pc, address, is_write, *(unsigned long *)old_set); 740 #endif 741 /* XXX: locking issue */ 742 if (is_write && page_unprotect(h2g(address), pc, puc)) { 743 return 1; 744 } 745 746 /* see if it is an MMU fault */ 747 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); 748 if (ret < 0) 749 return 0; /* not an MMU fault */ 750 if (ret == 0) 751 return 1; /* the MMU fault was handled without causing real CPU fault */ 752 /* now we have a real cpu fault */ 753 tb = tb_find_pc(pc); 754 if (tb) { 755 /* the PC is inside the translated code. It means that we have 756 a virtual CPU fault */ 757 cpu_restore_state(env, pc); 758 } 759 760 /* we restore the process signal mask as the sigreturn should 761 do it (XXX: use sigsetjmp) */ 762 sigprocmask(SIG_SETMASK, old_set, NULL); 763 EXCEPTION_ACTION; 764 765 /* never comes here */ 766 return 1; 767 } 768 769 #if defined(__i386__) 770 771 #if defined(__APPLE__) 772 # include <sys/ucontext.h> 773 774 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip)) 775 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno) 776 # define ERROR_sig(context) ((context)->uc_mcontext->es.err) 777 # define MASK_sig(context) ((context)->uc_sigmask) 778 #elif defined (__NetBSD__) 779 # include <ucontext.h> 780 781 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP]) 782 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) 783 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) 784 # define MASK_sig(context) ((context)->uc_sigmask) 785 #elif defined (__FreeBSD__) || defined(__DragonFly__) 786 # include <ucontext.h> 787 788 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip)) 789 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) 790 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err) 791 # define MASK_sig(context) ((context)->uc_sigmask) 792 #elif defined(__OpenBSD__) 793 # define EIP_sig(context) ((context)->sc_eip) 794 # define TRAP_sig(context) ((context)->sc_trapno) 795 # define ERROR_sig(context) ((context)->sc_err) 796 # define MASK_sig(context) ((context)->sc_mask) 797 #else 798 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) 799 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) 800 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) 801 # define MASK_sig(context) ((context)->uc_sigmask) 802 #endif 803 804 int cpu_signal_handler(int host_signum, void *pinfo, 805 void *puc) 806 { 807 siginfo_t *info = pinfo; 808 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__) 809 ucontext_t *uc = puc; 810 #elif defined(__OpenBSD__) 811 struct sigcontext *uc = puc; 812 #else 813 struct ucontext *uc = puc; 814 #endif 815 unsigned long pc; 816 int trapno; 817 818 #ifndef REG_EIP 819 /* for glibc 2.1 */ 820 #define REG_EIP EIP 821 #define REG_ERR ERR 822 #define REG_TRAPNO TRAPNO 823 #endif 824 pc = EIP_sig(uc); 825 trapno = TRAP_sig(uc); 826 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 827 trapno == 0xe ? 828 (ERROR_sig(uc) >> 1) & 1 : 0, 829 &MASK_sig(uc), puc); 830 } 831 832 #elif defined(__x86_64__) 833 834 #ifdef __NetBSD__ 835 #define PC_sig(context) _UC_MACHINE_PC(context) 836 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) 837 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) 838 #define MASK_sig(context) ((context)->uc_sigmask) 839 #elif defined(__OpenBSD__) 840 #define PC_sig(context) ((context)->sc_rip) 841 #define TRAP_sig(context) ((context)->sc_trapno) 842 #define ERROR_sig(context) ((context)->sc_err) 843 #define MASK_sig(context) ((context)->sc_mask) 844 #elif defined (__FreeBSD__) || defined(__DragonFly__) 845 #include <ucontext.h> 846 847 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip)) 848 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) 849 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err) 850 #define MASK_sig(context) ((context)->uc_sigmask) 851 #else 852 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP]) 853 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) 854 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) 855 #define MASK_sig(context) ((context)->uc_sigmask) 856 #endif 857 858 int cpu_signal_handler(int host_signum, void *pinfo, 859 void *puc) 860 { 861 siginfo_t *info = pinfo; 862 unsigned long pc; 863 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__) 864 ucontext_t *uc = puc; 865 #elif defined(__OpenBSD__) 866 struct sigcontext *uc = puc; 867 #else 868 struct ucontext *uc = puc; 869 #endif 870 871 pc = PC_sig(uc); 872 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 873 TRAP_sig(uc) == 0xe ? 874 (ERROR_sig(uc) >> 1) & 1 : 0, 875 &MASK_sig(uc), puc); 876 } 877 878 #elif defined(_ARCH_PPC) 879 880 /*********************************************************************** 881 * signal context platform-specific definitions 882 * From Wine 883 */ 884 #ifdef linux 885 /* All Registers access - only for local access */ 886 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name) 887 /* Gpr Registers access */ 888 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) 889 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */ 890 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ 891 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */ 892 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ 893 # define LR_sig(context) REG_sig(link, context) /* Link register */ 894 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */ 895 /* Float Registers access */ 896 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) 897 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) 898 /* Exception Registers access */ 899 # define DAR_sig(context) REG_sig(dar, context) 900 # define DSISR_sig(context) REG_sig(dsisr, context) 901 # define TRAP_sig(context) REG_sig(trap, context) 902 #endif /* linux */ 903 904 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 905 #include <ucontext.h> 906 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0) 907 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1) 908 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr) 909 # define XER_sig(context) ((context)->uc_mcontext.mc_xer) 910 # define LR_sig(context) ((context)->uc_mcontext.mc_lr) 911 # define CR_sig(context) ((context)->uc_mcontext.mc_cr) 912 /* Exception Registers access */ 913 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar) 914 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr) 915 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc) 916 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */ 917 918 #ifdef __APPLE__ 919 # include <sys/ucontext.h> 920 typedef struct ucontext SIGCONTEXT; 921 /* All Registers access - only for local access */ 922 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name) 923 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name) 924 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name) 925 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name) 926 /* Gpr Registers access */ 927 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) 928 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ 929 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ 930 # define CTR_sig(context) REG_sig(ctr, context) 931 # define XER_sig(context) REG_sig(xer, context) /* Link register */ 932 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ 933 # define CR_sig(context) REG_sig(cr, context) /* Condition register */ 934 /* Float Registers access */ 935 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context) 936 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) 937 /* Exception Registers access */ 938 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ 939 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context) 940 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ 941 #endif /* __APPLE__ */ 942 943 int cpu_signal_handler(int host_signum, void *pinfo, 944 void *puc) 945 { 946 siginfo_t *info = pinfo; 947 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 948 ucontext_t *uc = puc; 949 #else 950 struct ucontext *uc = puc; 951 #endif 952 unsigned long pc; 953 int is_write; 954 955 pc = IAR_sig(uc); 956 is_write = 0; 957 #if 0 958 /* ppc 4xx case */ 959 if (DSISR_sig(uc) & 0x00800000) 960 is_write = 1; 961 #else 962 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) 963 is_write = 1; 964 #endif 965 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 966 is_write, &uc->uc_sigmask, puc); 967 } 968 969 #elif defined(__alpha__) 970 971 int cpu_signal_handler(int host_signum, void *pinfo, 972 void *puc) 973 { 974 siginfo_t *info = pinfo; 975 struct ucontext *uc = puc; 976 uint32_t *pc = uc->uc_mcontext.sc_pc; 977 uint32_t insn = *pc; 978 int is_write = 0; 979 980 /* XXX: need kernel patch to get write flag faster */ 981 switch (insn >> 26) { 982 case 0x0d: // stw 983 case 0x0e: // stb 984 case 0x0f: // stq_u 985 case 0x24: // stf 986 case 0x25: // stg 987 case 0x26: // sts 988 case 0x27: // stt 989 case 0x2c: // stl 990 case 0x2d: // stq 991 case 0x2e: // stl_c 992 case 0x2f: // stq_c 993 is_write = 1; 994 } 995 996 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 997 is_write, &uc->uc_sigmask, puc); 998 } 999 #elif defined(__sparc__) 1000 1001 int cpu_signal_handler(int host_signum, void *pinfo, 1002 void *puc) 1003 { 1004 siginfo_t *info = pinfo; 1005 int is_write; 1006 uint32_t insn; 1007 #if !defined(__arch64__) || defined(CONFIG_SOLARIS) 1008 uint32_t *regs = (uint32_t *)(info + 1); 1009 void *sigmask = (regs + 20); 1010 /* XXX: is there a standard glibc define ? */ 1011 unsigned long pc = regs[1]; 1012 #else 1013 #ifdef __linux__ 1014 struct sigcontext *sc = puc; 1015 unsigned long pc = sc->sigc_regs.tpc; 1016 void *sigmask = (void *)sc->sigc_mask; 1017 #elif defined(__OpenBSD__) 1018 struct sigcontext *uc = puc; 1019 unsigned long pc = uc->sc_pc; 1020 void *sigmask = (void *)(long)uc->sc_mask; 1021 #endif 1022 #endif 1023 1024 /* XXX: need kernel patch to get write flag faster */ 1025 is_write = 0; 1026 insn = *(uint32_t *)pc; 1027 if ((insn >> 30) == 3) { 1028 switch((insn >> 19) & 0x3f) { 1029 case 0x05: // stb 1030 case 0x15: // stba 1031 case 0x06: // sth 1032 case 0x16: // stha 1033 case 0x04: // st 1034 case 0x14: // sta 1035 case 0x07: // std 1036 case 0x17: // stda 1037 case 0x0e: // stx 1038 case 0x1e: // stxa 1039 case 0x24: // stf 1040 case 0x34: // stfa 1041 case 0x27: // stdf 1042 case 0x37: // stdfa 1043 case 0x26: // stqf 1044 case 0x36: // stqfa 1045 case 0x25: // stfsr 1046 case 0x3c: // casa 1047 case 0x3e: // casxa 1048 is_write = 1; 1049 break; 1050 } 1051 } 1052 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1053 is_write, sigmask, NULL); 1054 } 1055 1056 #elif defined(__arm__) 1057 1058 int cpu_signal_handler(int host_signum, void *pinfo, 1059 void *puc) 1060 { 1061 siginfo_t *info = pinfo; 1062 struct ucontext *uc = puc; 1063 unsigned long pc; 1064 int is_write; 1065 1066 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) 1067 pc = uc->uc_mcontext.gregs[R15]; 1068 #else 1069 pc = uc->uc_mcontext.arm_pc; 1070 #endif 1071 /* XXX: compute is_write */ 1072 is_write = 0; 1073 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1074 is_write, 1075 &uc->uc_sigmask, puc); 1076 } 1077 1078 #elif defined(__mc68000) 1079 1080 int cpu_signal_handler(int host_signum, void *pinfo, 1081 void *puc) 1082 { 1083 siginfo_t *info = pinfo; 1084 struct ucontext *uc = puc; 1085 unsigned long pc; 1086 int is_write; 1087 1088 pc = uc->uc_mcontext.gregs[16]; 1089 /* XXX: compute is_write */ 1090 is_write = 0; 1091 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1092 is_write, 1093 &uc->uc_sigmask, puc); 1094 } 1095 1096 #elif defined(__ia64) 1097 1098 #ifndef __ISR_VALID 1099 /* This ought to be in <bits/siginfo.h>... */ 1100 # define __ISR_VALID 1 1101 #endif 1102 1103 int cpu_signal_handler(int host_signum, void *pinfo, void *puc) 1104 { 1105 siginfo_t *info = pinfo; 1106 struct ucontext *uc = puc; 1107 unsigned long ip; 1108 int is_write = 0; 1109 1110 ip = uc->uc_mcontext.sc_ip; 1111 switch (host_signum) { 1112 case SIGILL: 1113 case SIGFPE: 1114 case SIGSEGV: 1115 case SIGBUS: 1116 case SIGTRAP: 1117 if (info->si_code && (info->si_segvflags & __ISR_VALID)) 1118 /* ISR.W (write-access) is bit 33: */ 1119 is_write = (info->si_isr >> 33) & 1; 1120 break; 1121 1122 default: 1123 break; 1124 } 1125 return handle_cpu_signal(ip, (unsigned long)info->si_addr, 1126 is_write, 1127 (sigset_t *)&uc->uc_sigmask, puc); 1128 } 1129 1130 #elif defined(__s390__) 1131 1132 int cpu_signal_handler(int host_signum, void *pinfo, 1133 void *puc) 1134 { 1135 siginfo_t *info = pinfo; 1136 struct ucontext *uc = puc; 1137 unsigned long pc; 1138 uint16_t *pinsn; 1139 int is_write = 0; 1140 1141 pc = uc->uc_mcontext.psw.addr; 1142 1143 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead 1144 of the normal 2 arguments. The 3rd argument contains the "int_code" 1145 from the hardware which does in fact contain the is_write value. 1146 The rt signal handler, as far as I can tell, does not give this value 1147 at all. Not that we could get to it from here even if it were. */ 1148 /* ??? This is not even close to complete, since it ignores all 1149 of the read-modify-write instructions. */ 1150 pinsn = (uint16_t *)pc; 1151 switch (pinsn[0] >> 8) { 1152 case 0x50: /* ST */ 1153 case 0x42: /* STC */ 1154 case 0x40: /* STH */ 1155 is_write = 1; 1156 break; 1157 case 0xc4: /* RIL format insns */ 1158 switch (pinsn[0] & 0xf) { 1159 case 0xf: /* STRL */ 1160 case 0xb: /* STGRL */ 1161 case 0x7: /* STHRL */ 1162 is_write = 1; 1163 } 1164 break; 1165 case 0xe3: /* RXY format insns */ 1166 switch (pinsn[2] & 0xff) { 1167 case 0x50: /* STY */ 1168 case 0x24: /* STG */ 1169 case 0x72: /* STCY */ 1170 case 0x70: /* STHY */ 1171 case 0x8e: /* STPQ */ 1172 case 0x3f: /* STRVH */ 1173 case 0x3e: /* STRV */ 1174 case 0x2f: /* STRVG */ 1175 is_write = 1; 1176 } 1177 break; 1178 } 1179 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1180 is_write, &uc->uc_sigmask, puc); 1181 } 1182 1183 #elif defined(__mips__) 1184 1185 int cpu_signal_handler(int host_signum, void *pinfo, 1186 void *puc) 1187 { 1188 siginfo_t *info = pinfo; 1189 struct ucontext *uc = puc; 1190 greg_t pc = uc->uc_mcontext.pc; 1191 int is_write; 1192 1193 /* XXX: compute is_write */ 1194 is_write = 0; 1195 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1196 is_write, &uc->uc_sigmask, puc); 1197 } 1198 1199 #elif defined(__hppa__) 1200 1201 int cpu_signal_handler(int host_signum, void *pinfo, 1202 void *puc) 1203 { 1204 struct siginfo *info = pinfo; 1205 struct ucontext *uc = puc; 1206 unsigned long pc = uc->uc_mcontext.sc_iaoq[0]; 1207 uint32_t insn = *(uint32_t *)pc; 1208 int is_write = 0; 1209 1210 /* XXX: need kernel patch to get write flag faster. */ 1211 switch (insn >> 26) { 1212 case 0x1a: /* STW */ 1213 case 0x19: /* STH */ 1214 case 0x18: /* STB */ 1215 case 0x1b: /* STWM */ 1216 is_write = 1; 1217 break; 1218 1219 case 0x09: /* CSTWX, FSTWX, FSTWS */ 1220 case 0x0b: /* CSTDX, FSTDX, FSTDS */ 1221 /* Distinguish from coprocessor load ... */ 1222 is_write = (insn >> 9) & 1; 1223 break; 1224 1225 case 0x03: 1226 switch ((insn >> 6) & 15) { 1227 case 0xa: /* STWS */ 1228 case 0x9: /* STHS */ 1229 case 0x8: /* STBS */ 1230 case 0xe: /* STWAS */ 1231 case 0xc: /* STBYS */ 1232 is_write = 1; 1233 } 1234 break; 1235 } 1236 1237 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1238 is_write, &uc->uc_sigmask, puc); 1239 } 1240 1241 #else 1242 1243 #error host CPU specific signal handler needed 1244 1245 #endif 1246 1247 #endif /* !defined(CONFIG_SOFTMMU) */ 1248