1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2014 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: richie.stebbing (at) gmail.com (Richard Stebbing) 30 31 #include "ceres/dynamic_compressed_row_sparse_matrix.h" 32 33 #include "ceres/casts.h" 34 #include "ceres/compressed_row_sparse_matrix.h" 35 #include "ceres/casts.h" 36 #include "ceres/internal/eigen.h" 37 #include "ceres/internal/scoped_ptr.h" 38 #include "ceres/linear_least_squares_problems.h" 39 #include "ceres/triplet_sparse_matrix.h" 40 #include "gtest/gtest.h" 41 42 namespace ceres { 43 namespace internal { 44 45 class DynamicCompressedRowSparseMatrixTest : public ::testing::Test { 46 protected: 47 virtual void SetUp() { 48 num_rows = 7; 49 num_cols = 4; 50 51 // The number of additional elements reserved when `Finalize` is called 52 // should have no effect on the number of rows, columns or nonzeros. 53 // Set this to some nonzero value to be sure. 54 num_additional_elements = 13; 55 56 expected_num_nonzeros = num_rows * num_cols - min(num_rows, num_cols); 57 58 InitialiseDenseReference(); 59 InitialiseSparseMatrixReferences(); 60 61 dcrsm.reset(new DynamicCompressedRowSparseMatrix(num_rows, 62 num_cols, 63 0)); 64 } 65 66 void Finalize() { 67 dcrsm->Finalize(num_additional_elements); 68 } 69 70 void InitialiseDenseReference() { 71 dense.resize(num_rows, num_cols); 72 dense.setZero(); 73 int num_nonzeros = 0; 74 for (int i = 0; i < (num_rows * num_cols); ++i) { 75 const int r = i / num_cols, c = i % num_cols; 76 if (r != c) { 77 dense(r, c) = i + 1; 78 ++num_nonzeros; 79 } 80 } 81 ASSERT_EQ(num_nonzeros, expected_num_nonzeros); 82 } 83 84 void InitialiseSparseMatrixReferences() { 85 std::vector<int> rows, cols; 86 std::vector<double> values; 87 for (int i = 0; i < (num_rows * num_cols); ++i) { 88 const int r = i / num_cols, c = i % num_cols; 89 if (r != c) { 90 rows.push_back(r); 91 cols.push_back(c); 92 values.push_back(i + 1); 93 } 94 } 95 ASSERT_EQ(values.size(), expected_num_nonzeros); 96 97 tsm.reset(new TripletSparseMatrix(num_rows, 98 num_cols, 99 expected_num_nonzeros)); 100 std::copy(rows.begin(), rows.end(), tsm->mutable_rows()); 101 std::copy(cols.begin(), cols.end(), tsm->mutable_cols()); 102 std::copy(values.begin(), values.end(), tsm->mutable_values()); 103 tsm->set_num_nonzeros(values.size()); 104 105 Matrix dense_from_tsm; 106 tsm->ToDenseMatrix(&dense_from_tsm); 107 ASSERT_TRUE((dense.array() == dense_from_tsm.array()).all()); 108 109 crsm.reset(new CompressedRowSparseMatrix(*tsm)); 110 Matrix dense_from_crsm; 111 crsm->ToDenseMatrix(&dense_from_crsm); 112 ASSERT_TRUE((dense.array() == dense_from_crsm.array()).all()); 113 } 114 115 void InsertNonZeroEntriesFromDenseReference() { 116 for (int r = 0; r < num_rows; ++r) { 117 for (int c = 0; c < num_cols; ++c) { 118 const double& v = dense(r, c); 119 if (v != 0.0) { 120 dcrsm->InsertEntry(r, c, v); 121 } 122 } 123 } 124 } 125 126 void ExpectEmpty() { 127 EXPECT_EQ(dcrsm->num_rows(), num_rows); 128 EXPECT_EQ(dcrsm->num_cols(), num_cols); 129 EXPECT_EQ(dcrsm->num_nonzeros(), 0); 130 131 Matrix dense_from_dcrsm; 132 dcrsm->ToDenseMatrix(&dense_from_dcrsm); 133 EXPECT_EQ(dense_from_dcrsm.rows(), num_rows); 134 EXPECT_EQ(dense_from_dcrsm.cols(), num_cols); 135 EXPECT_TRUE((dense_from_dcrsm.array() == 0.0).all()); 136 } 137 138 void ExpectEqualToDenseReference() { 139 Matrix dense_from_dcrsm; 140 dcrsm->ToDenseMatrix(&dense_from_dcrsm); 141 EXPECT_TRUE((dense.array() == dense_from_dcrsm.array()).all()); 142 } 143 144 void ExpectEqualToCompressedRowSparseMatrixReference() { 145 typedef Eigen::Map<const Eigen::VectorXi> ConstIntVectorRef; 146 147 ConstIntVectorRef crsm_rows(crsm->rows(), crsm->num_rows() + 1); 148 ConstIntVectorRef dcrsm_rows(dcrsm->rows(), dcrsm->num_rows() + 1); 149 EXPECT_TRUE((crsm_rows.array() == dcrsm_rows.array()).all()); 150 151 ConstIntVectorRef crsm_cols(crsm->cols(), crsm->num_nonzeros()); 152 ConstIntVectorRef dcrsm_cols(dcrsm->cols(), dcrsm->num_nonzeros()); 153 EXPECT_TRUE((crsm_cols.array() == dcrsm_cols.array()).all()); 154 155 ConstVectorRef crsm_values(crsm->values(), crsm->num_nonzeros()); 156 ConstVectorRef dcrsm_values(dcrsm->values(), dcrsm->num_nonzeros()); 157 EXPECT_TRUE((crsm_values.array() == dcrsm_values.array()).all()); 158 } 159 160 int num_rows; 161 int num_cols; 162 163 int num_additional_elements; 164 165 int expected_num_nonzeros; 166 167 Matrix dense; 168 scoped_ptr<TripletSparseMatrix> tsm; 169 scoped_ptr<CompressedRowSparseMatrix> crsm; 170 171 scoped_ptr<DynamicCompressedRowSparseMatrix> dcrsm; 172 }; 173 174 TEST_F(DynamicCompressedRowSparseMatrixTest, Initialization) { 175 ExpectEmpty(); 176 177 Finalize(); 178 ExpectEmpty(); 179 } 180 181 TEST_F(DynamicCompressedRowSparseMatrixTest, InsertEntryAndFinalize) { 182 InsertNonZeroEntriesFromDenseReference(); 183 ExpectEmpty(); 184 185 Finalize(); 186 ExpectEqualToDenseReference(); 187 ExpectEqualToCompressedRowSparseMatrixReference(); 188 } 189 190 TEST_F(DynamicCompressedRowSparseMatrixTest, ClearRows) { 191 InsertNonZeroEntriesFromDenseReference(); 192 Finalize(); 193 ExpectEqualToDenseReference(); 194 ExpectEqualToCompressedRowSparseMatrixReference(); 195 196 dcrsm->ClearRows(0, 0); 197 Finalize(); 198 ExpectEqualToDenseReference(); 199 ExpectEqualToCompressedRowSparseMatrixReference(); 200 201 dcrsm->ClearRows(0, num_rows); 202 ExpectEqualToCompressedRowSparseMatrixReference(); 203 204 Finalize(); 205 ExpectEmpty(); 206 207 InsertNonZeroEntriesFromDenseReference(); 208 dcrsm->ClearRows(1, 2); 209 Finalize(); 210 dense.block(1, 0, 2, num_cols).setZero(); 211 ExpectEqualToDenseReference(); 212 213 InitialiseDenseReference(); 214 } 215 216 } // namespace internal 217 } // namespace ceres 218