1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer (TSan), a race detector. 11 // 12 // Main internal TSan header file. 13 // 14 // Ground rules: 15 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static 16 // function-scope locals) 17 // - All functions/classes/etc reside in namespace __tsan, except for those 18 // declared in tsan_interface.h. 19 // - Platform-specific files should be used instead of ifdefs (*). 20 // - No system headers included in header files (*). 21 // - Platform specific headres included only into platform-specific files (*). 22 // 23 // (*) Except when inlining is critical for performance. 24 //===----------------------------------------------------------------------===// 25 26 #ifndef TSAN_RTL_H 27 #define TSAN_RTL_H 28 29 #include "sanitizer_common/sanitizer_allocator.h" 30 #include "sanitizer_common/sanitizer_allocator_internal.h" 31 #include "sanitizer_common/sanitizer_asm.h" 32 #include "sanitizer_common/sanitizer_common.h" 33 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h" 34 #include "sanitizer_common/sanitizer_libignore.h" 35 #include "sanitizer_common/sanitizer_suppressions.h" 36 #include "sanitizer_common/sanitizer_thread_registry.h" 37 #include "tsan_clock.h" 38 #include "tsan_defs.h" 39 #include "tsan_flags.h" 40 #include "tsan_sync.h" 41 #include "tsan_trace.h" 42 #include "tsan_vector.h" 43 #include "tsan_report.h" 44 #include "tsan_platform.h" 45 #include "tsan_mutexset.h" 46 #include "tsan_ignoreset.h" 47 #include "tsan_stack_trace.h" 48 49 #if SANITIZER_WORDSIZE != 64 50 # error "ThreadSanitizer is supported only on 64-bit platforms" 51 #endif 52 53 namespace __tsan { 54 55 #ifndef TSAN_GO 56 #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW 57 const uptr kAllocatorSpace = 0x7d0000000000ULL; 58 #else 59 const uptr kAllocatorSpace = 0x7d0000000000ULL; 60 #endif 61 const uptr kAllocatorSize = 0x10000000000ULL; // 1T. 62 63 struct MapUnmapCallback; 64 typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0, 65 DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator; 66 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache; 67 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator; 68 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, 69 SecondaryAllocator> Allocator; 70 Allocator *allocator(); 71 #endif 72 73 void TsanCheckFailed(const char *file, int line, const char *cond, 74 u64 v1, u64 v2); 75 76 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker 77 78 // FastState (from most significant bit): 79 // ignore : 1 80 // tid : kTidBits 81 // unused : - 82 // history_size : 3 83 // epoch : kClkBits 84 class FastState { 85 public: 86 FastState(u64 tid, u64 epoch) { 87 x_ = tid << kTidShift; 88 x_ |= epoch; 89 DCHECK_EQ(tid, this->tid()); 90 DCHECK_EQ(epoch, this->epoch()); 91 DCHECK_EQ(GetIgnoreBit(), false); 92 } 93 94 explicit FastState(u64 x) 95 : x_(x) { 96 } 97 98 u64 raw() const { 99 return x_; 100 } 101 102 u64 tid() const { 103 u64 res = (x_ & ~kIgnoreBit) >> kTidShift; 104 return res; 105 } 106 107 u64 TidWithIgnore() const { 108 u64 res = x_ >> kTidShift; 109 return res; 110 } 111 112 u64 epoch() const { 113 u64 res = x_ & ((1ull << kClkBits) - 1); 114 return res; 115 } 116 117 void IncrementEpoch() { 118 u64 old_epoch = epoch(); 119 x_ += 1; 120 DCHECK_EQ(old_epoch + 1, epoch()); 121 (void)old_epoch; 122 } 123 124 void SetIgnoreBit() { x_ |= kIgnoreBit; } 125 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; } 126 bool GetIgnoreBit() const { return (s64)x_ < 0; } 127 128 void SetHistorySize(int hs) { 129 CHECK_GE(hs, 0); 130 CHECK_LE(hs, 7); 131 x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift); 132 } 133 134 ALWAYS_INLINE 135 int GetHistorySize() const { 136 return (int)((x_ >> kHistoryShift) & kHistoryMask); 137 } 138 139 void ClearHistorySize() { 140 SetHistorySize(0); 141 } 142 143 ALWAYS_INLINE 144 u64 GetTracePos() const { 145 const int hs = GetHistorySize(); 146 // When hs == 0, the trace consists of 2 parts. 147 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1; 148 return epoch() & mask; 149 } 150 151 private: 152 friend class Shadow; 153 static const int kTidShift = 64 - kTidBits - 1; 154 static const u64 kIgnoreBit = 1ull << 63; 155 static const u64 kFreedBit = 1ull << 63; 156 static const u64 kHistoryShift = kClkBits; 157 static const u64 kHistoryMask = 7; 158 u64 x_; 159 }; 160 161 // Shadow (from most significant bit): 162 // freed : 1 163 // tid : kTidBits 164 // is_atomic : 1 165 // is_read : 1 166 // size_log : 2 167 // addr0 : 3 168 // epoch : kClkBits 169 class Shadow : public FastState { 170 public: 171 explicit Shadow(u64 x) 172 : FastState(x) { 173 } 174 175 explicit Shadow(const FastState &s) 176 : FastState(s.x_) { 177 ClearHistorySize(); 178 } 179 180 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) { 181 DCHECK_EQ((x_ >> kClkBits) & 31, 0); 182 DCHECK_LE(addr0, 7); 183 DCHECK_LE(kAccessSizeLog, 3); 184 x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits; 185 DCHECK_EQ(kAccessSizeLog, size_log()); 186 DCHECK_EQ(addr0, this->addr0()); 187 } 188 189 void SetWrite(unsigned kAccessIsWrite) { 190 DCHECK_EQ(x_ & kReadBit, 0); 191 if (!kAccessIsWrite) 192 x_ |= kReadBit; 193 DCHECK_EQ(kAccessIsWrite, IsWrite()); 194 } 195 196 void SetAtomic(bool kIsAtomic) { 197 DCHECK(!IsAtomic()); 198 if (kIsAtomic) 199 x_ |= kAtomicBit; 200 DCHECK_EQ(IsAtomic(), kIsAtomic); 201 } 202 203 bool IsAtomic() const { 204 return x_ & kAtomicBit; 205 } 206 207 bool IsZero() const { 208 return x_ == 0; 209 } 210 211 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) { 212 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift; 213 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore()); 214 return shifted_xor == 0; 215 } 216 217 static ALWAYS_INLINE 218 bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) { 219 u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31; 220 return masked_xor == 0; 221 } 222 223 static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2, 224 unsigned kS2AccessSize) { 225 bool res = false; 226 u64 diff = s1.addr0() - s2.addr0(); 227 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT 228 // if (s1.addr0() + size1) > s2.addr0()) return true; 229 if (s1.size() > -diff) 230 res = true; 231 } else { 232 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true; 233 if (kS2AccessSize > diff) 234 res = true; 235 } 236 DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2)); 237 DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1)); 238 return res; 239 } 240 241 u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; } 242 u64 ALWAYS_INLINE size() const { return 1ull << size_log(); } 243 bool ALWAYS_INLINE IsWrite() const { return !IsRead(); } 244 bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; } 245 246 // The idea behind the freed bit is as follows. 247 // When the memory is freed (or otherwise unaccessible) we write to the shadow 248 // values with tid/epoch related to the free and the freed bit set. 249 // During memory accesses processing the freed bit is considered 250 // as msb of tid. So any access races with shadow with freed bit set 251 // (it is as if write from a thread with which we never synchronized before). 252 // This allows us to detect accesses to freed memory w/o additional 253 // overheads in memory access processing and at the same time restore 254 // tid/epoch of free. 255 void MarkAsFreed() { 256 x_ |= kFreedBit; 257 } 258 259 bool IsFreed() const { 260 return x_ & kFreedBit; 261 } 262 263 bool GetFreedAndReset() { 264 bool res = x_ & kFreedBit; 265 x_ &= ~kFreedBit; 266 return res; 267 } 268 269 bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const { 270 bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift) 271 | (u64(kIsAtomic) << kAtomicShift)); 272 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic)); 273 return v; 274 } 275 276 bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const { 277 bool v = ((x_ >> kReadShift) & 3) 278 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); 279 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) || 280 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite)); 281 return v; 282 } 283 284 bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const { 285 bool v = ((x_ >> kReadShift) & 3) 286 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); 287 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) || 288 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite)); 289 return v; 290 } 291 292 private: 293 static const u64 kReadShift = 5 + kClkBits; 294 static const u64 kReadBit = 1ull << kReadShift; 295 static const u64 kAtomicShift = 6 + kClkBits; 296 static const u64 kAtomicBit = 1ull << kAtomicShift; 297 298 u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; } 299 300 static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) { 301 if (s1.addr0() == s2.addr0()) return true; 302 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0()) 303 return true; 304 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0()) 305 return true; 306 return false; 307 } 308 }; 309 310 struct SignalContext; 311 312 struct JmpBuf { 313 uptr sp; 314 uptr mangled_sp; 315 uptr *shadow_stack_pos; 316 }; 317 318 // This struct is stored in TLS. 319 struct ThreadState { 320 FastState fast_state; 321 // Synch epoch represents the threads's epoch before the last synchronization 322 // action. It allows to reduce number of shadow state updates. 323 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150, 324 // if we are processing write to X from the same thread at epoch=200, 325 // we do nothing, because both writes happen in the same 'synch epoch'. 326 // That is, if another memory access does not race with the former write, 327 // it does not race with the latter as well. 328 // QUESTION: can we can squeeze this into ThreadState::Fast? 329 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are 330 // taken by epoch between synchs. 331 // This way we can save one load from tls. 332 u64 fast_synch_epoch; 333 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. 334 // We do not distinguish beteween ignoring reads and writes 335 // for better performance. 336 int ignore_reads_and_writes; 337 int ignore_sync; 338 // Go does not support ignores. 339 #ifndef TSAN_GO 340 IgnoreSet mop_ignore_set; 341 IgnoreSet sync_ignore_set; 342 #endif 343 // C/C++ uses fixed size shadow stack embed into Trace. 344 // Go uses malloc-allocated shadow stack with dynamic size. 345 uptr *shadow_stack; 346 uptr *shadow_stack_end; 347 uptr *shadow_stack_pos; 348 u64 *racy_shadow_addr; 349 u64 racy_state[2]; 350 MutexSet mset; 351 ThreadClock clock; 352 #ifndef TSAN_GO 353 AllocatorCache alloc_cache; 354 InternalAllocatorCache internal_alloc_cache; 355 Vector<JmpBuf> jmp_bufs; 356 int ignore_interceptors; 357 #endif 358 u64 stat[StatCnt]; 359 const int tid; 360 const int unique_id; 361 bool in_symbolizer; 362 bool in_ignored_lib; 363 bool is_alive; 364 bool is_freeing; 365 bool is_vptr_access; 366 const uptr stk_addr; 367 const uptr stk_size; 368 const uptr tls_addr; 369 const uptr tls_size; 370 ThreadContext *tctx; 371 372 InternalDeadlockDetector internal_deadlock_detector; 373 DDPhysicalThread *dd_pt; 374 DDLogicalThread *dd_lt; 375 376 bool in_signal_handler; 377 SignalContext *signal_ctx; 378 379 DenseSlabAllocCache block_cache; 380 DenseSlabAllocCache sync_cache; 381 382 #ifndef TSAN_GO 383 u32 last_sleep_stack_id; 384 ThreadClock last_sleep_clock; 385 #endif 386 387 // Set in regions of runtime that must be signal-safe and fork-safe. 388 // If set, malloc must not be called. 389 int nomalloc; 390 391 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, 392 unsigned reuse_count, 393 uptr stk_addr, uptr stk_size, 394 uptr tls_addr, uptr tls_size); 395 }; 396 397 #ifndef TSAN_GO 398 __attribute__((tls_model("initial-exec"))) 399 extern THREADLOCAL char cur_thread_placeholder[]; 400 INLINE ThreadState *cur_thread() { 401 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder); 402 } 403 #endif 404 405 class ThreadContext : public ThreadContextBase { 406 public: 407 explicit ThreadContext(int tid); 408 ~ThreadContext(); 409 ThreadState *thr; 410 u32 creation_stack_id; 411 SyncClock sync; 412 // Epoch at which the thread had started. 413 // If we see an event from the thread stamped by an older epoch, 414 // the event is from a dead thread that shared tid with this thread. 415 u64 epoch0; 416 u64 epoch1; 417 418 // Override superclass callbacks. 419 void OnDead(); 420 void OnJoined(void *arg); 421 void OnFinished(); 422 void OnStarted(void *arg); 423 void OnCreated(void *arg); 424 void OnReset(); 425 }; 426 427 struct RacyStacks { 428 MD5Hash hash[2]; 429 bool operator==(const RacyStacks &other) const { 430 if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) 431 return true; 432 if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) 433 return true; 434 return false; 435 } 436 }; 437 438 struct RacyAddress { 439 uptr addr_min; 440 uptr addr_max; 441 }; 442 443 struct FiredSuppression { 444 ReportType type; 445 uptr pc; 446 Suppression *supp; 447 }; 448 449 struct Context { 450 Context(); 451 452 bool initialized; 453 bool after_multithreaded_fork; 454 455 MetaMap metamap; 456 457 Mutex report_mtx; 458 int nreported; 459 int nmissed_expected; 460 atomic_uint64_t last_symbolize_time_ns; 461 462 void *background_thread; 463 atomic_uint32_t stop_background_thread; 464 465 ThreadRegistry *thread_registry; 466 467 Vector<RacyStacks> racy_stacks; 468 Vector<RacyAddress> racy_addresses; 469 // Number of fired suppressions may be large enough. 470 InternalMmapVector<FiredSuppression> fired_suppressions; 471 DDetector *dd; 472 473 Flags flags; 474 475 u64 stat[StatCnt]; 476 u64 int_alloc_cnt[MBlockTypeCount]; 477 u64 int_alloc_siz[MBlockTypeCount]; 478 }; 479 480 extern Context *ctx; // The one and the only global runtime context. 481 482 struct ScopedIgnoreInterceptors { 483 ScopedIgnoreInterceptors() { 484 #ifndef TSAN_GO 485 cur_thread()->ignore_interceptors++; 486 #endif 487 } 488 489 ~ScopedIgnoreInterceptors() { 490 #ifndef TSAN_GO 491 cur_thread()->ignore_interceptors--; 492 #endif 493 } 494 }; 495 496 class ScopedReport { 497 public: 498 explicit ScopedReport(ReportType typ); 499 ~ScopedReport(); 500 501 void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack, 502 const MutexSet *mset); 503 void AddStack(const StackTrace *stack, bool suppressable = false); 504 void AddThread(const ThreadContext *tctx, bool suppressable = false); 505 void AddThread(int unique_tid, bool suppressable = false); 506 void AddUniqueTid(int unique_tid); 507 void AddMutex(const SyncVar *s); 508 u64 AddMutex(u64 id); 509 void AddLocation(uptr addr, uptr size); 510 void AddSleep(u32 stack_id); 511 void SetCount(int count); 512 513 const ReportDesc *GetReport() const; 514 515 private: 516 ReportDesc *rep_; 517 // Symbolizer makes lots of intercepted calls. If we try to process them, 518 // at best it will cause deadlocks on internal mutexes. 519 ScopedIgnoreInterceptors ignore_interceptors_; 520 521 void AddDeadMutex(u64 id); 522 523 ScopedReport(const ScopedReport&); 524 void operator = (const ScopedReport&); 525 }; 526 527 void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset); 528 529 void StatAggregate(u64 *dst, u64 *src); 530 void StatOutput(u64 *stat); 531 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) { 532 if (kCollectStats) 533 thr->stat[typ] += n; 534 } 535 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) { 536 if (kCollectStats) 537 thr->stat[typ] = n; 538 } 539 540 void MapShadow(uptr addr, uptr size); 541 void MapThreadTrace(uptr addr, uptr size); 542 void DontNeedShadowFor(uptr addr, uptr size); 543 void InitializeShadowMemory(); 544 void InitializeInterceptors(); 545 void InitializeLibIgnore(); 546 void InitializeDynamicAnnotations(); 547 548 void ForkBefore(ThreadState *thr, uptr pc); 549 void ForkParentAfter(ThreadState *thr, uptr pc); 550 void ForkChildAfter(ThreadState *thr, uptr pc); 551 552 void ReportRace(ThreadState *thr); 553 bool OutputReport(ThreadState *thr, const ScopedReport &srep); 554 bool IsFiredSuppression(Context *ctx, 555 const ScopedReport &srep, 556 const StackTrace &trace); 557 bool IsExpectedReport(uptr addr, uptr size); 558 void PrintMatchedBenignRaces(); 559 bool FrameIsInternal(const ReportStack *frame); 560 ReportStack *SkipTsanInternalFrames(ReportStack *ent); 561 562 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 563 # define DPrintf Printf 564 #else 565 # define DPrintf(...) 566 #endif 567 568 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 569 # define DPrintf2 Printf 570 #else 571 # define DPrintf2(...) 572 #endif 573 574 u32 CurrentStackId(ThreadState *thr, uptr pc); 575 ReportStack *SymbolizeStackId(u32 stack_id); 576 void PrintCurrentStack(ThreadState *thr, uptr pc); 577 void PrintCurrentStackSlow(); // uses libunwind 578 579 void Initialize(ThreadState *thr); 580 int Finalize(ThreadState *thr); 581 582 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write); 583 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write); 584 585 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, 586 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic); 587 void MemoryAccessImpl(ThreadState *thr, uptr addr, 588 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 589 u64 *shadow_mem, Shadow cur); 590 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, 591 uptr size, bool is_write); 592 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr, 593 uptr size, uptr step, bool is_write); 594 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, 595 int size, bool kAccessIsWrite, bool kIsAtomic); 596 597 const int kSizeLog1 = 0; 598 const int kSizeLog2 = 1; 599 const int kSizeLog4 = 2; 600 const int kSizeLog8 = 3; 601 602 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc, 603 uptr addr, int kAccessSizeLog) { 604 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false); 605 } 606 607 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc, 608 uptr addr, int kAccessSizeLog) { 609 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false); 610 } 611 612 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc, 613 uptr addr, int kAccessSizeLog) { 614 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true); 615 } 616 617 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc, 618 uptr addr, int kAccessSizeLog) { 619 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true); 620 } 621 622 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); 623 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); 624 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); 625 626 void ThreadIgnoreBegin(ThreadState *thr, uptr pc); 627 void ThreadIgnoreEnd(ThreadState *thr, uptr pc); 628 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc); 629 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc); 630 631 void FuncEntry(ThreadState *thr, uptr pc); 632 void FuncExit(ThreadState *thr); 633 634 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); 635 void ThreadStart(ThreadState *thr, int tid, uptr os_id); 636 void ThreadFinish(ThreadState *thr); 637 int ThreadTid(ThreadState *thr, uptr pc, uptr uid); 638 void ThreadJoin(ThreadState *thr, uptr pc, int tid); 639 void ThreadDetach(ThreadState *thr, uptr pc, int tid); 640 void ThreadFinalize(ThreadState *thr); 641 void ThreadSetName(ThreadState *thr, const char *name); 642 int ThreadCount(ThreadState *thr); 643 void ProcessPendingSignals(ThreadState *thr); 644 645 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, 646 bool rw, bool recursive, bool linker_init); 647 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr); 648 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1, 649 bool try_lock = false); 650 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false); 651 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false); 652 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); 653 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); 654 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD 655 656 void Acquire(ThreadState *thr, uptr pc, uptr addr); 657 void AcquireGlobal(ThreadState *thr, uptr pc); 658 void Release(ThreadState *thr, uptr pc, uptr addr); 659 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); 660 void AfterSleep(ThreadState *thr, uptr pc); 661 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c); 662 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); 663 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c); 664 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); 665 666 // The hacky call uses custom calling convention and an assembly thunk. 667 // It is considerably faster that a normal call for the caller 668 // if it is not executed (it is intended for slow paths from hot functions). 669 // The trick is that the call preserves all registers and the compiler 670 // does not treat it as a call. 671 // If it does not work for you, use normal call. 672 #if TSAN_DEBUG == 0 673 // The caller may not create the stack frame for itself at all, 674 // so we create a reserve stack frame for it (1024b must be enough). 675 #define HACKY_CALL(f) \ 676 __asm__ __volatile__("sub $1024, %%rsp;" \ 677 CFI_INL_ADJUST_CFA_OFFSET(1024) \ 678 ".hidden " #f "_thunk;" \ 679 "call " #f "_thunk;" \ 680 "add $1024, %%rsp;" \ 681 CFI_INL_ADJUST_CFA_OFFSET(-1024) \ 682 ::: "memory", "cc"); 683 #else 684 #define HACKY_CALL(f) f() 685 #endif 686 687 void TraceSwitch(ThreadState *thr); 688 uptr TraceTopPC(ThreadState *thr); 689 uptr TraceSize(); 690 uptr TraceParts(); 691 Trace *ThreadTrace(int tid); 692 693 extern "C" void __tsan_trace_switch(); 694 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs, 695 EventType typ, u64 addr) { 696 if (!kCollectHistory) 697 return; 698 DCHECK_GE((int)typ, 0); 699 DCHECK_LE((int)typ, 7); 700 DCHECK_EQ(GetLsb(addr, 61), addr); 701 StatInc(thr, StatEvents); 702 u64 pos = fs.GetTracePos(); 703 if (UNLIKELY((pos % kTracePartSize) == 0)) { 704 #ifndef TSAN_GO 705 HACKY_CALL(__tsan_trace_switch); 706 #else 707 TraceSwitch(thr); 708 #endif 709 } 710 Event *trace = (Event*)GetThreadTrace(fs.tid()); 711 Event *evp = &trace[pos]; 712 Event ev = (u64)addr | ((u64)typ << 61); 713 *evp = ev; 714 } 715 716 } // namespace __tsan 717 718 #endif // TSAN_RTL_H 719