Home | History | Annotate | Download | only in IterativeLinearSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2012 Dsir Nuentsa-Wakam <desire.nuentsa_wakam (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_INCOMPLETE_LUT_H
     11 #define EIGEN_INCOMPLETE_LUT_H
     12 
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 
     18 /** \internal
     19   * Compute a quick-sort split of a vector
     20   * On output, the vector row is permuted such that its elements satisfy
     21   * abs(row(i)) >= abs(row(ncut)) if i<ncut
     22   * abs(row(i)) <= abs(row(ncut)) if i>ncut
     23   * \param row The vector of values
     24   * \param ind The array of index for the elements in @p row
     25   * \param ncut  The number of largest elements to keep
     26   **/
     27 template <typename VectorV, typename VectorI, typename Index>
     28 Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
     29 {
     30   typedef typename VectorV::RealScalar RealScalar;
     31   using std::swap;
     32   using std::abs;
     33   Index mid;
     34   Index n = row.size(); /* length of the vector */
     35   Index first, last ;
     36 
     37   ncut--; /* to fit the zero-based indices */
     38   first = 0;
     39   last = n-1;
     40   if (ncut < first || ncut > last ) return 0;
     41 
     42   do {
     43     mid = first;
     44     RealScalar abskey = abs(row(mid));
     45     for (Index j = first + 1; j <= last; j++) {
     46       if ( abs(row(j)) > abskey) {
     47         ++mid;
     48         swap(row(mid), row(j));
     49         swap(ind(mid), ind(j));
     50       }
     51     }
     52     /* Interchange for the pivot element */
     53     swap(row(mid), row(first));
     54     swap(ind(mid), ind(first));
     55 
     56     if (mid > ncut) last = mid - 1;
     57     else if (mid < ncut ) first = mid + 1;
     58   } while (mid != ncut );
     59 
     60   return 0; /* mid is equal to ncut */
     61 }
     62 
     63 }// end namespace internal
     64 
     65 /** \ingroup IterativeLinearSolvers_Module
     66   * \class IncompleteLUT
     67   * \brief Incomplete LU factorization with dual-threshold strategy
     68   *
     69   * During the numerical factorization, two dropping rules are used :
     70   *  1) any element whose magnitude is less than some tolerance is dropped.
     71   *    This tolerance is obtained by multiplying the input tolerance @p droptol
     72   *    by the average magnitude of all the original elements in the current row.
     73   *  2) After the elimination of the row, only the @p fill largest elements in
     74   *    the L part and the @p fill largest elements in the U part are kept
     75   *    (in addition to the diagonal element ). Note that @p fill is computed from
     76   *    the input parameter @p fillfactor which is used the ratio to control the fill_in
     77   *    relatively to the initial number of nonzero elements.
     78   *
     79   * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
     80   * and when @p fill=n/2 with @p droptol being different to zero.
     81   *
     82   * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
     83   *              Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
     84   *
     85   * NOTE : The following implementation is derived from the ILUT implementation
     86   * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
     87   *  released under the terms of the GNU LGPL:
     88   *    http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
     89   * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
     90   * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
     91   *   http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
     92   * alternatively, on GMANE:
     93   *   http://comments.gmane.org/gmane.comp.lib.eigen/3302
     94   */
     95 template <typename _Scalar>
     96 class IncompleteLUT : internal::noncopyable
     97 {
     98     typedef _Scalar Scalar;
     99     typedef typename NumTraits<Scalar>::Real RealScalar;
    100     typedef Matrix<Scalar,Dynamic,1> Vector;
    101     typedef SparseMatrix<Scalar,RowMajor> FactorType;
    102     typedef SparseMatrix<Scalar,ColMajor> PermutType;
    103     typedef typename FactorType::Index Index;
    104 
    105   public:
    106     typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
    107 
    108     IncompleteLUT()
    109       : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
    110         m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
    111     {}
    112 
    113     template<typename MatrixType>
    114     IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
    115       : m_droptol(droptol),m_fillfactor(fillfactor),
    116         m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
    117     {
    118       eigen_assert(fillfactor != 0);
    119       compute(mat);
    120     }
    121 
    122     Index rows() const { return m_lu.rows(); }
    123 
    124     Index cols() const { return m_lu.cols(); }
    125 
    126     /** \brief Reports whether previous computation was successful.
    127       *
    128       * \returns \c Success if computation was succesful,
    129       *          \c NumericalIssue if the matrix.appears to be negative.
    130       */
    131     ComputationInfo info() const
    132     {
    133       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
    134       return m_info;
    135     }
    136 
    137     template<typename MatrixType>
    138     void analyzePattern(const MatrixType& amat);
    139 
    140     template<typename MatrixType>
    141     void factorize(const MatrixType& amat);
    142 
    143     /**
    144       * Compute an incomplete LU factorization with dual threshold on the matrix mat
    145       * No pivoting is done in this version
    146       *
    147       **/
    148     template<typename MatrixType>
    149     IncompleteLUT<Scalar>& compute(const MatrixType& amat)
    150     {
    151       analyzePattern(amat);
    152       factorize(amat);
    153       m_isInitialized = m_factorizationIsOk;
    154       return *this;
    155     }
    156 
    157     void setDroptol(const RealScalar& droptol);
    158     void setFillfactor(int fillfactor);
    159 
    160     template<typename Rhs, typename Dest>
    161     void _solve(const Rhs& b, Dest& x) const
    162     {
    163       x = m_Pinv * b;
    164       x = m_lu.template triangularView<UnitLower>().solve(x);
    165       x = m_lu.template triangularView<Upper>().solve(x);
    166       x = m_P * x;
    167     }
    168 
    169     template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
    170      solve(const MatrixBase<Rhs>& b) const
    171     {
    172       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
    173       eigen_assert(cols()==b.rows()
    174                 && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
    175       return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
    176     }
    177 
    178 protected:
    179 
    180     /** keeps off-diagonal entries; drops diagonal entries */
    181     struct keep_diag {
    182       inline bool operator() (const Index& row, const Index& col, const Scalar&) const
    183       {
    184         return row!=col;
    185       }
    186     };
    187 
    188 protected:
    189 
    190     FactorType m_lu;
    191     RealScalar m_droptol;
    192     int m_fillfactor;
    193     bool m_analysisIsOk;
    194     bool m_factorizationIsOk;
    195     bool m_isInitialized;
    196     ComputationInfo m_info;
    197     PermutationMatrix<Dynamic,Dynamic,Index> m_P;     // Fill-reducing permutation
    198     PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;  // Inverse permutation
    199 };
    200 
    201 /**
    202  * Set control parameter droptol
    203  *  \param droptol   Drop any element whose magnitude is less than this tolerance
    204  **/
    205 template<typename Scalar>
    206 void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
    207 {
    208   this->m_droptol = droptol;
    209 }
    210 
    211 /**
    212  * Set control parameter fillfactor
    213  * \param fillfactor  This is used to compute the  number @p fill_in of largest elements to keep on each row.
    214  **/
    215 template<typename Scalar>
    216 void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
    217 {
    218   this->m_fillfactor = fillfactor;
    219 }
    220 
    221 template <typename Scalar>
    222 template<typename _MatrixType>
    223 void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
    224 {
    225   // Compute the Fill-reducing permutation
    226   SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
    227   SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
    228   // Symmetrize the pattern
    229   // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
    230   //       on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
    231   SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
    232   AtA.prune(keep_diag());
    233   internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P);  // Then compute the AMD ordering...
    234 
    235   m_Pinv  = m_P.inverse(); // ... and the inverse permutation
    236 
    237   m_analysisIsOk = true;
    238 }
    239 
    240 template <typename Scalar>
    241 template<typename _MatrixType>
    242 void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
    243 {
    244   using std::sqrt;
    245   using std::swap;
    246   using std::abs;
    247 
    248   eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
    249   Index n = amat.cols();  // Size of the matrix
    250   m_lu.resize(n,n);
    251   // Declare Working vectors and variables
    252   Vector u(n) ;     // real values of the row -- maximum size is n --
    253   VectorXi ju(n);   // column position of the values in u -- maximum size  is n
    254   VectorXi jr(n);   // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
    255 
    256   // Apply the fill-reducing permutation
    257   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
    258   SparseMatrix<Scalar,RowMajor, Index> mat;
    259   mat = amat.twistedBy(m_Pinv);
    260 
    261   // Initialization
    262   jr.fill(-1);
    263   ju.fill(0);
    264   u.fill(0);
    265 
    266   // number of largest elements to keep in each row:
    267   Index fill_in =   static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
    268   if (fill_in > n) fill_in = n;
    269 
    270   // number of largest nonzero elements to keep in the L and the U part of the current row:
    271   Index nnzL = fill_in/2;
    272   Index nnzU = nnzL;
    273   m_lu.reserve(n * (nnzL + nnzU + 1));
    274 
    275   // global loop over the rows of the sparse matrix
    276   for (Index ii = 0; ii < n; ii++)
    277   {
    278     // 1 - copy the lower and the upper part of the row i of mat in the working vector u
    279 
    280     Index sizeu = 1; // number of nonzero elements in the upper part of the current row
    281     Index sizel = 0; // number of nonzero elements in the lower part of the current row
    282     ju(ii)    = ii;
    283     u(ii)     = 0;
    284     jr(ii)    = ii;
    285     RealScalar rownorm = 0;
    286 
    287     typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
    288     for (; j_it; ++j_it)
    289     {
    290       Index k = j_it.index();
    291       if (k < ii)
    292       {
    293         // copy the lower part
    294         ju(sizel) = k;
    295         u(sizel) = j_it.value();
    296         jr(k) = sizel;
    297         ++sizel;
    298       }
    299       else if (k == ii)
    300       {
    301         u(ii) = j_it.value();
    302       }
    303       else
    304       {
    305         // copy the upper part
    306         Index jpos = ii + sizeu;
    307         ju(jpos) = k;
    308         u(jpos) = j_it.value();
    309         jr(k) = jpos;
    310         ++sizeu;
    311       }
    312       rownorm += numext::abs2(j_it.value());
    313     }
    314 
    315     // 2 - detect possible zero row
    316     if(rownorm==0)
    317     {
    318       m_info = NumericalIssue;
    319       return;
    320     }
    321     // Take the 2-norm of the current row as a relative tolerance
    322     rownorm = sqrt(rownorm);
    323 
    324     // 3 - eliminate the previous nonzero rows
    325     Index jj = 0;
    326     Index len = 0;
    327     while (jj < sizel)
    328     {
    329       // In order to eliminate in the correct order,
    330       // we must select first the smallest column index among  ju(jj:sizel)
    331       Index k;
    332       Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
    333       k += jj;
    334       if (minrow != ju(jj))
    335       {
    336         // swap the two locations
    337         Index j = ju(jj);
    338         swap(ju(jj), ju(k));
    339         jr(minrow) = jj;   jr(j) = k;
    340         swap(u(jj), u(k));
    341       }
    342       // Reset this location
    343       jr(minrow) = -1;
    344 
    345       // Start elimination
    346       typename FactorType::InnerIterator ki_it(m_lu, minrow);
    347       while (ki_it && ki_it.index() < minrow) ++ki_it;
    348       eigen_internal_assert(ki_it && ki_it.col()==minrow);
    349       Scalar fact = u(jj) / ki_it.value();
    350 
    351       // drop too small elements
    352       if(abs(fact) <= m_droptol)
    353       {
    354         jj++;
    355         continue;
    356       }
    357 
    358       // linear combination of the current row ii and the row minrow
    359       ++ki_it;
    360       for (; ki_it; ++ki_it)
    361       {
    362         Scalar prod = fact * ki_it.value();
    363         Index j       = ki_it.index();
    364         Index jpos    = jr(j);
    365         if (jpos == -1) // fill-in element
    366         {
    367           Index newpos;
    368           if (j >= ii) // dealing with the upper part
    369           {
    370             newpos = ii + sizeu;
    371             sizeu++;
    372             eigen_internal_assert(sizeu<=n);
    373           }
    374           else // dealing with the lower part
    375           {
    376             newpos = sizel;
    377             sizel++;
    378             eigen_internal_assert(sizel<=ii);
    379           }
    380           ju(newpos) = j;
    381           u(newpos) = -prod;
    382           jr(j) = newpos;
    383         }
    384         else
    385           u(jpos) -= prod;
    386       }
    387       // store the pivot element
    388       u(len) = fact;
    389       ju(len) = minrow;
    390       ++len;
    391 
    392       jj++;
    393     } // end of the elimination on the row ii
    394 
    395     // reset the upper part of the pointer jr to zero
    396     for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
    397 
    398     // 4 - partially sort and insert the elements in the m_lu matrix
    399 
    400     // sort the L-part of the row
    401     sizel = len;
    402     len = (std::min)(sizel, nnzL);
    403     typename Vector::SegmentReturnType ul(u.segment(0, sizel));
    404     typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
    405     internal::QuickSplit(ul, jul, len);
    406 
    407     // store the largest m_fill elements of the L part
    408     m_lu.startVec(ii);
    409     for(Index k = 0; k < len; k++)
    410       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
    411 
    412     // store the diagonal element
    413     // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
    414     if (u(ii) == Scalar(0))
    415       u(ii) = sqrt(m_droptol) * rownorm;
    416     m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
    417 
    418     // sort the U-part of the row
    419     // apply the dropping rule first
    420     len = 0;
    421     for(Index k = 1; k < sizeu; k++)
    422     {
    423       if(abs(u(ii+k)) > m_droptol * rownorm )
    424       {
    425         ++len;
    426         u(ii + len)  = u(ii + k);
    427         ju(ii + len) = ju(ii + k);
    428       }
    429     }
    430     sizeu = len + 1; // +1 to take into account the diagonal element
    431     len = (std::min)(sizeu, nnzU);
    432     typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
    433     typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
    434     internal::QuickSplit(uu, juu, len);
    435 
    436     // store the largest elements of the U part
    437     for(Index k = ii + 1; k < ii + len; k++)
    438       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
    439   }
    440 
    441   m_lu.finalize();
    442   m_lu.makeCompressed();
    443 
    444   m_factorizationIsOk = true;
    445   m_info = Success;
    446 }
    447 
    448 namespace internal {
    449 
    450 template<typename _MatrixType, typename Rhs>
    451 struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
    452   : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
    453 {
    454   typedef IncompleteLUT<_MatrixType> Dec;
    455   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    456 
    457   template<typename Dest> void evalTo(Dest& dst) const
    458   {
    459     dec()._solve(rhs(),dst);
    460   }
    461 };
    462 
    463 } // end namespace internal
    464 
    465 } // end namespace Eigen
    466 
    467 #endif // EIGEN_INCOMPLETE_LUT_H
    468