1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme (at) redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <lk/debugfs.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <sys/resource.h> 17 #include "asm/bug.h" 18 #include "evsel.h" 19 #include "evlist.h" 20 #include "util.h" 21 #include "cpumap.h" 22 #include "thread_map.h" 23 #include "target.h" 24 #include "perf_regs.h" 25 #include "debug.h" 26 27 static struct { 28 bool sample_id_all; 29 bool exclude_guest; 30 bool mmap2; 31 } perf_missing_features; 32 33 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 34 35 int __perf_evsel__sample_size(u64 sample_type) 36 { 37 u64 mask = sample_type & PERF_SAMPLE_MASK; 38 int size = 0; 39 int i; 40 41 for (i = 0; i < 64; i++) { 42 if (mask & (1ULL << i)) 43 size++; 44 } 45 46 size *= sizeof(u64); 47 48 return size; 49 } 50 51 /** 52 * __perf_evsel__calc_id_pos - calculate id_pos. 53 * @sample_type: sample type 54 * 55 * This function returns the position of the event id (PERF_SAMPLE_ID or 56 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 57 * sample_event. 58 */ 59 static int __perf_evsel__calc_id_pos(u64 sample_type) 60 { 61 int idx = 0; 62 63 if (sample_type & PERF_SAMPLE_IDENTIFIER) 64 return 0; 65 66 if (!(sample_type & PERF_SAMPLE_ID)) 67 return -1; 68 69 if (sample_type & PERF_SAMPLE_IP) 70 idx += 1; 71 72 if (sample_type & PERF_SAMPLE_TID) 73 idx += 1; 74 75 if (sample_type & PERF_SAMPLE_TIME) 76 idx += 1; 77 78 if (sample_type & PERF_SAMPLE_ADDR) 79 idx += 1; 80 81 return idx; 82 } 83 84 /** 85 * __perf_evsel__calc_is_pos - calculate is_pos. 86 * @sample_type: sample type 87 * 88 * This function returns the position (counting backwards) of the event id 89 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 90 * sample_id_all is used there is an id sample appended to non-sample events. 91 */ 92 static int __perf_evsel__calc_is_pos(u64 sample_type) 93 { 94 int idx = 1; 95 96 if (sample_type & PERF_SAMPLE_IDENTIFIER) 97 return 1; 98 99 if (!(sample_type & PERF_SAMPLE_ID)) 100 return -1; 101 102 if (sample_type & PERF_SAMPLE_CPU) 103 idx += 1; 104 105 if (sample_type & PERF_SAMPLE_STREAM_ID) 106 idx += 1; 107 108 return idx; 109 } 110 111 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 112 { 113 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 114 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 115 } 116 117 void hists__init(struct hists *hists) 118 { 119 memset(hists, 0, sizeof(*hists)); 120 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 121 hists->entries_in = &hists->entries_in_array[0]; 122 hists->entries_collapsed = RB_ROOT; 123 hists->entries = RB_ROOT; 124 pthread_mutex_init(&hists->lock, NULL); 125 } 126 127 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 128 enum perf_event_sample_format bit) 129 { 130 if (!(evsel->attr.sample_type & bit)) { 131 evsel->attr.sample_type |= bit; 132 evsel->sample_size += sizeof(u64); 133 perf_evsel__calc_id_pos(evsel); 134 } 135 } 136 137 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 138 enum perf_event_sample_format bit) 139 { 140 if (evsel->attr.sample_type & bit) { 141 evsel->attr.sample_type &= ~bit; 142 evsel->sample_size -= sizeof(u64); 143 perf_evsel__calc_id_pos(evsel); 144 } 145 } 146 147 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 148 bool can_sample_identifier) 149 { 150 if (can_sample_identifier) { 151 perf_evsel__reset_sample_bit(evsel, ID); 152 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 153 } else { 154 perf_evsel__set_sample_bit(evsel, ID); 155 } 156 evsel->attr.read_format |= PERF_FORMAT_ID; 157 } 158 159 void perf_evsel__init(struct perf_evsel *evsel, 160 struct perf_event_attr *attr, int idx) 161 { 162 evsel->idx = idx; 163 evsel->attr = *attr; 164 evsel->leader = evsel; 165 INIT_LIST_HEAD(&evsel->node); 166 hists__init(&evsel->hists); 167 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 168 perf_evsel__calc_id_pos(evsel); 169 } 170 171 struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx) 172 { 173 struct perf_evsel *evsel = zalloc(sizeof(*evsel)); 174 175 if (evsel != NULL) 176 perf_evsel__init(evsel, attr, idx); 177 178 return evsel; 179 } 180 181 struct event_format *event_format__new(const char *sys, const char *name) 182 { 183 int fd, n; 184 char *filename; 185 void *bf = NULL, *nbf; 186 size_t size = 0, alloc_size = 0; 187 struct event_format *format = NULL; 188 189 if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0) 190 goto out; 191 192 fd = open(filename, O_RDONLY); 193 if (fd < 0) 194 goto out_free_filename; 195 196 do { 197 if (size == alloc_size) { 198 alloc_size += BUFSIZ; 199 nbf = realloc(bf, alloc_size); 200 if (nbf == NULL) 201 goto out_free_bf; 202 bf = nbf; 203 } 204 205 n = read(fd, bf + size, alloc_size - size); 206 if (n < 0) 207 goto out_free_bf; 208 size += n; 209 } while (n > 0); 210 211 pevent_parse_format(&format, bf, size, sys); 212 213 out_free_bf: 214 free(bf); 215 close(fd); 216 out_free_filename: 217 free(filename); 218 out: 219 return format; 220 } 221 222 struct perf_evsel *perf_evsel__newtp(const char *sys, const char *name, int idx) 223 { 224 struct perf_evsel *evsel = zalloc(sizeof(*evsel)); 225 226 if (evsel != NULL) { 227 struct perf_event_attr attr = { 228 .type = PERF_TYPE_TRACEPOINT, 229 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 230 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 231 }; 232 233 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 234 goto out_free; 235 236 evsel->tp_format = event_format__new(sys, name); 237 if (evsel->tp_format == NULL) 238 goto out_free; 239 240 event_attr_init(&attr); 241 attr.config = evsel->tp_format->id; 242 attr.sample_period = 1; 243 perf_evsel__init(evsel, &attr, idx); 244 } 245 246 return evsel; 247 248 out_free: 249 free(evsel->name); 250 free(evsel); 251 return NULL; 252 } 253 254 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 255 "cycles", 256 "instructions", 257 "cache-references", 258 "cache-misses", 259 "branches", 260 "branch-misses", 261 "bus-cycles", 262 "stalled-cycles-frontend", 263 "stalled-cycles-backend", 264 "ref-cycles", 265 }; 266 267 static const char *__perf_evsel__hw_name(u64 config) 268 { 269 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 270 return perf_evsel__hw_names[config]; 271 272 return "unknown-hardware"; 273 } 274 275 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 276 { 277 int colon = 0, r = 0; 278 struct perf_event_attr *attr = &evsel->attr; 279 bool exclude_guest_default = false; 280 281 #define MOD_PRINT(context, mod) do { \ 282 if (!attr->exclude_##context) { \ 283 if (!colon) colon = ++r; \ 284 r += scnprintf(bf + r, size - r, "%c", mod); \ 285 } } while(0) 286 287 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 288 MOD_PRINT(kernel, 'k'); 289 MOD_PRINT(user, 'u'); 290 MOD_PRINT(hv, 'h'); 291 exclude_guest_default = true; 292 } 293 294 if (attr->precise_ip) { 295 if (!colon) 296 colon = ++r; 297 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 298 exclude_guest_default = true; 299 } 300 301 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 302 MOD_PRINT(host, 'H'); 303 MOD_PRINT(guest, 'G'); 304 } 305 #undef MOD_PRINT 306 if (colon) 307 bf[colon - 1] = ':'; 308 return r; 309 } 310 311 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 312 { 313 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 314 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 315 } 316 317 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 318 "cpu-clock", 319 "task-clock", 320 "page-faults", 321 "context-switches", 322 "cpu-migrations", 323 "minor-faults", 324 "major-faults", 325 "alignment-faults", 326 "emulation-faults", 327 "dummy", 328 }; 329 330 static const char *__perf_evsel__sw_name(u64 config) 331 { 332 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 333 return perf_evsel__sw_names[config]; 334 return "unknown-software"; 335 } 336 337 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 338 { 339 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 340 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 341 } 342 343 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 344 { 345 int r; 346 347 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 348 349 if (type & HW_BREAKPOINT_R) 350 r += scnprintf(bf + r, size - r, "r"); 351 352 if (type & HW_BREAKPOINT_W) 353 r += scnprintf(bf + r, size - r, "w"); 354 355 if (type & HW_BREAKPOINT_X) 356 r += scnprintf(bf + r, size - r, "x"); 357 358 return r; 359 } 360 361 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 362 { 363 struct perf_event_attr *attr = &evsel->attr; 364 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 365 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 366 } 367 368 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 369 [PERF_EVSEL__MAX_ALIASES] = { 370 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 371 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 372 { "LLC", "L2", }, 373 { "dTLB", "d-tlb", "Data-TLB", }, 374 { "iTLB", "i-tlb", "Instruction-TLB", }, 375 { "branch", "branches", "bpu", "btb", "bpc", }, 376 { "node", }, 377 }; 378 379 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 380 [PERF_EVSEL__MAX_ALIASES] = { 381 { "load", "loads", "read", }, 382 { "store", "stores", "write", }, 383 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 384 }; 385 386 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 387 [PERF_EVSEL__MAX_ALIASES] = { 388 { "refs", "Reference", "ops", "access", }, 389 { "misses", "miss", }, 390 }; 391 392 #define C(x) PERF_COUNT_HW_CACHE_##x 393 #define CACHE_READ (1 << C(OP_READ)) 394 #define CACHE_WRITE (1 << C(OP_WRITE)) 395 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 396 #define COP(x) (1 << x) 397 398 /* 399 * cache operartion stat 400 * L1I : Read and prefetch only 401 * ITLB and BPU : Read-only 402 */ 403 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 404 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 405 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 406 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 407 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 408 [C(ITLB)] = (CACHE_READ), 409 [C(BPU)] = (CACHE_READ), 410 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 411 }; 412 413 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 414 { 415 if (perf_evsel__hw_cache_stat[type] & COP(op)) 416 return true; /* valid */ 417 else 418 return false; /* invalid */ 419 } 420 421 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 422 char *bf, size_t size) 423 { 424 if (result) { 425 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 426 perf_evsel__hw_cache_op[op][0], 427 perf_evsel__hw_cache_result[result][0]); 428 } 429 430 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 431 perf_evsel__hw_cache_op[op][1]); 432 } 433 434 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 435 { 436 u8 op, result, type = (config >> 0) & 0xff; 437 const char *err = "unknown-ext-hardware-cache-type"; 438 439 if (type > PERF_COUNT_HW_CACHE_MAX) 440 goto out_err; 441 442 op = (config >> 8) & 0xff; 443 err = "unknown-ext-hardware-cache-op"; 444 if (op > PERF_COUNT_HW_CACHE_OP_MAX) 445 goto out_err; 446 447 result = (config >> 16) & 0xff; 448 err = "unknown-ext-hardware-cache-result"; 449 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) 450 goto out_err; 451 452 err = "invalid-cache"; 453 if (!perf_evsel__is_cache_op_valid(type, op)) 454 goto out_err; 455 456 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 457 out_err: 458 return scnprintf(bf, size, "%s", err); 459 } 460 461 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 462 { 463 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 464 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 465 } 466 467 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 468 { 469 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 470 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 471 } 472 473 const char *perf_evsel__name(struct perf_evsel *evsel) 474 { 475 char bf[128]; 476 477 if (evsel->name) 478 return evsel->name; 479 480 switch (evsel->attr.type) { 481 case PERF_TYPE_RAW: 482 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 483 break; 484 485 case PERF_TYPE_HARDWARE: 486 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 487 break; 488 489 case PERF_TYPE_HW_CACHE: 490 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 491 break; 492 493 case PERF_TYPE_SOFTWARE: 494 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 495 break; 496 497 case PERF_TYPE_TRACEPOINT: 498 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 499 break; 500 501 case PERF_TYPE_BREAKPOINT: 502 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 503 break; 504 505 default: 506 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 507 evsel->attr.type); 508 break; 509 } 510 511 evsel->name = strdup(bf); 512 513 return evsel->name ?: "unknown"; 514 } 515 516 const char *perf_evsel__group_name(struct perf_evsel *evsel) 517 { 518 return evsel->group_name ?: "anon group"; 519 } 520 521 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 522 { 523 int ret; 524 struct perf_evsel *pos; 525 const char *group_name = perf_evsel__group_name(evsel); 526 527 ret = scnprintf(buf, size, "%s", group_name); 528 529 ret += scnprintf(buf + ret, size - ret, " { %s", 530 perf_evsel__name(evsel)); 531 532 for_each_group_member(pos, evsel) 533 ret += scnprintf(buf + ret, size - ret, ", %s", 534 perf_evsel__name(pos)); 535 536 ret += scnprintf(buf + ret, size - ret, " }"); 537 538 return ret; 539 } 540 541 /* 542 * The enable_on_exec/disabled value strategy: 543 * 544 * 1) For any type of traced program: 545 * - all independent events and group leaders are disabled 546 * - all group members are enabled 547 * 548 * Group members are ruled by group leaders. They need to 549 * be enabled, because the group scheduling relies on that. 550 * 551 * 2) For traced programs executed by perf: 552 * - all independent events and group leaders have 553 * enable_on_exec set 554 * - we don't specifically enable or disable any event during 555 * the record command 556 * 557 * Independent events and group leaders are initially disabled 558 * and get enabled by exec. Group members are ruled by group 559 * leaders as stated in 1). 560 * 561 * 3) For traced programs attached by perf (pid/tid): 562 * - we specifically enable or disable all events during 563 * the record command 564 * 565 * When attaching events to already running traced we 566 * enable/disable events specifically, as there's no 567 * initial traced exec call. 568 */ 569 void perf_evsel__config(struct perf_evsel *evsel, 570 struct perf_record_opts *opts) 571 { 572 struct perf_evsel *leader = evsel->leader; 573 struct perf_event_attr *attr = &evsel->attr; 574 int track = !evsel->idx; /* only the first counter needs these */ 575 576 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 577 attr->inherit = !opts->no_inherit; 578 579 perf_evsel__set_sample_bit(evsel, IP); 580 perf_evsel__set_sample_bit(evsel, TID); 581 582 if (evsel->sample_read) { 583 perf_evsel__set_sample_bit(evsel, READ); 584 585 /* 586 * We need ID even in case of single event, because 587 * PERF_SAMPLE_READ process ID specific data. 588 */ 589 perf_evsel__set_sample_id(evsel, false); 590 591 /* 592 * Apply group format only if we belong to group 593 * with more than one members. 594 */ 595 if (leader->nr_members > 1) { 596 attr->read_format |= PERF_FORMAT_GROUP; 597 attr->inherit = 0; 598 } 599 } 600 601 /* 602 * We default some events to a 1 default interval. But keep 603 * it a weak assumption overridable by the user. 604 */ 605 if (!attr->sample_period || (opts->user_freq != UINT_MAX && 606 opts->user_interval != ULLONG_MAX)) { 607 if (opts->freq) { 608 perf_evsel__set_sample_bit(evsel, PERIOD); 609 attr->freq = 1; 610 attr->sample_freq = opts->freq; 611 } else { 612 attr->sample_period = opts->default_interval; 613 } 614 } 615 616 /* 617 * Disable sampling for all group members other 618 * than leader in case leader 'leads' the sampling. 619 */ 620 if ((leader != evsel) && leader->sample_read) { 621 attr->sample_freq = 0; 622 attr->sample_period = 0; 623 } 624 625 if (opts->no_samples) 626 attr->sample_freq = 0; 627 628 if (opts->inherit_stat) 629 attr->inherit_stat = 1; 630 631 if (opts->sample_address) { 632 perf_evsel__set_sample_bit(evsel, ADDR); 633 attr->mmap_data = track; 634 } 635 636 if (opts->call_graph) { 637 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 638 639 if (opts->call_graph == CALLCHAIN_DWARF) { 640 perf_evsel__set_sample_bit(evsel, REGS_USER); 641 perf_evsel__set_sample_bit(evsel, STACK_USER); 642 attr->sample_regs_user = PERF_REGS_MASK; 643 attr->sample_stack_user = opts->stack_dump_size; 644 attr->exclude_callchain_user = 1; 645 } 646 } 647 648 if (perf_target__has_cpu(&opts->target)) 649 perf_evsel__set_sample_bit(evsel, CPU); 650 651 if (opts->period) 652 perf_evsel__set_sample_bit(evsel, PERIOD); 653 654 if (!perf_missing_features.sample_id_all && 655 (opts->sample_time || !opts->no_inherit || 656 perf_target__has_cpu(&opts->target))) 657 perf_evsel__set_sample_bit(evsel, TIME); 658 659 if (opts->raw_samples) { 660 perf_evsel__set_sample_bit(evsel, TIME); 661 perf_evsel__set_sample_bit(evsel, RAW); 662 perf_evsel__set_sample_bit(evsel, CPU); 663 } 664 665 if (opts->sample_address) 666 attr->sample_type |= PERF_SAMPLE_DATA_SRC; 667 668 if (opts->no_delay) { 669 attr->watermark = 0; 670 attr->wakeup_events = 1; 671 } 672 if (opts->branch_stack) { 673 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 674 attr->branch_sample_type = opts->branch_stack; 675 } 676 677 if (opts->sample_weight) 678 attr->sample_type |= PERF_SAMPLE_WEIGHT; 679 680 attr->mmap = track; 681 attr->comm = track; 682 683 /* 684 * XXX see the function comment above 685 * 686 * Disabling only independent events or group leaders, 687 * keeping group members enabled. 688 */ 689 if (perf_evsel__is_group_leader(evsel)) 690 attr->disabled = 1; 691 692 /* 693 * Setting enable_on_exec for independent events and 694 * group leaders for traced executed by perf. 695 */ 696 if (perf_target__none(&opts->target) && perf_evsel__is_group_leader(evsel)) 697 attr->enable_on_exec = 1; 698 } 699 700 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 701 { 702 int cpu, thread; 703 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 704 705 if (evsel->fd) { 706 for (cpu = 0; cpu < ncpus; cpu++) { 707 for (thread = 0; thread < nthreads; thread++) { 708 FD(evsel, cpu, thread) = -1; 709 } 710 } 711 } 712 713 return evsel->fd != NULL ? 0 : -ENOMEM; 714 } 715 716 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 717 int ioc, void *arg) 718 { 719 int cpu, thread; 720 721 for (cpu = 0; cpu < ncpus; cpu++) { 722 for (thread = 0; thread < nthreads; thread++) { 723 int fd = FD(evsel, cpu, thread), 724 err = ioctl(fd, ioc, arg); 725 726 if (err) 727 return err; 728 } 729 } 730 731 return 0; 732 } 733 734 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 735 const char *filter) 736 { 737 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 738 PERF_EVENT_IOC_SET_FILTER, 739 (void *)filter); 740 } 741 742 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads) 743 { 744 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 745 PERF_EVENT_IOC_ENABLE, 746 0); 747 } 748 749 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 750 { 751 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 752 if (evsel->sample_id == NULL) 753 return -ENOMEM; 754 755 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 756 if (evsel->id == NULL) { 757 xyarray__delete(evsel->sample_id); 758 evsel->sample_id = NULL; 759 return -ENOMEM; 760 } 761 762 return 0; 763 } 764 765 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus) 766 { 767 memset(evsel->counts, 0, (sizeof(*evsel->counts) + 768 (ncpus * sizeof(struct perf_counts_values)))); 769 } 770 771 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus) 772 { 773 evsel->counts = zalloc((sizeof(*evsel->counts) + 774 (ncpus * sizeof(struct perf_counts_values)))); 775 return evsel->counts != NULL ? 0 : -ENOMEM; 776 } 777 778 void perf_evsel__free_fd(struct perf_evsel *evsel) 779 { 780 xyarray__delete(evsel->fd); 781 evsel->fd = NULL; 782 } 783 784 void perf_evsel__free_id(struct perf_evsel *evsel) 785 { 786 xyarray__delete(evsel->sample_id); 787 evsel->sample_id = NULL; 788 free(evsel->id); 789 evsel->id = NULL; 790 } 791 792 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 793 { 794 int cpu, thread; 795 796 for (cpu = 0; cpu < ncpus; cpu++) 797 for (thread = 0; thread < nthreads; ++thread) { 798 close(FD(evsel, cpu, thread)); 799 FD(evsel, cpu, thread) = -1; 800 } 801 } 802 803 void perf_evsel__free_counts(struct perf_evsel *evsel) 804 { 805 free(evsel->counts); 806 } 807 808 void perf_evsel__exit(struct perf_evsel *evsel) 809 { 810 assert(list_empty(&evsel->node)); 811 perf_evsel__free_fd(evsel); 812 perf_evsel__free_id(evsel); 813 } 814 815 void perf_evsel__delete(struct perf_evsel *evsel) 816 { 817 perf_evsel__exit(evsel); 818 close_cgroup(evsel->cgrp); 819 free(evsel->group_name); 820 if (evsel->tp_format) 821 pevent_free_format(evsel->tp_format); 822 free(evsel->name); 823 free(evsel); 824 } 825 826 static inline void compute_deltas(struct perf_evsel *evsel, 827 int cpu, 828 struct perf_counts_values *count) 829 { 830 struct perf_counts_values tmp; 831 832 if (!evsel->prev_raw_counts) 833 return; 834 835 if (cpu == -1) { 836 tmp = evsel->prev_raw_counts->aggr; 837 evsel->prev_raw_counts->aggr = *count; 838 } else { 839 tmp = evsel->prev_raw_counts->cpu[cpu]; 840 evsel->prev_raw_counts->cpu[cpu] = *count; 841 } 842 843 count->val = count->val - tmp.val; 844 count->ena = count->ena - tmp.ena; 845 count->run = count->run - tmp.run; 846 } 847 848 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 849 int cpu, int thread, bool scale) 850 { 851 struct perf_counts_values count; 852 size_t nv = scale ? 3 : 1; 853 854 if (FD(evsel, cpu, thread) < 0) 855 return -EINVAL; 856 857 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0) 858 return -ENOMEM; 859 860 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 861 return -errno; 862 863 compute_deltas(evsel, cpu, &count); 864 865 if (scale) { 866 if (count.run == 0) 867 count.val = 0; 868 else if (count.run < count.ena) 869 count.val = (u64)((double)count.val * count.ena / count.run + 0.5); 870 } else 871 count.ena = count.run = 0; 872 873 evsel->counts->cpu[cpu] = count; 874 return 0; 875 } 876 877 int __perf_evsel__read(struct perf_evsel *evsel, 878 int ncpus, int nthreads, bool scale) 879 { 880 size_t nv = scale ? 3 : 1; 881 int cpu, thread; 882 struct perf_counts_values *aggr = &evsel->counts->aggr, count; 883 884 aggr->val = aggr->ena = aggr->run = 0; 885 886 for (cpu = 0; cpu < ncpus; cpu++) { 887 for (thread = 0; thread < nthreads; thread++) { 888 if (FD(evsel, cpu, thread) < 0) 889 continue; 890 891 if (readn(FD(evsel, cpu, thread), 892 &count, nv * sizeof(u64)) < 0) 893 return -errno; 894 895 aggr->val += count.val; 896 if (scale) { 897 aggr->ena += count.ena; 898 aggr->run += count.run; 899 } 900 } 901 } 902 903 compute_deltas(evsel, -1, aggr); 904 905 evsel->counts->scaled = 0; 906 if (scale) { 907 if (aggr->run == 0) { 908 evsel->counts->scaled = -1; 909 aggr->val = 0; 910 return 0; 911 } 912 913 if (aggr->run < aggr->ena) { 914 evsel->counts->scaled = 1; 915 aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5); 916 } 917 } else 918 aggr->ena = aggr->run = 0; 919 920 return 0; 921 } 922 923 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 924 { 925 struct perf_evsel *leader = evsel->leader; 926 int fd; 927 928 if (perf_evsel__is_group_leader(evsel)) 929 return -1; 930 931 /* 932 * Leader must be already processed/open, 933 * if not it's a bug. 934 */ 935 BUG_ON(!leader->fd); 936 937 fd = FD(leader, cpu, thread); 938 BUG_ON(fd == -1); 939 940 return fd; 941 } 942 943 #define __PRINT_ATTR(fmt, cast, field) \ 944 fprintf(fp, " %-19s "fmt"\n", #field, cast attr->field) 945 946 #define PRINT_ATTR_U32(field) __PRINT_ATTR("%u" , , field) 947 #define PRINT_ATTR_X32(field) __PRINT_ATTR("%#x", , field) 948 #define PRINT_ATTR_U64(field) __PRINT_ATTR("%" PRIu64, (uint64_t), field) 949 #define PRINT_ATTR_X64(field) __PRINT_ATTR("%#"PRIx64, (uint64_t), field) 950 951 #define PRINT_ATTR2N(name1, field1, name2, field2) \ 952 fprintf(fp, " %-19s %u %-19s %u\n", \ 953 name1, attr->field1, name2, attr->field2) 954 955 #define PRINT_ATTR2(field1, field2) \ 956 PRINT_ATTR2N(#field1, field1, #field2, field2) 957 958 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp) 959 { 960 size_t ret = 0; 961 962 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 963 ret += fprintf(fp, "perf_event_attr:\n"); 964 965 ret += PRINT_ATTR_U32(type); 966 ret += PRINT_ATTR_U32(size); 967 ret += PRINT_ATTR_X64(config); 968 ret += PRINT_ATTR_U64(sample_period); 969 ret += PRINT_ATTR_U64(sample_freq); 970 ret += PRINT_ATTR_X64(sample_type); 971 ret += PRINT_ATTR_X64(read_format); 972 973 ret += PRINT_ATTR2(disabled, inherit); 974 ret += PRINT_ATTR2(pinned, exclusive); 975 ret += PRINT_ATTR2(exclude_user, exclude_kernel); 976 ret += PRINT_ATTR2(exclude_hv, exclude_idle); 977 ret += PRINT_ATTR2(mmap, comm); 978 ret += PRINT_ATTR2(freq, inherit_stat); 979 ret += PRINT_ATTR2(enable_on_exec, task); 980 ret += PRINT_ATTR2(watermark, precise_ip); 981 ret += PRINT_ATTR2(mmap_data, sample_id_all); 982 ret += PRINT_ATTR2(exclude_host, exclude_guest); 983 ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel, 984 "excl.callchain_user", exclude_callchain_user); 985 986 ret += PRINT_ATTR_U32(wakeup_events); 987 ret += PRINT_ATTR_U32(wakeup_watermark); 988 ret += PRINT_ATTR_X32(bp_type); 989 ret += PRINT_ATTR_X64(bp_addr); 990 ret += PRINT_ATTR_X64(config1); 991 ret += PRINT_ATTR_U64(bp_len); 992 ret += PRINT_ATTR_X64(config2); 993 ret += PRINT_ATTR_X64(branch_sample_type); 994 ret += PRINT_ATTR_X64(sample_regs_user); 995 ret += PRINT_ATTR_U32(sample_stack_user); 996 997 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 998 999 return ret; 1000 } 1001 1002 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1003 struct thread_map *threads) 1004 { 1005 int cpu, thread; 1006 unsigned long flags = 0; 1007 int pid = -1, err; 1008 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1009 1010 if (evsel->fd == NULL && 1011 perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0) 1012 return -ENOMEM; 1013 1014 if (evsel->cgrp) { 1015 flags = PERF_FLAG_PID_CGROUP; 1016 pid = evsel->cgrp->fd; 1017 } 1018 1019 fallback_missing_features: 1020 if (perf_missing_features.mmap2) 1021 evsel->attr.mmap2 = 0; 1022 if (perf_missing_features.exclude_guest) 1023 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1024 retry_sample_id: 1025 if (perf_missing_features.sample_id_all) 1026 evsel->attr.sample_id_all = 0; 1027 1028 if (verbose >= 2) 1029 perf_event_attr__fprintf(&evsel->attr, stderr); 1030 1031 for (cpu = 0; cpu < cpus->nr; cpu++) { 1032 1033 for (thread = 0; thread < threads->nr; thread++) { 1034 int group_fd; 1035 1036 if (!evsel->cgrp) 1037 pid = threads->map[thread]; 1038 1039 group_fd = get_group_fd(evsel, cpu, thread); 1040 retry_open: 1041 pr_debug2("perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1042 pid, cpus->map[cpu], group_fd, flags); 1043 1044 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1045 pid, 1046 cpus->map[cpu], 1047 group_fd, flags); 1048 if (FD(evsel, cpu, thread) < 0) { 1049 err = -errno; 1050 goto try_fallback; 1051 } 1052 set_rlimit = NO_CHANGE; 1053 } 1054 } 1055 1056 return 0; 1057 1058 try_fallback: 1059 /* 1060 * perf stat needs between 5 and 22 fds per CPU. When we run out 1061 * of them try to increase the limits. 1062 */ 1063 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1064 struct rlimit l; 1065 int old_errno = errno; 1066 1067 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1068 if (set_rlimit == NO_CHANGE) 1069 l.rlim_cur = l.rlim_max; 1070 else { 1071 l.rlim_cur = l.rlim_max + 1000; 1072 l.rlim_max = l.rlim_cur; 1073 } 1074 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1075 set_rlimit++; 1076 errno = old_errno; 1077 goto retry_open; 1078 } 1079 } 1080 errno = old_errno; 1081 } 1082 1083 if (err != -EINVAL || cpu > 0 || thread > 0) 1084 goto out_close; 1085 1086 if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1087 perf_missing_features.mmap2 = true; 1088 goto fallback_missing_features; 1089 } else if (!perf_missing_features.exclude_guest && 1090 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1091 perf_missing_features.exclude_guest = true; 1092 goto fallback_missing_features; 1093 } else if (!perf_missing_features.sample_id_all) { 1094 perf_missing_features.sample_id_all = true; 1095 goto retry_sample_id; 1096 } 1097 1098 out_close: 1099 do { 1100 while (--thread >= 0) { 1101 close(FD(evsel, cpu, thread)); 1102 FD(evsel, cpu, thread) = -1; 1103 } 1104 thread = threads->nr; 1105 } while (--cpu >= 0); 1106 return err; 1107 } 1108 1109 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1110 { 1111 if (evsel->fd == NULL) 1112 return; 1113 1114 perf_evsel__close_fd(evsel, ncpus, nthreads); 1115 perf_evsel__free_fd(evsel); 1116 evsel->fd = NULL; 1117 } 1118 1119 static struct { 1120 struct cpu_map map; 1121 int cpus[1]; 1122 } empty_cpu_map = { 1123 .map.nr = 1, 1124 .cpus = { -1, }, 1125 }; 1126 1127 static struct { 1128 struct thread_map map; 1129 int threads[1]; 1130 } empty_thread_map = { 1131 .map.nr = 1, 1132 .threads = { -1, }, 1133 }; 1134 1135 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1136 struct thread_map *threads) 1137 { 1138 if (cpus == NULL) { 1139 /* Work around old compiler warnings about strict aliasing */ 1140 cpus = &empty_cpu_map.map; 1141 } 1142 1143 if (threads == NULL) 1144 threads = &empty_thread_map.map; 1145 1146 return __perf_evsel__open(evsel, cpus, threads); 1147 } 1148 1149 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1150 struct cpu_map *cpus) 1151 { 1152 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1153 } 1154 1155 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1156 struct thread_map *threads) 1157 { 1158 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1159 } 1160 1161 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1162 const union perf_event *event, 1163 struct perf_sample *sample) 1164 { 1165 u64 type = evsel->attr.sample_type; 1166 const u64 *array = event->sample.array; 1167 bool swapped = evsel->needs_swap; 1168 union u64_swap u; 1169 1170 array += ((event->header.size - 1171 sizeof(event->header)) / sizeof(u64)) - 1; 1172 1173 if (type & PERF_SAMPLE_IDENTIFIER) { 1174 sample->id = *array; 1175 array--; 1176 } 1177 1178 if (type & PERF_SAMPLE_CPU) { 1179 u.val64 = *array; 1180 if (swapped) { 1181 /* undo swap of u64, then swap on individual u32s */ 1182 u.val64 = bswap_64(u.val64); 1183 u.val32[0] = bswap_32(u.val32[0]); 1184 } 1185 1186 sample->cpu = u.val32[0]; 1187 array--; 1188 } 1189 1190 if (type & PERF_SAMPLE_STREAM_ID) { 1191 sample->stream_id = *array; 1192 array--; 1193 } 1194 1195 if (type & PERF_SAMPLE_ID) { 1196 sample->id = *array; 1197 array--; 1198 } 1199 1200 if (type & PERF_SAMPLE_TIME) { 1201 sample->time = *array; 1202 array--; 1203 } 1204 1205 if (type & PERF_SAMPLE_TID) { 1206 u.val64 = *array; 1207 if (swapped) { 1208 /* undo swap of u64, then swap on individual u32s */ 1209 u.val64 = bswap_64(u.val64); 1210 u.val32[0] = bswap_32(u.val32[0]); 1211 u.val32[1] = bswap_32(u.val32[1]); 1212 } 1213 1214 sample->pid = u.val32[0]; 1215 sample->tid = u.val32[1]; 1216 } 1217 1218 return 0; 1219 } 1220 1221 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1222 u64 size) 1223 { 1224 return size > max_size || offset + size > endp; 1225 } 1226 1227 #define OVERFLOW_CHECK(offset, size, max_size) \ 1228 do { \ 1229 if (overflow(endp, (max_size), (offset), (size))) \ 1230 return -EFAULT; \ 1231 } while (0) 1232 1233 #define OVERFLOW_CHECK_u64(offset) \ 1234 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1235 1236 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1237 struct perf_sample *data) 1238 { 1239 u64 type = evsel->attr.sample_type; 1240 bool swapped = evsel->needs_swap; 1241 const u64 *array; 1242 u16 max_size = event->header.size; 1243 const void *endp = (void *)event + max_size; 1244 u64 sz; 1245 1246 /* 1247 * used for cross-endian analysis. See git commit 65014ab3 1248 * for why this goofiness is needed. 1249 */ 1250 union u64_swap u; 1251 1252 memset(data, 0, sizeof(*data)); 1253 data->cpu = data->pid = data->tid = -1; 1254 data->stream_id = data->id = data->time = -1ULL; 1255 data->period = 1; 1256 data->weight = 0; 1257 1258 if (event->header.type != PERF_RECORD_SAMPLE) { 1259 if (!evsel->attr.sample_id_all) 1260 return 0; 1261 return perf_evsel__parse_id_sample(evsel, event, data); 1262 } 1263 1264 array = event->sample.array; 1265 1266 /* 1267 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1268 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1269 * check the format does not go past the end of the event. 1270 */ 1271 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1272 return -EFAULT; 1273 1274 data->id = -1ULL; 1275 if (type & PERF_SAMPLE_IDENTIFIER) { 1276 data->id = *array; 1277 array++; 1278 } 1279 1280 if (type & PERF_SAMPLE_IP) { 1281 data->ip = *array; 1282 array++; 1283 } 1284 1285 if (type & PERF_SAMPLE_TID) { 1286 u.val64 = *array; 1287 if (swapped) { 1288 /* undo swap of u64, then swap on individual u32s */ 1289 u.val64 = bswap_64(u.val64); 1290 u.val32[0] = bswap_32(u.val32[0]); 1291 u.val32[1] = bswap_32(u.val32[1]); 1292 } 1293 1294 data->pid = u.val32[0]; 1295 data->tid = u.val32[1]; 1296 array++; 1297 } 1298 1299 if (type & PERF_SAMPLE_TIME) { 1300 data->time = *array; 1301 array++; 1302 } 1303 1304 data->addr = 0; 1305 if (type & PERF_SAMPLE_ADDR) { 1306 data->addr = *array; 1307 array++; 1308 } 1309 1310 if (type & PERF_SAMPLE_ID) { 1311 data->id = *array; 1312 array++; 1313 } 1314 1315 if (type & PERF_SAMPLE_STREAM_ID) { 1316 data->stream_id = *array; 1317 array++; 1318 } 1319 1320 if (type & PERF_SAMPLE_CPU) { 1321 1322 u.val64 = *array; 1323 if (swapped) { 1324 /* undo swap of u64, then swap on individual u32s */ 1325 u.val64 = bswap_64(u.val64); 1326 u.val32[0] = bswap_32(u.val32[0]); 1327 } 1328 1329 data->cpu = u.val32[0]; 1330 array++; 1331 } 1332 1333 if (type & PERF_SAMPLE_PERIOD) { 1334 data->period = *array; 1335 array++; 1336 } 1337 1338 if (type & PERF_SAMPLE_READ) { 1339 u64 read_format = evsel->attr.read_format; 1340 1341 OVERFLOW_CHECK_u64(array); 1342 if (read_format & PERF_FORMAT_GROUP) 1343 data->read.group.nr = *array; 1344 else 1345 data->read.one.value = *array; 1346 1347 array++; 1348 1349 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1350 OVERFLOW_CHECK_u64(array); 1351 data->read.time_enabled = *array; 1352 array++; 1353 } 1354 1355 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1356 OVERFLOW_CHECK_u64(array); 1357 data->read.time_running = *array; 1358 array++; 1359 } 1360 1361 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1362 if (read_format & PERF_FORMAT_GROUP) { 1363 const u64 max_group_nr = UINT64_MAX / 1364 sizeof(struct sample_read_value); 1365 1366 if (data->read.group.nr > max_group_nr) 1367 return -EFAULT; 1368 sz = data->read.group.nr * 1369 sizeof(struct sample_read_value); 1370 OVERFLOW_CHECK(array, sz, max_size); 1371 data->read.group.values = 1372 (struct sample_read_value *)array; 1373 array = (void *)array + sz; 1374 } else { 1375 OVERFLOW_CHECK_u64(array); 1376 data->read.one.id = *array; 1377 array++; 1378 } 1379 } 1380 1381 if (type & PERF_SAMPLE_CALLCHAIN) { 1382 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1383 1384 OVERFLOW_CHECK_u64(array); 1385 data->callchain = (struct ip_callchain *)array++; 1386 if (data->callchain->nr > max_callchain_nr) 1387 return -EFAULT; 1388 sz = data->callchain->nr * sizeof(u64); 1389 OVERFLOW_CHECK(array, sz, max_size); 1390 array = (void *)array + sz; 1391 } 1392 1393 if (type & PERF_SAMPLE_RAW) { 1394 OVERFLOW_CHECK_u64(array); 1395 u.val64 = *array; 1396 if (WARN_ONCE(swapped, 1397 "Endianness of raw data not corrected!\n")) { 1398 /* undo swap of u64, then swap on individual u32s */ 1399 u.val64 = bswap_64(u.val64); 1400 u.val32[0] = bswap_32(u.val32[0]); 1401 u.val32[1] = bswap_32(u.val32[1]); 1402 } 1403 data->raw_size = u.val32[0]; 1404 array = (void *)array + sizeof(u32); 1405 1406 OVERFLOW_CHECK(array, data->raw_size, max_size); 1407 data->raw_data = (void *)array; 1408 array = (void *)array + data->raw_size; 1409 } 1410 1411 if (type & PERF_SAMPLE_BRANCH_STACK) { 1412 const u64 max_branch_nr = UINT64_MAX / 1413 sizeof(struct branch_entry); 1414 1415 OVERFLOW_CHECK_u64(array); 1416 data->branch_stack = (struct branch_stack *)array++; 1417 1418 if (data->branch_stack->nr > max_branch_nr) 1419 return -EFAULT; 1420 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1421 OVERFLOW_CHECK(array, sz, max_size); 1422 array = (void *)array + sz; 1423 } 1424 1425 if (type & PERF_SAMPLE_REGS_USER) { 1426 OVERFLOW_CHECK_u64(array); 1427 data->user_regs.abi = *array; 1428 array++; 1429 1430 if (data->user_regs.abi) { 1431 u64 regs_user = evsel->attr.sample_regs_user; 1432 1433 sz = hweight_long(regs_user) * sizeof(u64); 1434 OVERFLOW_CHECK(array, sz, max_size); 1435 data->user_regs.regs = (u64 *)array; 1436 array = (void *)array + sz; 1437 } 1438 } 1439 1440 if (type & PERF_SAMPLE_STACK_USER) { 1441 OVERFLOW_CHECK_u64(array); 1442 sz = *array++; 1443 1444 data->user_stack.offset = ((char *)(array - 1) 1445 - (char *) event); 1446 1447 if (!sz) { 1448 data->user_stack.size = 0; 1449 } else { 1450 OVERFLOW_CHECK(array, sz, max_size); 1451 data->user_stack.data = (char *)array; 1452 array = (void *)array + sz; 1453 OVERFLOW_CHECK_u64(array); 1454 data->user_stack.size = *array++; 1455 } 1456 } 1457 1458 data->weight = 0; 1459 if (type & PERF_SAMPLE_WEIGHT) { 1460 OVERFLOW_CHECK_u64(array); 1461 data->weight = *array; 1462 array++; 1463 } 1464 1465 data->data_src = PERF_MEM_DATA_SRC_NONE; 1466 if (type & PERF_SAMPLE_DATA_SRC) { 1467 OVERFLOW_CHECK_u64(array); 1468 data->data_src = *array; 1469 array++; 1470 } 1471 1472 return 0; 1473 } 1474 1475 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1476 u64 sample_regs_user, u64 read_format) 1477 { 1478 size_t sz, result = sizeof(struct sample_event); 1479 1480 if (type & PERF_SAMPLE_IDENTIFIER) 1481 result += sizeof(u64); 1482 1483 if (type & PERF_SAMPLE_IP) 1484 result += sizeof(u64); 1485 1486 if (type & PERF_SAMPLE_TID) 1487 result += sizeof(u64); 1488 1489 if (type & PERF_SAMPLE_TIME) 1490 result += sizeof(u64); 1491 1492 if (type & PERF_SAMPLE_ADDR) 1493 result += sizeof(u64); 1494 1495 if (type & PERF_SAMPLE_ID) 1496 result += sizeof(u64); 1497 1498 if (type & PERF_SAMPLE_STREAM_ID) 1499 result += sizeof(u64); 1500 1501 if (type & PERF_SAMPLE_CPU) 1502 result += sizeof(u64); 1503 1504 if (type & PERF_SAMPLE_PERIOD) 1505 result += sizeof(u64); 1506 1507 if (type & PERF_SAMPLE_READ) { 1508 result += sizeof(u64); 1509 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1510 result += sizeof(u64); 1511 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1512 result += sizeof(u64); 1513 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1514 if (read_format & PERF_FORMAT_GROUP) { 1515 sz = sample->read.group.nr * 1516 sizeof(struct sample_read_value); 1517 result += sz; 1518 } else { 1519 result += sizeof(u64); 1520 } 1521 } 1522 1523 if (type & PERF_SAMPLE_CALLCHAIN) { 1524 sz = (sample->callchain->nr + 1) * sizeof(u64); 1525 result += sz; 1526 } 1527 1528 if (type & PERF_SAMPLE_RAW) { 1529 result += sizeof(u32); 1530 result += sample->raw_size; 1531 } 1532 1533 if (type & PERF_SAMPLE_BRANCH_STACK) { 1534 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1535 sz += sizeof(u64); 1536 result += sz; 1537 } 1538 1539 if (type & PERF_SAMPLE_REGS_USER) { 1540 if (sample->user_regs.abi) { 1541 result += sizeof(u64); 1542 sz = hweight_long(sample_regs_user) * sizeof(u64); 1543 result += sz; 1544 } else { 1545 result += sizeof(u64); 1546 } 1547 } 1548 1549 if (type & PERF_SAMPLE_STACK_USER) { 1550 sz = sample->user_stack.size; 1551 result += sizeof(u64); 1552 if (sz) { 1553 result += sz; 1554 result += sizeof(u64); 1555 } 1556 } 1557 1558 if (type & PERF_SAMPLE_WEIGHT) 1559 result += sizeof(u64); 1560 1561 if (type & PERF_SAMPLE_DATA_SRC) 1562 result += sizeof(u64); 1563 1564 return result; 1565 } 1566 1567 int perf_event__synthesize_sample(union perf_event *event, u64 type, 1568 u64 sample_regs_user, u64 read_format, 1569 const struct perf_sample *sample, 1570 bool swapped) 1571 { 1572 u64 *array; 1573 size_t sz; 1574 /* 1575 * used for cross-endian analysis. See git commit 65014ab3 1576 * for why this goofiness is needed. 1577 */ 1578 union u64_swap u; 1579 1580 array = event->sample.array; 1581 1582 if (type & PERF_SAMPLE_IDENTIFIER) { 1583 *array = sample->id; 1584 array++; 1585 } 1586 1587 if (type & PERF_SAMPLE_IP) { 1588 *array = sample->ip; 1589 array++; 1590 } 1591 1592 if (type & PERF_SAMPLE_TID) { 1593 u.val32[0] = sample->pid; 1594 u.val32[1] = sample->tid; 1595 if (swapped) { 1596 /* 1597 * Inverse of what is done in perf_evsel__parse_sample 1598 */ 1599 u.val32[0] = bswap_32(u.val32[0]); 1600 u.val32[1] = bswap_32(u.val32[1]); 1601 u.val64 = bswap_64(u.val64); 1602 } 1603 1604 *array = u.val64; 1605 array++; 1606 } 1607 1608 if (type & PERF_SAMPLE_TIME) { 1609 *array = sample->time; 1610 array++; 1611 } 1612 1613 if (type & PERF_SAMPLE_ADDR) { 1614 *array = sample->addr; 1615 array++; 1616 } 1617 1618 if (type & PERF_SAMPLE_ID) { 1619 *array = sample->id; 1620 array++; 1621 } 1622 1623 if (type & PERF_SAMPLE_STREAM_ID) { 1624 *array = sample->stream_id; 1625 array++; 1626 } 1627 1628 if (type & PERF_SAMPLE_CPU) { 1629 u.val32[0] = sample->cpu; 1630 if (swapped) { 1631 /* 1632 * Inverse of what is done in perf_evsel__parse_sample 1633 */ 1634 u.val32[0] = bswap_32(u.val32[0]); 1635 u.val64 = bswap_64(u.val64); 1636 } 1637 *array = u.val64; 1638 array++; 1639 } 1640 1641 if (type & PERF_SAMPLE_PERIOD) { 1642 *array = sample->period; 1643 array++; 1644 } 1645 1646 if (type & PERF_SAMPLE_READ) { 1647 if (read_format & PERF_FORMAT_GROUP) 1648 *array = sample->read.group.nr; 1649 else 1650 *array = sample->read.one.value; 1651 array++; 1652 1653 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1654 *array = sample->read.time_enabled; 1655 array++; 1656 } 1657 1658 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1659 *array = sample->read.time_running; 1660 array++; 1661 } 1662 1663 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1664 if (read_format & PERF_FORMAT_GROUP) { 1665 sz = sample->read.group.nr * 1666 sizeof(struct sample_read_value); 1667 memcpy(array, sample->read.group.values, sz); 1668 array = (void *)array + sz; 1669 } else { 1670 *array = sample->read.one.id; 1671 array++; 1672 } 1673 } 1674 1675 if (type & PERF_SAMPLE_CALLCHAIN) { 1676 sz = (sample->callchain->nr + 1) * sizeof(u64); 1677 memcpy(array, sample->callchain, sz); 1678 array = (void *)array + sz; 1679 } 1680 1681 if (type & PERF_SAMPLE_RAW) { 1682 u.val32[0] = sample->raw_size; 1683 if (WARN_ONCE(swapped, 1684 "Endianness of raw data not corrected!\n")) { 1685 /* 1686 * Inverse of what is done in perf_evsel__parse_sample 1687 */ 1688 u.val32[0] = bswap_32(u.val32[0]); 1689 u.val32[1] = bswap_32(u.val32[1]); 1690 u.val64 = bswap_64(u.val64); 1691 } 1692 *array = u.val64; 1693 array = (void *)array + sizeof(u32); 1694 1695 memcpy(array, sample->raw_data, sample->raw_size); 1696 array = (void *)array + sample->raw_size; 1697 } 1698 1699 if (type & PERF_SAMPLE_BRANCH_STACK) { 1700 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1701 sz += sizeof(u64); 1702 memcpy(array, sample->branch_stack, sz); 1703 array = (void *)array + sz; 1704 } 1705 1706 if (type & PERF_SAMPLE_REGS_USER) { 1707 if (sample->user_regs.abi) { 1708 *array++ = sample->user_regs.abi; 1709 sz = hweight_long(sample_regs_user) * sizeof(u64); 1710 memcpy(array, sample->user_regs.regs, sz); 1711 array = (void *)array + sz; 1712 } else { 1713 *array++ = 0; 1714 } 1715 } 1716 1717 if (type & PERF_SAMPLE_STACK_USER) { 1718 sz = sample->user_stack.size; 1719 *array++ = sz; 1720 if (sz) { 1721 memcpy(array, sample->user_stack.data, sz); 1722 array = (void *)array + sz; 1723 *array++ = sz; 1724 } 1725 } 1726 1727 if (type & PERF_SAMPLE_WEIGHT) { 1728 *array = sample->weight; 1729 array++; 1730 } 1731 1732 if (type & PERF_SAMPLE_DATA_SRC) { 1733 *array = sample->data_src; 1734 array++; 1735 } 1736 1737 return 0; 1738 } 1739 1740 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 1741 { 1742 return pevent_find_field(evsel->tp_format, name); 1743 } 1744 1745 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 1746 const char *name) 1747 { 1748 struct format_field *field = perf_evsel__field(evsel, name); 1749 int offset; 1750 1751 if (!field) 1752 return NULL; 1753 1754 offset = field->offset; 1755 1756 if (field->flags & FIELD_IS_DYNAMIC) { 1757 offset = *(int *)(sample->raw_data + field->offset); 1758 offset &= 0xffff; 1759 } 1760 1761 return sample->raw_data + offset; 1762 } 1763 1764 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 1765 const char *name) 1766 { 1767 struct format_field *field = perf_evsel__field(evsel, name); 1768 void *ptr; 1769 u64 value; 1770 1771 if (!field) 1772 return 0; 1773 1774 ptr = sample->raw_data + field->offset; 1775 1776 switch (field->size) { 1777 case 1: 1778 return *(u8 *)ptr; 1779 case 2: 1780 value = *(u16 *)ptr; 1781 break; 1782 case 4: 1783 value = *(u32 *)ptr; 1784 break; 1785 case 8: 1786 value = *(u64 *)ptr; 1787 break; 1788 default: 1789 return 0; 1790 } 1791 1792 if (!evsel->needs_swap) 1793 return value; 1794 1795 switch (field->size) { 1796 case 2: 1797 return bswap_16(value); 1798 case 4: 1799 return bswap_32(value); 1800 case 8: 1801 return bswap_64(value); 1802 default: 1803 return 0; 1804 } 1805 1806 return 0; 1807 } 1808 1809 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...) 1810 { 1811 va_list args; 1812 int ret = 0; 1813 1814 if (!*first) { 1815 ret += fprintf(fp, ","); 1816 } else { 1817 ret += fprintf(fp, ":"); 1818 *first = false; 1819 } 1820 1821 va_start(args, fmt); 1822 ret += vfprintf(fp, fmt, args); 1823 va_end(args); 1824 return ret; 1825 } 1826 1827 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value) 1828 { 1829 if (value == 0) 1830 return 0; 1831 1832 return comma_fprintf(fp, first, " %s: %" PRIu64, field, value); 1833 } 1834 1835 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field) 1836 1837 struct bit_names { 1838 int bit; 1839 const char *name; 1840 }; 1841 1842 static int bits__fprintf(FILE *fp, const char *field, u64 value, 1843 struct bit_names *bits, bool *first) 1844 { 1845 int i = 0, printed = comma_fprintf(fp, first, " %s: ", field); 1846 bool first_bit = true; 1847 1848 do { 1849 if (value & bits[i].bit) { 1850 printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name); 1851 first_bit = false; 1852 } 1853 } while (bits[++i].name != NULL); 1854 1855 return printed; 1856 } 1857 1858 static int sample_type__fprintf(FILE *fp, bool *first, u64 value) 1859 { 1860 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1861 struct bit_names bits[] = { 1862 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1863 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1864 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1865 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1866 bit_name(IDENTIFIER), 1867 { .name = NULL, } 1868 }; 1869 #undef bit_name 1870 return bits__fprintf(fp, "sample_type", value, bits, first); 1871 } 1872 1873 static int read_format__fprintf(FILE *fp, bool *first, u64 value) 1874 { 1875 #define bit_name(n) { PERF_FORMAT_##n, #n } 1876 struct bit_names bits[] = { 1877 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1878 bit_name(ID), bit_name(GROUP), 1879 { .name = NULL, } 1880 }; 1881 #undef bit_name 1882 return bits__fprintf(fp, "read_format", value, bits, first); 1883 } 1884 1885 int perf_evsel__fprintf(struct perf_evsel *evsel, 1886 struct perf_attr_details *details, FILE *fp) 1887 { 1888 bool first = true; 1889 int printed = 0; 1890 1891 if (details->event_group) { 1892 struct perf_evsel *pos; 1893 1894 if (!perf_evsel__is_group_leader(evsel)) 1895 return 0; 1896 1897 if (evsel->nr_members > 1) 1898 printed += fprintf(fp, "%s{", evsel->group_name ?: ""); 1899 1900 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 1901 for_each_group_member(pos, evsel) 1902 printed += fprintf(fp, ",%s", perf_evsel__name(pos)); 1903 1904 if (evsel->nr_members > 1) 1905 printed += fprintf(fp, "}"); 1906 goto out; 1907 } 1908 1909 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 1910 1911 if (details->verbose || details->freq) { 1912 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64, 1913 (u64)evsel->attr.sample_freq); 1914 } 1915 1916 if (details->verbose) { 1917 if_print(type); 1918 if_print(config); 1919 if_print(config1); 1920 if_print(config2); 1921 if_print(size); 1922 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type); 1923 if (evsel->attr.read_format) 1924 printed += read_format__fprintf(fp, &first, evsel->attr.read_format); 1925 if_print(disabled); 1926 if_print(inherit); 1927 if_print(pinned); 1928 if_print(exclusive); 1929 if_print(exclude_user); 1930 if_print(exclude_kernel); 1931 if_print(exclude_hv); 1932 if_print(exclude_idle); 1933 if_print(mmap); 1934 if_print(mmap2); 1935 if_print(comm); 1936 if_print(freq); 1937 if_print(inherit_stat); 1938 if_print(enable_on_exec); 1939 if_print(task); 1940 if_print(watermark); 1941 if_print(precise_ip); 1942 if_print(mmap_data); 1943 if_print(sample_id_all); 1944 if_print(exclude_host); 1945 if_print(exclude_guest); 1946 if_print(__reserved_1); 1947 if_print(wakeup_events); 1948 if_print(bp_type); 1949 if_print(branch_sample_type); 1950 } 1951 out: 1952 fputc('\n', fp); 1953 return ++printed; 1954 } 1955 1956 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 1957 char *msg, size_t msgsize) 1958 { 1959 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 1960 evsel->attr.type == PERF_TYPE_HARDWARE && 1961 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 1962 /* 1963 * If it's cycles then fall back to hrtimer based 1964 * cpu-clock-tick sw counter, which is always available even if 1965 * no PMU support. 1966 * 1967 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 1968 * b0a873e). 1969 */ 1970 scnprintf(msg, msgsize, "%s", 1971 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 1972 1973 evsel->attr.type = PERF_TYPE_SOFTWARE; 1974 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 1975 1976 free(evsel->name); 1977 evsel->name = NULL; 1978 return true; 1979 } 1980 1981 return false; 1982 } 1983 1984 int perf_evsel__open_strerror(struct perf_evsel *evsel, 1985 struct perf_target *target, 1986 int err, char *msg, size_t size) 1987 { 1988 switch (err) { 1989 case EPERM: 1990 case EACCES: 1991 return scnprintf(msg, size, 1992 "You may not have permission to collect %sstats.\n" 1993 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n" 1994 " -1 - Not paranoid at all\n" 1995 " 0 - Disallow raw tracepoint access for unpriv\n" 1996 " 1 - Disallow cpu events for unpriv\n" 1997 " 2 - Disallow kernel profiling for unpriv", 1998 target->system_wide ? "system-wide " : ""); 1999 case ENOENT: 2000 return scnprintf(msg, size, "The %s event is not supported.", 2001 perf_evsel__name(evsel)); 2002 case EMFILE: 2003 return scnprintf(msg, size, "%s", 2004 "Too many events are opened.\n" 2005 "Try again after reducing the number of events."); 2006 case ENODEV: 2007 if (target->cpu_list) 2008 return scnprintf(msg, size, "%s", 2009 "No such device - did you specify an out-of-range profile CPU?\n"); 2010 break; 2011 case EOPNOTSUPP: 2012 if (evsel->attr.precise_ip) 2013 return scnprintf(msg, size, "%s", 2014 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2015 #if defined(__i386__) || defined(__x86_64__) 2016 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2017 return scnprintf(msg, size, "%s", 2018 "No hardware sampling interrupt available.\n" 2019 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2020 #endif 2021 break; 2022 default: 2023 break; 2024 } 2025 2026 return scnprintf(msg, size, 2027 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s). \n" 2028 "/bin/dmesg may provide additional information.\n" 2029 "No CONFIG_PERF_EVENTS=y kernel support configured?\n", 2030 err, strerror(err), perf_evsel__name(evsel)); 2031 } 2032