1 /* 2 * libjingle 3 * Copyright 2004--2005, Google Inc. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright notice, 11 * this list of conditions and the following disclaimer in the documentation 12 * and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include "talk/p2p/base/port.h" 29 30 #include <algorithm> 31 #include <vector> 32 33 #include "talk/base/base64.h" 34 #include "talk/base/crc32.h" 35 #include "talk/base/helpers.h" 36 #include "talk/base/logging.h" 37 #include "talk/base/messagedigest.h" 38 #include "talk/base/scoped_ptr.h" 39 #include "talk/base/stringencode.h" 40 #include "talk/base/stringutils.h" 41 #include "talk/p2p/base/common.h" 42 43 namespace { 44 45 // Determines whether we have seen at least the given maximum number of 46 // pings fail to have a response. 47 inline bool TooManyFailures( 48 const std::vector<uint32>& pings_since_last_response, 49 uint32 maximum_failures, 50 uint32 rtt_estimate, 51 uint32 now) { 52 53 // If we haven't sent that many pings, then we can't have failed that many. 54 if (pings_since_last_response.size() < maximum_failures) 55 return false; 56 57 // Check if the window in which we would expect a response to the ping has 58 // already elapsed. 59 return pings_since_last_response[maximum_failures - 1] + rtt_estimate < now; 60 } 61 62 // Determines whether we have gone too long without seeing any response. 63 inline bool TooLongWithoutResponse( 64 const std::vector<uint32>& pings_since_last_response, 65 uint32 maximum_time, 66 uint32 now) { 67 68 if (pings_since_last_response.size() == 0) 69 return false; 70 71 return pings_since_last_response[0] + maximum_time < now; 72 } 73 74 // GICE(ICEPROTO_GOOGLE) requires different username for RTP and RTCP. 75 // This function generates a different username by +1 on the last character of 76 // the given username (|rtp_ufrag|). 77 std::string GetRtcpUfragFromRtpUfrag(const std::string& rtp_ufrag) { 78 ASSERT(!rtp_ufrag.empty()); 79 if (rtp_ufrag.empty()) { 80 return rtp_ufrag; 81 } 82 // Change the last character to the one next to it in the base64 table. 83 char new_last_char; 84 if (!talk_base::Base64::GetNextBase64Char(rtp_ufrag[rtp_ufrag.size() - 1], 85 &new_last_char)) { 86 // Should not be here. 87 ASSERT(false); 88 } 89 std::string rtcp_ufrag = rtp_ufrag; 90 rtcp_ufrag[rtcp_ufrag.size() - 1] = new_last_char; 91 ASSERT(rtcp_ufrag != rtp_ufrag); 92 return rtcp_ufrag; 93 } 94 95 // We will restrict RTT estimates (when used for determining state) to be 96 // within a reasonable range. 97 const uint32 MINIMUM_RTT = 100; // 0.1 seconds 98 const uint32 MAXIMUM_RTT = 3000; // 3 seconds 99 100 // When we don't have any RTT data, we have to pick something reasonable. We 101 // use a large value just in case the connection is really slow. 102 const uint32 DEFAULT_RTT = MAXIMUM_RTT; 103 104 // Computes our estimate of the RTT given the current estimate. 105 inline uint32 ConservativeRTTEstimate(uint32 rtt) { 106 return talk_base::_max(MINIMUM_RTT, talk_base::_min(MAXIMUM_RTT, 2 * rtt)); 107 } 108 109 // Weighting of the old rtt value to new data. 110 const int RTT_RATIO = 3; // 3 : 1 111 112 // The delay before we begin checking if this port is useless. 113 const int kPortTimeoutDelay = 30 * 1000; // 30 seconds 114 115 // Used by the Connection. 116 const uint32 MSG_DELETE = 1; 117 } 118 119 namespace cricket { 120 121 // TODO(ronghuawu): Use "host", "srflx", "prflx" and "relay". But this requires 122 // the signaling part be updated correspondingly as well. 123 const char LOCAL_PORT_TYPE[] = "local"; 124 const char STUN_PORT_TYPE[] = "stun"; 125 const char PRFLX_PORT_TYPE[] = "prflx"; 126 const char RELAY_PORT_TYPE[] = "relay"; 127 128 const char UDP_PROTOCOL_NAME[] = "udp"; 129 const char TCP_PROTOCOL_NAME[] = "tcp"; 130 const char SSLTCP_PROTOCOL_NAME[] = "ssltcp"; 131 132 static const char* const PROTO_NAMES[] = { UDP_PROTOCOL_NAME, 133 TCP_PROTOCOL_NAME, 134 SSLTCP_PROTOCOL_NAME }; 135 136 const char* ProtoToString(ProtocolType proto) { 137 return PROTO_NAMES[proto]; 138 } 139 140 bool StringToProto(const char* value, ProtocolType* proto) { 141 for (size_t i = 0; i <= PROTO_LAST; ++i) { 142 if (_stricmp(PROTO_NAMES[i], value) == 0) { 143 *proto = static_cast<ProtocolType>(i); 144 return true; 145 } 146 } 147 return false; 148 } 149 150 // Foundation: An arbitrary string that is the same for two candidates 151 // that have the same type, base IP address, protocol (UDP, TCP, 152 // etc.), and STUN or TURN server. If any of these are different, 153 // then the foundation will be different. Two candidate pairs with 154 // the same foundation pairs are likely to have similar network 155 // characteristics. Foundations are used in the frozen algorithm. 156 static std::string ComputeFoundation( 157 const std::string& type, 158 const std::string& protocol, 159 const talk_base::SocketAddress& base_address) { 160 std::ostringstream ost; 161 ost << type << base_address.ipaddr().ToString() << protocol; 162 return talk_base::ToString<uint32>(talk_base::ComputeCrc32(ost.str())); 163 } 164 165 Port::Port(talk_base::Thread* thread, talk_base::PacketSocketFactory* factory, 166 talk_base::Network* network, const talk_base::IPAddress& ip, 167 const std::string& username_fragment, const std::string& password) 168 : thread_(thread), 169 factory_(factory), 170 send_retransmit_count_attribute_(false), 171 network_(network), 172 ip_(ip), 173 min_port_(0), 174 max_port_(0), 175 component_(ICE_CANDIDATE_COMPONENT_DEFAULT), 176 generation_(0), 177 ice_username_fragment_(username_fragment), 178 password_(password), 179 timeout_delay_(kPortTimeoutDelay), 180 enable_port_packets_(false), 181 ice_protocol_(ICEPROTO_HYBRID), 182 ice_role_(ICEROLE_UNKNOWN), 183 tiebreaker_(0), 184 shared_socket_(true) { 185 Construct(); 186 } 187 188 Port::Port(talk_base::Thread* thread, const std::string& type, 189 talk_base::PacketSocketFactory* factory, 190 talk_base::Network* network, const talk_base::IPAddress& ip, 191 int min_port, int max_port, const std::string& username_fragment, 192 const std::string& password) 193 : thread_(thread), 194 factory_(factory), 195 type_(type), 196 send_retransmit_count_attribute_(false), 197 network_(network), 198 ip_(ip), 199 min_port_(min_port), 200 max_port_(max_port), 201 component_(ICE_CANDIDATE_COMPONENT_DEFAULT), 202 generation_(0), 203 ice_username_fragment_(username_fragment), 204 password_(password), 205 timeout_delay_(kPortTimeoutDelay), 206 enable_port_packets_(false), 207 ice_protocol_(ICEPROTO_HYBRID), 208 ice_role_(ICEROLE_UNKNOWN), 209 tiebreaker_(0), 210 shared_socket_(false) { 211 ASSERT(factory_ != NULL); 212 Construct(); 213 } 214 215 void Port::Construct() { 216 // If the username_fragment and password are empty, we should just create one. 217 if (ice_username_fragment_.empty()) { 218 ASSERT(password_.empty()); 219 ice_username_fragment_ = talk_base::CreateRandomString(ICE_UFRAG_LENGTH); 220 password_ = talk_base::CreateRandomString(ICE_PWD_LENGTH); 221 } 222 LOG_J(LS_INFO, this) << "Port created"; 223 } 224 225 Port::~Port() { 226 // Delete all of the remaining connections. We copy the list up front 227 // because each deletion will cause it to be modified. 228 229 std::vector<Connection*> list; 230 231 AddressMap::iterator iter = connections_.begin(); 232 while (iter != connections_.end()) { 233 list.push_back(iter->second); 234 ++iter; 235 } 236 237 for (uint32 i = 0; i < list.size(); i++) 238 delete list[i]; 239 } 240 241 Connection* Port::GetConnection(const talk_base::SocketAddress& remote_addr) { 242 AddressMap::const_iterator iter = connections_.find(remote_addr); 243 if (iter != connections_.end()) 244 return iter->second; 245 else 246 return NULL; 247 } 248 249 void Port::AddAddress(const talk_base::SocketAddress& address, 250 const talk_base::SocketAddress& base_address, 251 const talk_base::SocketAddress& related_address, 252 const std::string& protocol, 253 const std::string& type, 254 uint32 type_preference, 255 bool final) { 256 Candidate c; 257 c.set_id(talk_base::CreateRandomString(8)); 258 c.set_component(component_); 259 c.set_type(type); 260 c.set_protocol(protocol); 261 c.set_address(address); 262 c.set_priority(c.GetPriority(type_preference, network_->preference())); 263 c.set_username(username_fragment()); 264 c.set_password(password_); 265 c.set_network_name(network_->name()); 266 c.set_generation(generation_); 267 c.set_related_address(related_address); 268 c.set_foundation(ComputeFoundation(type, protocol, base_address)); 269 candidates_.push_back(c); 270 SignalCandidateReady(this, c); 271 272 if (final) { 273 SignalPortComplete(this); 274 } 275 } 276 277 void Port::AddConnection(Connection* conn) { 278 connections_[conn->remote_candidate().address()] = conn; 279 conn->SignalDestroyed.connect(this, &Port::OnConnectionDestroyed); 280 SignalConnectionCreated(this, conn); 281 } 282 283 void Port::OnReadPacket( 284 const char* data, size_t size, const talk_base::SocketAddress& addr, 285 ProtocolType proto) { 286 // If the user has enabled port packets, just hand this over. 287 if (enable_port_packets_) { 288 SignalReadPacket(this, data, size, addr); 289 return; 290 } 291 292 // If this is an authenticated STUN request, then signal unknown address and 293 // send back a proper binding response. 294 talk_base::scoped_ptr<IceMessage> msg; 295 std::string remote_username; 296 if (!GetStunMessage(data, size, addr, msg.accept(), &remote_username)) { 297 LOG_J(LS_ERROR, this) << "Received non-STUN packet from unknown address (" 298 << addr.ToSensitiveString() << ")"; 299 } else if (!msg) { 300 // STUN message handled already 301 } else if (msg->type() == STUN_BINDING_REQUEST) { 302 // Check for role conflicts. 303 if (IsStandardIce() && 304 !MaybeIceRoleConflict(addr, msg.get(), remote_username)) { 305 LOG(LS_INFO) << "Received conflicting role from the peer."; 306 return; 307 } 308 309 SignalUnknownAddress(this, addr, proto, msg.get(), remote_username, false); 310 } else { 311 // NOTE(tschmelcher): STUN_BINDING_RESPONSE is benign. It occurs if we 312 // pruned a connection for this port while it had STUN requests in flight, 313 // because we then get back responses for them, which this code correctly 314 // does not handle. 315 if (msg->type() != STUN_BINDING_RESPONSE) { 316 LOG_J(LS_ERROR, this) << "Received unexpected STUN message type (" 317 << msg->type() << ") from unknown address (" 318 << addr.ToSensitiveString() << ")"; 319 } 320 } 321 } 322 323 void Port::OnReadyToSend() { 324 AddressMap::iterator iter = connections_.begin(); 325 for (; iter != connections_.end(); ++iter) { 326 iter->second->OnReadyToSend(); 327 } 328 } 329 330 size_t Port::AddPrflxCandidate(const Candidate& local) { 331 candidates_.push_back(local); 332 return (candidates_.size() - 1); 333 } 334 335 bool Port::IsStandardIce() const { 336 return (ice_protocol_ == ICEPROTO_RFC5245); 337 } 338 339 bool Port::IsGoogleIce() const { 340 return (ice_protocol_ == ICEPROTO_GOOGLE); 341 } 342 343 bool Port::IsHybridIce() const { 344 return (ice_protocol_ == ICEPROTO_HYBRID); 345 } 346 347 bool Port::GetStunMessage(const char* data, size_t size, 348 const talk_base::SocketAddress& addr, 349 IceMessage** out_msg, std::string* out_username) { 350 // NOTE: This could clearly be optimized to avoid allocating any memory. 351 // However, at the data rates we'll be looking at on the client side, 352 // this probably isn't worth worrying about. 353 ASSERT(out_msg != NULL); 354 ASSERT(out_username != NULL); 355 *out_msg = NULL; 356 out_username->clear(); 357 358 // Don't bother parsing the packet if we can tell it's not STUN. 359 // In ICE mode, all STUN packets will have a valid fingerprint. 360 if (IsStandardIce() && !StunMessage::ValidateFingerprint(data, size)) { 361 return false; 362 } 363 364 // Parse the request message. If the packet is not a complete and correct 365 // STUN message, then ignore it. 366 talk_base::scoped_ptr<IceMessage> stun_msg(new IceMessage()); 367 talk_base::ByteBuffer buf(data, size); 368 if (!stun_msg->Read(&buf) || (buf.Length() > 0)) { 369 return false; 370 } 371 372 if (stun_msg->type() == STUN_BINDING_REQUEST) { 373 // Check for the presence of USERNAME and MESSAGE-INTEGRITY (if ICE) first. 374 // If not present, fail with a 400 Bad Request. 375 if (!stun_msg->GetByteString(STUN_ATTR_USERNAME) || 376 (IsStandardIce() && 377 !stun_msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY))) { 378 LOG_J(LS_ERROR, this) << "Received STUN request without username/M-I " 379 << "from " << addr.ToSensitiveString(); 380 SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_BAD_REQUEST, 381 STUN_ERROR_REASON_BAD_REQUEST); 382 return true; 383 } 384 385 // If the username is bad or unknown, fail with a 401 Unauthorized. 386 std::string local_ufrag; 387 std::string remote_ufrag; 388 IceProtocolType remote_protocol_type; 389 if (!ParseStunUsername(stun_msg.get(), &local_ufrag, &remote_ufrag, 390 &remote_protocol_type) || 391 local_ufrag != username_fragment()) { 392 LOG_J(LS_ERROR, this) << "Received STUN request with bad local username " 393 << local_ufrag << " from " 394 << addr.ToSensitiveString(); 395 SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED, 396 STUN_ERROR_REASON_UNAUTHORIZED); 397 return true; 398 } 399 400 // Port is initialized to GOOGLE-ICE protocol type. If pings from remote 401 // are received before the signal message, protocol type may be different. 402 // Based on the STUN username, we can determine what's the remote protocol. 403 // This also enables us to send the response back using the same protocol 404 // as the request. 405 if (IsHybridIce()) { 406 SetIceProtocolType(remote_protocol_type); 407 } 408 409 // If ICE, and the MESSAGE-INTEGRITY is bad, fail with a 401 Unauthorized 410 if (IsStandardIce() && 411 !stun_msg->ValidateMessageIntegrity(data, size, password_)) { 412 LOG_J(LS_ERROR, this) << "Received STUN request with bad M-I " 413 << "from " << addr.ToSensitiveString(); 414 SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED, 415 STUN_ERROR_REASON_UNAUTHORIZED); 416 return true; 417 } 418 out_username->assign(remote_ufrag); 419 } else if ((stun_msg->type() == STUN_BINDING_RESPONSE) || 420 (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE)) { 421 if (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE) { 422 if (const StunErrorCodeAttribute* error_code = stun_msg->GetErrorCode()) { 423 LOG_J(LS_ERROR, this) << "Received STUN binding error:" 424 << " class=" << error_code->eclass() 425 << " number=" << error_code->number() 426 << " reason='" << error_code->reason() << "'" 427 << " from " << addr.ToSensitiveString(); 428 // Return message to allow error-specific processing 429 } else { 430 LOG_J(LS_ERROR, this) << "Received STUN binding error without a error " 431 << "code from " << addr.ToSensitiveString(); 432 return true; 433 } 434 } 435 // NOTE: Username should not be used in verifying response messages. 436 out_username->clear(); 437 } else if (stun_msg->type() == STUN_BINDING_INDICATION) { 438 LOG_J(LS_VERBOSE, this) << "Received STUN binding indication:" 439 << " from " << addr.ToSensitiveString(); 440 out_username->clear(); 441 // No stun attributes will be verified, if it's stun indication message. 442 // Returning from end of the this method. 443 } else { 444 LOG_J(LS_ERROR, this) << "Received STUN packet with invalid type (" 445 << stun_msg->type() << ") from " 446 << addr.ToSensitiveString(); 447 return true; 448 } 449 450 // Return the STUN message found. 451 *out_msg = stun_msg.release(); 452 return true; 453 } 454 455 bool Port::IsCompatibleAddress(const talk_base::SocketAddress& addr) { 456 int family = ip().family(); 457 // We use single-stack sockets, so families must match. 458 if (addr.family() != family) { 459 return false; 460 } 461 // Link-local IPv6 ports can only connect to other link-local IPv6 ports. 462 if (family == AF_INET6 && (IPIsPrivate(ip()) != IPIsPrivate(addr.ipaddr()))) { 463 return false; 464 } 465 return true; 466 } 467 468 bool Port::ParseStunUsername(const StunMessage* stun_msg, 469 std::string* local_ufrag, 470 std::string* remote_ufrag, 471 IceProtocolType* remote_protocol_type) const { 472 // The packet must include a username that either begins or ends with our 473 // fragment. It should begin with our fragment if it is a request and it 474 // should end with our fragment if it is a response. 475 local_ufrag->clear(); 476 remote_ufrag->clear(); 477 const StunByteStringAttribute* username_attr = 478 stun_msg->GetByteString(STUN_ATTR_USERNAME); 479 if (username_attr == NULL) 480 return false; 481 482 const std::string username_attr_str = username_attr->GetString(); 483 size_t colon_pos = username_attr_str.find(":"); 484 // If we are in hybrid mode set the appropriate ice protocol type based on 485 // the username argument style. 486 if (IsHybridIce()) { 487 *remote_protocol_type = (colon_pos != std::string::npos) ? 488 ICEPROTO_RFC5245 : ICEPROTO_GOOGLE; 489 } else { 490 *remote_protocol_type = ice_protocol_; 491 } 492 if (*remote_protocol_type == ICEPROTO_RFC5245) { 493 if (colon_pos != std::string::npos) { // RFRAG:LFRAG 494 *local_ufrag = username_attr_str.substr(0, colon_pos); 495 *remote_ufrag = username_attr_str.substr( 496 colon_pos + 1, username_attr_str.size()); 497 } else { 498 return false; 499 } 500 } else if (*remote_protocol_type == ICEPROTO_GOOGLE) { 501 int remote_frag_len = static_cast<int>(username_attr_str.size()); 502 remote_frag_len -= static_cast<int>(username_fragment().size()); 503 if (remote_frag_len < 0) 504 return false; 505 506 *local_ufrag = username_attr_str.substr(0, username_fragment().size()); 507 *remote_ufrag = username_attr_str.substr( 508 username_fragment().size(), username_attr_str.size()); 509 } 510 return true; 511 } 512 513 bool Port::MaybeIceRoleConflict( 514 const talk_base::SocketAddress& addr, IceMessage* stun_msg, 515 const std::string& remote_ufrag) { 516 // Validate ICE_CONTROLLING or ICE_CONTROLLED attributes. 517 bool ret = true; 518 IceRole remote_ice_role = ICEROLE_UNKNOWN; 519 uint64 remote_tiebreaker = 0; 520 const StunUInt64Attribute* stun_attr = 521 stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); 522 if (stun_attr) { 523 remote_ice_role = ICEROLE_CONTROLLING; 524 remote_tiebreaker = stun_attr->value(); 525 } 526 527 // If |remote_ufrag| is same as port local username fragment and 528 // tie breaker value received in the ping message matches port 529 // tiebreaker value this must be a loopback call. 530 // We will treat this as valid scenario. 531 if (remote_ice_role == ICEROLE_CONTROLLING && 532 username_fragment() == remote_ufrag && 533 remote_tiebreaker == IceTiebreaker()) { 534 return true; 535 } 536 537 stun_attr = stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED); 538 if (stun_attr) { 539 remote_ice_role = ICEROLE_CONTROLLED; 540 remote_tiebreaker = stun_attr->value(); 541 } 542 543 switch (ice_role_) { 544 case ICEROLE_CONTROLLING: 545 if (ICEROLE_CONTROLLING == remote_ice_role) { 546 if (remote_tiebreaker >= tiebreaker_) { 547 SignalRoleConflict(this); 548 } else { 549 // Send Role Conflict (487) error response. 550 SendBindingErrorResponse(stun_msg, addr, 551 STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT); 552 ret = false; 553 } 554 } 555 break; 556 case ICEROLE_CONTROLLED: 557 if (ICEROLE_CONTROLLED == remote_ice_role) { 558 if (remote_tiebreaker < tiebreaker_) { 559 SignalRoleConflict(this); 560 } else { 561 // Send Role Conflict (487) error response. 562 SendBindingErrorResponse(stun_msg, addr, 563 STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT); 564 ret = false; 565 } 566 } 567 break; 568 default: 569 ASSERT(false); 570 } 571 return ret; 572 } 573 574 void Port::CreateStunUsername(const std::string& remote_username, 575 std::string* stun_username_attr_str) const { 576 stun_username_attr_str->clear(); 577 *stun_username_attr_str = remote_username; 578 if (IsStandardIce()) { 579 // Connectivity checks from L->R will have username RFRAG:LFRAG. 580 stun_username_attr_str->append(":"); 581 } 582 stun_username_attr_str->append(username_fragment()); 583 } 584 585 void Port::SendBindingResponse(StunMessage* request, 586 const talk_base::SocketAddress& addr) { 587 ASSERT(request->type() == STUN_BINDING_REQUEST); 588 589 // Retrieve the username from the request. 590 const StunByteStringAttribute* username_attr = 591 request->GetByteString(STUN_ATTR_USERNAME); 592 ASSERT(username_attr != NULL); 593 if (username_attr == NULL) { 594 // No valid username, skip the response. 595 return; 596 } 597 598 // Fill in the response message. 599 StunMessage response; 600 response.SetType(STUN_BINDING_RESPONSE); 601 response.SetTransactionID(request->transaction_id()); 602 const StunUInt32Attribute* retransmit_attr = 603 request->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); 604 if (retransmit_attr) { 605 // Inherit the incoming retransmit value in the response so the other side 606 // can see our view of lost pings. 607 response.AddAttribute(new StunUInt32Attribute( 608 STUN_ATTR_RETRANSMIT_COUNT, retransmit_attr->value())); 609 610 if (retransmit_attr->value() > CONNECTION_WRITE_CONNECT_FAILURES) { 611 LOG_J(LS_INFO, this) 612 << "Received a remote ping with high retransmit count: " 613 << retransmit_attr->value(); 614 } 615 } 616 617 // Only GICE messages have USERNAME and MAPPED-ADDRESS in the response. 618 // ICE messages use XOR-MAPPED-ADDRESS, and add MESSAGE-INTEGRITY. 619 if (IsStandardIce()) { 620 response.AddAttribute( 621 new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, addr)); 622 response.AddMessageIntegrity(password_); 623 response.AddFingerprint(); 624 } else if (IsGoogleIce()) { 625 response.AddAttribute( 626 new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, addr)); 627 response.AddAttribute(new StunByteStringAttribute( 628 STUN_ATTR_USERNAME, username_attr->GetString())); 629 } 630 631 // Send the response message. 632 talk_base::ByteBuffer buf; 633 response.Write(&buf); 634 talk_base::PacketOptions options(DefaultDscpValue()); 635 if (SendTo(buf.Data(), buf.Length(), addr, options, false) < 0) { 636 LOG_J(LS_ERROR, this) << "Failed to send STUN ping response to " 637 << addr.ToSensitiveString(); 638 } 639 640 // The fact that we received a successful request means that this connection 641 // (if one exists) should now be readable. 642 Connection* conn = GetConnection(addr); 643 ASSERT(conn != NULL); 644 if (conn) 645 conn->ReceivedPing(); 646 } 647 648 void Port::SendBindingErrorResponse(StunMessage* request, 649 const talk_base::SocketAddress& addr, 650 int error_code, const std::string& reason) { 651 ASSERT(request->type() == STUN_BINDING_REQUEST); 652 653 // Fill in the response message. 654 StunMessage response; 655 response.SetType(STUN_BINDING_ERROR_RESPONSE); 656 response.SetTransactionID(request->transaction_id()); 657 658 // When doing GICE, we need to write out the error code incorrectly to 659 // maintain backwards compatiblility. 660 StunErrorCodeAttribute* error_attr = StunAttribute::CreateErrorCode(); 661 if (IsStandardIce()) { 662 error_attr->SetCode(error_code); 663 } else if (IsGoogleIce()) { 664 error_attr->SetClass(error_code / 256); 665 error_attr->SetNumber(error_code % 256); 666 } 667 error_attr->SetReason(reason); 668 response.AddAttribute(error_attr); 669 670 if (IsStandardIce()) { 671 // Per Section 10.1.2, certain error cases don't get a MESSAGE-INTEGRITY, 672 // because we don't have enough information to determine the shared secret. 673 if (error_code != STUN_ERROR_BAD_REQUEST && 674 error_code != STUN_ERROR_UNAUTHORIZED) 675 response.AddMessageIntegrity(password_); 676 response.AddFingerprint(); 677 } else if (IsGoogleIce()) { 678 // GICE responses include a username, if one exists. 679 const StunByteStringAttribute* username_attr = 680 request->GetByteString(STUN_ATTR_USERNAME); 681 if (username_attr) 682 response.AddAttribute(new StunByteStringAttribute( 683 STUN_ATTR_USERNAME, username_attr->GetString())); 684 } 685 686 // Send the response message. 687 talk_base::ByteBuffer buf; 688 response.Write(&buf); 689 talk_base::PacketOptions options(DefaultDscpValue()); 690 SendTo(buf.Data(), buf.Length(), addr, options, false); 691 LOG_J(LS_INFO, this) << "Sending STUN binding error: reason=" << reason 692 << " to " << addr.ToSensitiveString(); 693 } 694 695 void Port::OnMessage(talk_base::Message *pmsg) { 696 ASSERT(pmsg->message_id == MSG_CHECKTIMEOUT); 697 CheckTimeout(); 698 } 699 700 std::string Port::ToString() const { 701 std::stringstream ss; 702 ss << "Port[" << content_name_ << ":" << component_ 703 << ":" << generation_ << ":" << type_ 704 << ":" << network_->ToString() << "]"; 705 return ss.str(); 706 } 707 708 void Port::EnablePortPackets() { 709 enable_port_packets_ = true; 710 } 711 712 void Port::OnConnectionDestroyed(Connection* conn) { 713 AddressMap::iterator iter = 714 connections_.find(conn->remote_candidate().address()); 715 ASSERT(iter != connections_.end()); 716 connections_.erase(iter); 717 718 // On the controlled side, ports time out, but only after all connections 719 // fail. Note: If a new connection is added after this message is posted, 720 // but it fails and is removed before kPortTimeoutDelay, then this message 721 // will still cause the Port to be destroyed. 722 if (ice_role_ == ICEROLE_CONTROLLED) 723 thread_->PostDelayed(timeout_delay_, this, MSG_CHECKTIMEOUT); 724 } 725 726 void Port::Destroy() { 727 ASSERT(connections_.empty()); 728 LOG_J(LS_INFO, this) << "Port deleted"; 729 SignalDestroyed(this); 730 delete this; 731 } 732 733 void Port::CheckTimeout() { 734 ASSERT(ice_role_ == ICEROLE_CONTROLLED); 735 // If this port has no connections, then there's no reason to keep it around. 736 // When the connections time out (both read and write), they will delete 737 // themselves, so if we have any connections, they are either readable or 738 // writable (or still connecting). 739 if (connections_.empty()) 740 Destroy(); 741 } 742 743 const std::string Port::username_fragment() const { 744 if (!IsStandardIce() && 745 component_ == ICE_CANDIDATE_COMPONENT_RTCP) { 746 // In GICE mode, we should adjust username fragment for rtcp component. 747 return GetRtcpUfragFromRtpUfrag(ice_username_fragment_); 748 } else { 749 return ice_username_fragment_; 750 } 751 } 752 753 // A ConnectionRequest is a simple STUN ping used to determine writability. 754 class ConnectionRequest : public StunRequest { 755 public: 756 explicit ConnectionRequest(Connection* connection) 757 : StunRequest(new IceMessage()), 758 connection_(connection) { 759 } 760 761 virtual ~ConnectionRequest() { 762 } 763 764 virtual void Prepare(StunMessage* request) { 765 request->SetType(STUN_BINDING_REQUEST); 766 std::string username; 767 connection_->port()->CreateStunUsername( 768 connection_->remote_candidate().username(), &username); 769 request->AddAttribute( 770 new StunByteStringAttribute(STUN_ATTR_USERNAME, username)); 771 772 // connection_ already holds this ping, so subtract one from count. 773 if (connection_->port()->send_retransmit_count_attribute()) { 774 request->AddAttribute(new StunUInt32Attribute( 775 STUN_ATTR_RETRANSMIT_COUNT, 776 static_cast<uint32>( 777 connection_->pings_since_last_response_.size() - 1))); 778 } 779 780 // Adding ICE-specific attributes to the STUN request message. 781 if (connection_->port()->IsStandardIce()) { 782 // Adding ICE_CONTROLLED or ICE_CONTROLLING attribute based on the role. 783 if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLING) { 784 request->AddAttribute(new StunUInt64Attribute( 785 STUN_ATTR_ICE_CONTROLLING, connection_->port()->IceTiebreaker())); 786 // Since we are trying aggressive nomination, sending USE-CANDIDATE 787 // attribute in every ping. 788 // If we are dealing with a ice-lite end point, nomination flag 789 // in Connection will be set to false by default. Once the connection 790 // becomes "best connection", nomination flag will be turned on. 791 if (connection_->use_candidate_attr()) { 792 request->AddAttribute(new StunByteStringAttribute( 793 STUN_ATTR_USE_CANDIDATE)); 794 } 795 } else if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLED) { 796 request->AddAttribute(new StunUInt64Attribute( 797 STUN_ATTR_ICE_CONTROLLED, connection_->port()->IceTiebreaker())); 798 } else { 799 ASSERT(false); 800 } 801 802 // Adding PRIORITY Attribute. 803 // Changing the type preference to Peer Reflexive and local preference 804 // and component id information is unchanged from the original priority. 805 // priority = (2^24)*(type preference) + 806 // (2^8)*(local preference) + 807 // (2^0)*(256 - component ID) 808 uint32 prflx_priority = ICE_TYPE_PREFERENCE_PRFLX << 24 | 809 (connection_->local_candidate().priority() & 0x00FFFFFF); 810 request->AddAttribute( 811 new StunUInt32Attribute(STUN_ATTR_PRIORITY, prflx_priority)); 812 813 // Adding Message Integrity attribute. 814 request->AddMessageIntegrity(connection_->remote_candidate().password()); 815 // Adding Fingerprint. 816 request->AddFingerprint(); 817 } 818 } 819 820 virtual void OnResponse(StunMessage* response) { 821 connection_->OnConnectionRequestResponse(this, response); 822 } 823 824 virtual void OnErrorResponse(StunMessage* response) { 825 connection_->OnConnectionRequestErrorResponse(this, response); 826 } 827 828 virtual void OnTimeout() { 829 connection_->OnConnectionRequestTimeout(this); 830 } 831 832 virtual int GetNextDelay() { 833 // Each request is sent only once. After a single delay , the request will 834 // time out. 835 timeout_ = true; 836 return CONNECTION_RESPONSE_TIMEOUT; 837 } 838 839 private: 840 Connection* connection_; 841 }; 842 843 // 844 // Connection 845 // 846 847 Connection::Connection(Port* port, size_t index, 848 const Candidate& remote_candidate) 849 : port_(port), local_candidate_index_(index), 850 remote_candidate_(remote_candidate), read_state_(STATE_READ_INIT), 851 write_state_(STATE_WRITE_INIT), connected_(true), pruned_(false), 852 use_candidate_attr_(false), remote_ice_mode_(ICEMODE_FULL), 853 requests_(port->thread()), rtt_(DEFAULT_RTT), last_ping_sent_(0), 854 last_ping_received_(0), last_data_received_(0), 855 last_ping_response_received_(0), reported_(false), state_(STATE_WAITING) { 856 // All of our connections start in WAITING state. 857 // TODO(mallinath) - Start connections from STATE_FROZEN. 858 // Wire up to send stun packets 859 requests_.SignalSendPacket.connect(this, &Connection::OnSendStunPacket); 860 LOG_J(LS_INFO, this) << "Connection created"; 861 } 862 863 Connection::~Connection() { 864 } 865 866 const Candidate& Connection::local_candidate() const { 867 ASSERT(local_candidate_index_ < port_->Candidates().size()); 868 return port_->Candidates()[local_candidate_index_]; 869 } 870 871 uint64 Connection::priority() const { 872 uint64 priority = 0; 873 // RFC 5245 - 5.7.2. Computing Pair Priority and Ordering Pairs 874 // Let G be the priority for the candidate provided by the controlling 875 // agent. Let D be the priority for the candidate provided by the 876 // controlled agent. 877 // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0) 878 IceRole role = port_->GetIceRole(); 879 if (role != ICEROLE_UNKNOWN) { 880 uint32 g = 0; 881 uint32 d = 0; 882 if (role == ICEROLE_CONTROLLING) { 883 g = local_candidate().priority(); 884 d = remote_candidate_.priority(); 885 } else { 886 g = remote_candidate_.priority(); 887 d = local_candidate().priority(); 888 } 889 priority = talk_base::_min(g, d); 890 priority = priority << 32; 891 priority += 2 * talk_base::_max(g, d) + (g > d ? 1 : 0); 892 } 893 return priority; 894 } 895 896 void Connection::set_read_state(ReadState value) { 897 ReadState old_value = read_state_; 898 read_state_ = value; 899 if (value != old_value) { 900 LOG_J(LS_VERBOSE, this) << "set_read_state"; 901 SignalStateChange(this); 902 CheckTimeout(); 903 } 904 } 905 906 void Connection::set_write_state(WriteState value) { 907 WriteState old_value = write_state_; 908 write_state_ = value; 909 if (value != old_value) { 910 LOG_J(LS_VERBOSE, this) << "set_write_state"; 911 SignalStateChange(this); 912 CheckTimeout(); 913 } 914 } 915 916 void Connection::set_state(State state) { 917 State old_state = state_; 918 state_ = state; 919 if (state != old_state) { 920 LOG_J(LS_VERBOSE, this) << "set_state"; 921 } 922 } 923 924 void Connection::set_connected(bool value) { 925 bool old_value = connected_; 926 connected_ = value; 927 if (value != old_value) { 928 LOG_J(LS_VERBOSE, this) << "set_connected"; 929 } 930 } 931 932 void Connection::set_use_candidate_attr(bool enable) { 933 use_candidate_attr_ = enable; 934 } 935 936 void Connection::OnSendStunPacket(const void* data, size_t size, 937 StunRequest* req) { 938 talk_base::PacketOptions options(port_->DefaultDscpValue()); 939 if (port_->SendTo(data, size, remote_candidate_.address(), 940 options, false) < 0) { 941 LOG_J(LS_WARNING, this) << "Failed to send STUN ping " << req->id(); 942 } 943 } 944 945 void Connection::OnReadPacket( 946 const char* data, size_t size, const talk_base::PacketTime& packet_time) { 947 talk_base::scoped_ptr<IceMessage> msg; 948 std::string remote_ufrag; 949 const talk_base::SocketAddress& addr(remote_candidate_.address()); 950 if (!port_->GetStunMessage(data, size, addr, msg.accept(), &remote_ufrag)) { 951 // The packet did not parse as a valid STUN message 952 953 // If this connection is readable, then pass along the packet. 954 if (read_state_ == STATE_READABLE) { 955 // readable means data from this address is acceptable 956 // Send it on! 957 958 last_data_received_ = talk_base::Time(); 959 recv_rate_tracker_.Update(size); 960 SignalReadPacket(this, data, size, packet_time); 961 962 // If timed out sending writability checks, start up again 963 if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT)) { 964 LOG(LS_WARNING) << "Received a data packet on a timed-out Connection. " 965 << "Resetting state to STATE_WRITE_INIT."; 966 set_write_state(STATE_WRITE_INIT); 967 } 968 } else { 969 // Not readable means the remote address hasn't sent a valid 970 // binding request yet. 971 972 LOG_J(LS_WARNING, this) 973 << "Received non-STUN packet from an unreadable connection."; 974 } 975 } else if (!msg) { 976 // The packet was STUN, but failed a check and was handled internally. 977 } else { 978 // The packet is STUN and passed the Port checks. 979 // Perform our own checks to ensure this packet is valid. 980 // If this is a STUN request, then update the readable bit and respond. 981 // If this is a STUN response, then update the writable bit. 982 switch (msg->type()) { 983 case STUN_BINDING_REQUEST: 984 if (remote_ufrag == remote_candidate_.username()) { 985 // Check for role conflicts. 986 if (port_->IsStandardIce() && 987 !port_->MaybeIceRoleConflict(addr, msg.get(), remote_ufrag)) { 988 // Received conflicting role from the peer. 989 LOG(LS_INFO) << "Received conflicting role from the peer."; 990 return; 991 } 992 993 // Incoming, validated stun request from remote peer. 994 // This call will also set the connection readable. 995 port_->SendBindingResponse(msg.get(), addr); 996 997 // If timed out sending writability checks, start up again 998 if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT)) 999 set_write_state(STATE_WRITE_INIT); 1000 1001 if ((port_->IsStandardIce()) && 1002 (port_->GetIceRole() == ICEROLE_CONTROLLED)) { 1003 const StunByteStringAttribute* use_candidate_attr = 1004 msg->GetByteString(STUN_ATTR_USE_CANDIDATE); 1005 if (use_candidate_attr) 1006 SignalUseCandidate(this); 1007 } 1008 } else { 1009 // The packet had the right local username, but the remote username 1010 // was not the right one for the remote address. 1011 LOG_J(LS_ERROR, this) 1012 << "Received STUN request with bad remote username " 1013 << remote_ufrag; 1014 port_->SendBindingErrorResponse(msg.get(), addr, 1015 STUN_ERROR_UNAUTHORIZED, 1016 STUN_ERROR_REASON_UNAUTHORIZED); 1017 1018 } 1019 break; 1020 1021 // Response from remote peer. Does it match request sent? 1022 // This doesn't just check, it makes callbacks if transaction 1023 // id's match. 1024 case STUN_BINDING_RESPONSE: 1025 case STUN_BINDING_ERROR_RESPONSE: 1026 if (port_->IsGoogleIce() || 1027 msg->ValidateMessageIntegrity( 1028 data, size, remote_candidate().password())) { 1029 requests_.CheckResponse(msg.get()); 1030 } 1031 // Otherwise silently discard the response message. 1032 break; 1033 1034 // Remote end point sent an STUN indication instead of regular 1035 // binding request. In this case |last_ping_received_| will be updated. 1036 // Otherwise we can mark connection to read timeout. No response will be 1037 // sent in this scenario. 1038 case STUN_BINDING_INDICATION: 1039 if (port_->IsStandardIce() && read_state_ == STATE_READABLE) { 1040 ReceivedPing(); 1041 } else { 1042 LOG_J(LS_WARNING, this) << "Received STUN binding indication " 1043 << "from an unreadable connection."; 1044 } 1045 break; 1046 1047 default: 1048 ASSERT(false); 1049 break; 1050 } 1051 } 1052 } 1053 1054 void Connection::OnReadyToSend() { 1055 if (write_state_ == STATE_WRITABLE) { 1056 SignalReadyToSend(this); 1057 } 1058 } 1059 1060 void Connection::Prune() { 1061 if (!pruned_) { 1062 LOG_J(LS_VERBOSE, this) << "Connection pruned"; 1063 pruned_ = true; 1064 requests_.Clear(); 1065 set_write_state(STATE_WRITE_TIMEOUT); 1066 } 1067 } 1068 1069 void Connection::Destroy() { 1070 LOG_J(LS_VERBOSE, this) << "Connection destroyed"; 1071 set_read_state(STATE_READ_TIMEOUT); 1072 set_write_state(STATE_WRITE_TIMEOUT); 1073 } 1074 1075 void Connection::UpdateState(uint32 now) { 1076 uint32 rtt = ConservativeRTTEstimate(rtt_); 1077 1078 std::string pings; 1079 for (size_t i = 0; i < pings_since_last_response_.size(); ++i) { 1080 char buf[32]; 1081 talk_base::sprintfn(buf, sizeof(buf), "%u", 1082 pings_since_last_response_[i]); 1083 pings.append(buf).append(" "); 1084 } 1085 LOG_J(LS_VERBOSE, this) << "UpdateState(): pings_since_last_response_=" << 1086 pings << ", rtt=" << rtt << ", now=" << now; 1087 1088 // Check the readable state. 1089 // 1090 // Since we don't know how many pings the other side has attempted, the best 1091 // test we can do is a simple window. 1092 // If other side has not sent ping after connection has become readable, use 1093 // |last_data_received_| as the indication. 1094 // If remote endpoint is doing RFC 5245, it's not required to send ping 1095 // after connection is established. If this connection is serving a data 1096 // channel, it may not be in a position to send media continuously. Do not 1097 // mark connection timeout if it's in RFC5245 mode. 1098 // Below check will be performed with end point if it's doing google-ice. 1099 if (port_->IsGoogleIce() && (read_state_ == STATE_READABLE) && 1100 (last_ping_received_ + CONNECTION_READ_TIMEOUT <= now) && 1101 (last_data_received_ + CONNECTION_READ_TIMEOUT <= now)) { 1102 LOG_J(LS_INFO, this) << "Unreadable after " 1103 << now - last_ping_received_ 1104 << " ms without a ping," 1105 << " ms since last received response=" 1106 << now - last_ping_response_received_ 1107 << " ms since last received data=" 1108 << now - last_data_received_ 1109 << " rtt=" << rtt; 1110 set_read_state(STATE_READ_TIMEOUT); 1111 } 1112 1113 // Check the writable state. (The order of these checks is important.) 1114 // 1115 // Before becoming unwritable, we allow for a fixed number of pings to fail 1116 // (i.e., receive no response). We also have to give the response time to 1117 // get back, so we include a conservative estimate of this. 1118 // 1119 // Before timing out writability, we give a fixed amount of time. This is to 1120 // allow for changes in network conditions. 1121 1122 if ((write_state_ == STATE_WRITABLE) && 1123 TooManyFailures(pings_since_last_response_, 1124 CONNECTION_WRITE_CONNECT_FAILURES, 1125 rtt, 1126 now) && 1127 TooLongWithoutResponse(pings_since_last_response_, 1128 CONNECTION_WRITE_CONNECT_TIMEOUT, 1129 now)) { 1130 uint32 max_pings = CONNECTION_WRITE_CONNECT_FAILURES; 1131 LOG_J(LS_INFO, this) << "Unwritable after " << max_pings 1132 << " ping failures and " 1133 << now - pings_since_last_response_[0] 1134 << " ms without a response," 1135 << " ms since last received ping=" 1136 << now - last_ping_received_ 1137 << " ms since last received data=" 1138 << now - last_data_received_ 1139 << " rtt=" << rtt; 1140 set_write_state(STATE_WRITE_UNRELIABLE); 1141 } 1142 1143 if ((write_state_ == STATE_WRITE_UNRELIABLE || 1144 write_state_ == STATE_WRITE_INIT) && 1145 TooLongWithoutResponse(pings_since_last_response_, 1146 CONNECTION_WRITE_TIMEOUT, 1147 now)) { 1148 LOG_J(LS_INFO, this) << "Timed out after " 1149 << now - pings_since_last_response_[0] 1150 << " ms without a response, rtt=" << rtt; 1151 set_write_state(STATE_WRITE_TIMEOUT); 1152 } 1153 } 1154 1155 void Connection::Ping(uint32 now) { 1156 ASSERT(connected_); 1157 last_ping_sent_ = now; 1158 pings_since_last_response_.push_back(now); 1159 ConnectionRequest *req = new ConnectionRequest(this); 1160 LOG_J(LS_VERBOSE, this) << "Sending STUN ping " << req->id() << " at " << now; 1161 requests_.Send(req); 1162 state_ = STATE_INPROGRESS; 1163 } 1164 1165 void Connection::ReceivedPing() { 1166 last_ping_received_ = talk_base::Time(); 1167 set_read_state(STATE_READABLE); 1168 } 1169 1170 std::string Connection::ToString() const { 1171 const char CONNECT_STATE_ABBREV[2] = { 1172 '-', // not connected (false) 1173 'C', // connected (true) 1174 }; 1175 const char READ_STATE_ABBREV[3] = { 1176 '-', // STATE_READ_INIT 1177 'R', // STATE_READABLE 1178 'x', // STATE_READ_TIMEOUT 1179 }; 1180 const char WRITE_STATE_ABBREV[4] = { 1181 'W', // STATE_WRITABLE 1182 'w', // STATE_WRITE_UNRELIABLE 1183 '-', // STATE_WRITE_INIT 1184 'x', // STATE_WRITE_TIMEOUT 1185 }; 1186 const std::string ICESTATE[4] = { 1187 "W", // STATE_WAITING 1188 "I", // STATE_INPROGRESS 1189 "S", // STATE_SUCCEEDED 1190 "F" // STATE_FAILED 1191 }; 1192 const Candidate& local = local_candidate(); 1193 const Candidate& remote = remote_candidate(); 1194 std::stringstream ss; 1195 ss << "Conn[" << port_->content_name() 1196 << ":" << local.id() << ":" << local.component() 1197 << ":" << local.generation() 1198 << ":" << local.type() << ":" << local.protocol() 1199 << ":" << local.address().ToSensitiveString() 1200 << "->" << remote.id() << ":" << remote.component() 1201 << ":" << remote.preference() 1202 << ":" << remote.type() << ":" 1203 << remote.protocol() << ":" << remote.address().ToSensitiveString() << "|" 1204 << CONNECT_STATE_ABBREV[connected()] 1205 << READ_STATE_ABBREV[read_state()] 1206 << WRITE_STATE_ABBREV[write_state()] 1207 << ICESTATE[state()] << "|" 1208 << priority() << "|"; 1209 if (rtt_ < DEFAULT_RTT) { 1210 ss << rtt_ << "]"; 1211 } else { 1212 ss << "-]"; 1213 } 1214 return ss.str(); 1215 } 1216 1217 std::string Connection::ToSensitiveString() const { 1218 return ToString(); 1219 } 1220 1221 void Connection::OnConnectionRequestResponse(ConnectionRequest* request, 1222 StunMessage* response) { 1223 // We've already validated that this is a STUN binding response with 1224 // the correct local and remote username for this connection. 1225 // So if we're not already, become writable. We may be bringing a pruned 1226 // connection back to life, but if we don't really want it, we can always 1227 // prune it again. 1228 uint32 rtt = request->Elapsed(); 1229 set_write_state(STATE_WRITABLE); 1230 set_state(STATE_SUCCEEDED); 1231 1232 if (remote_ice_mode_ == ICEMODE_LITE) { 1233 // A ice-lite end point never initiates ping requests. This will allow 1234 // us to move to STATE_READABLE. 1235 ReceivedPing(); 1236 } 1237 1238 std::string pings; 1239 for (size_t i = 0; i < pings_since_last_response_.size(); ++i) { 1240 char buf[32]; 1241 talk_base::sprintfn(buf, sizeof(buf), "%u", 1242 pings_since_last_response_[i]); 1243 pings.append(buf).append(" "); 1244 } 1245 1246 talk_base::LoggingSeverity level = 1247 (pings_since_last_response_.size() > CONNECTION_WRITE_CONNECT_FAILURES) ? 1248 talk_base::LS_INFO : talk_base::LS_VERBOSE; 1249 1250 LOG_JV(level, this) << "Received STUN ping response " << request->id() 1251 << ", pings_since_last_response_=" << pings 1252 << ", rtt=" << rtt; 1253 1254 pings_since_last_response_.clear(); 1255 last_ping_response_received_ = talk_base::Time(); 1256 rtt_ = (RTT_RATIO * rtt_ + rtt) / (RTT_RATIO + 1); 1257 1258 // Peer reflexive candidate is only for RFC 5245 ICE. 1259 if (port_->IsStandardIce()) { 1260 MaybeAddPrflxCandidate(request, response); 1261 } 1262 } 1263 1264 void Connection::OnConnectionRequestErrorResponse(ConnectionRequest* request, 1265 StunMessage* response) { 1266 const StunErrorCodeAttribute* error_attr = response->GetErrorCode(); 1267 int error_code = STUN_ERROR_GLOBAL_FAILURE; 1268 if (error_attr) { 1269 if (port_->IsGoogleIce()) { 1270 // When doing GICE, the error code is written out incorrectly, so we need 1271 // to unmunge it here. 1272 error_code = error_attr->eclass() * 256 + error_attr->number(); 1273 } else { 1274 error_code = error_attr->code(); 1275 } 1276 } 1277 1278 if (error_code == STUN_ERROR_UNKNOWN_ATTRIBUTE || 1279 error_code == STUN_ERROR_SERVER_ERROR || 1280 error_code == STUN_ERROR_UNAUTHORIZED) { 1281 // Recoverable error, retry 1282 } else if (error_code == STUN_ERROR_STALE_CREDENTIALS) { 1283 // Race failure, retry 1284 } else if (error_code == STUN_ERROR_ROLE_CONFLICT) { 1285 HandleRoleConflictFromPeer(); 1286 } else { 1287 // This is not a valid connection. 1288 LOG_J(LS_ERROR, this) << "Received STUN error response, code=" 1289 << error_code << "; killing connection"; 1290 set_state(STATE_FAILED); 1291 set_write_state(STATE_WRITE_TIMEOUT); 1292 } 1293 } 1294 1295 void Connection::OnConnectionRequestTimeout(ConnectionRequest* request) { 1296 // Log at LS_INFO if we miss a ping on a writable connection. 1297 talk_base::LoggingSeverity sev = (write_state_ == STATE_WRITABLE) ? 1298 talk_base::LS_INFO : talk_base::LS_VERBOSE; 1299 LOG_JV(sev, this) << "Timing-out STUN ping " << request->id() 1300 << " after " << request->Elapsed() << " ms"; 1301 } 1302 1303 void Connection::CheckTimeout() { 1304 // If both read and write have timed out or read has never initialized, then 1305 // this connection can contribute no more to p2p socket unless at some later 1306 // date readability were to come back. However, we gave readability a long 1307 // time to timeout, so at this point, it seems fair to get rid of this 1308 // connection. 1309 if ((read_state_ == STATE_READ_TIMEOUT || 1310 read_state_ == STATE_READ_INIT) && 1311 write_state_ == STATE_WRITE_TIMEOUT) { 1312 port_->thread()->Post(this, MSG_DELETE); 1313 } 1314 } 1315 1316 void Connection::HandleRoleConflictFromPeer() { 1317 port_->SignalRoleConflict(port_); 1318 } 1319 1320 void Connection::OnMessage(talk_base::Message *pmsg) { 1321 ASSERT(pmsg->message_id == MSG_DELETE); 1322 1323 LOG_J(LS_INFO, this) << "Connection deleted"; 1324 SignalDestroyed(this); 1325 delete this; 1326 } 1327 1328 size_t Connection::recv_bytes_second() { 1329 return recv_rate_tracker_.units_second(); 1330 } 1331 1332 size_t Connection::recv_total_bytes() { 1333 return recv_rate_tracker_.total_units(); 1334 } 1335 1336 size_t Connection::sent_bytes_second() { 1337 return send_rate_tracker_.units_second(); 1338 } 1339 1340 size_t Connection::sent_total_bytes() { 1341 return send_rate_tracker_.total_units(); 1342 } 1343 1344 void Connection::MaybeAddPrflxCandidate(ConnectionRequest* request, 1345 StunMessage* response) { 1346 // RFC 5245 1347 // The agent checks the mapped address from the STUN response. If the 1348 // transport address does not match any of the local candidates that the 1349 // agent knows about, the mapped address represents a new candidate -- a 1350 // peer reflexive candidate. 1351 const StunAddressAttribute* addr = 1352 response->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); 1353 if (!addr) { 1354 LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - " 1355 << "No MAPPED-ADDRESS or XOR-MAPPED-ADDRESS found in the " 1356 << "stun response message"; 1357 return; 1358 } 1359 1360 bool known_addr = false; 1361 for (size_t i = 0; i < port_->Candidates().size(); ++i) { 1362 if (port_->Candidates()[i].address() == addr->GetAddress()) { 1363 known_addr = true; 1364 break; 1365 } 1366 } 1367 if (known_addr) { 1368 return; 1369 } 1370 1371 // RFC 5245 1372 // Its priority is set equal to the value of the PRIORITY attribute 1373 // in the Binding request. 1374 const StunUInt32Attribute* priority_attr = 1375 request->msg()->GetUInt32(STUN_ATTR_PRIORITY); 1376 if (!priority_attr) { 1377 LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - " 1378 << "No STUN_ATTR_PRIORITY found in the " 1379 << "stun response message"; 1380 return; 1381 } 1382 const uint32 priority = priority_attr->value(); 1383 std::string id = talk_base::CreateRandomString(8); 1384 1385 Candidate new_local_candidate; 1386 new_local_candidate.set_id(id); 1387 new_local_candidate.set_component(local_candidate().component()); 1388 new_local_candidate.set_type(PRFLX_PORT_TYPE); 1389 new_local_candidate.set_protocol(local_candidate().protocol()); 1390 new_local_candidate.set_address(addr->GetAddress()); 1391 new_local_candidate.set_priority(priority); 1392 new_local_candidate.set_username(local_candidate().username()); 1393 new_local_candidate.set_password(local_candidate().password()); 1394 new_local_candidate.set_network_name(local_candidate().network_name()); 1395 new_local_candidate.set_related_address(local_candidate().address()); 1396 new_local_candidate.set_foundation( 1397 ComputeFoundation(PRFLX_PORT_TYPE, local_candidate().protocol(), 1398 local_candidate().address())); 1399 1400 // Change the local candidate of this Connection to the new prflx candidate. 1401 local_candidate_index_ = port_->AddPrflxCandidate(new_local_candidate); 1402 1403 // SignalStateChange to force a re-sort in P2PTransportChannel as this 1404 // Connection's local candidate has changed. 1405 SignalStateChange(this); 1406 } 1407 1408 ProxyConnection::ProxyConnection(Port* port, size_t index, 1409 const Candidate& candidate) 1410 : Connection(port, index, candidate), error_(0) { 1411 } 1412 1413 int ProxyConnection::Send(const void* data, size_t size, 1414 const talk_base::PacketOptions& options) { 1415 if (write_state_ == STATE_WRITE_INIT || write_state_ == STATE_WRITE_TIMEOUT) { 1416 error_ = EWOULDBLOCK; 1417 return SOCKET_ERROR; 1418 } 1419 int sent = port_->SendTo(data, size, remote_candidate_.address(), 1420 options, true); 1421 if (sent <= 0) { 1422 ASSERT(sent < 0); 1423 error_ = port_->GetError(); 1424 } else { 1425 send_rate_tracker_.Update(sent); 1426 } 1427 return sent; 1428 } 1429 1430 } // namespace cricket 1431