Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the SmallVector class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_SMALLVECTOR_H
     15 #define LLVM_ADT_SMALLVECTOR_H
     16 
     17 #include "llvm/ADT/iterator_range.h"
     18 #include "llvm/Support/AlignOf.h"
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include "llvm/Support/type_traits.h"
     22 #include <algorithm>
     23 #include <cassert>
     24 #include <cstddef>
     25 #include <cstdlib>
     26 #include <cstring>
     27 #include <iterator>
     28 #include <memory>
     29 
     30 namespace llvm {
     31 
     32 /// SmallVectorBase - This is all the non-templated stuff common to all
     33 /// SmallVectors.
     34 class SmallVectorBase {
     35 protected:
     36   void *BeginX, *EndX, *CapacityX;
     37 
     38 protected:
     39   SmallVectorBase(void *FirstEl, size_t Size)
     40     : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
     41 
     42   /// grow_pod - This is an implementation of the grow() method which only works
     43   /// on POD-like data types and is out of line to reduce code duplication.
     44   void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
     45 
     46 public:
     47   /// size_in_bytes - This returns size()*sizeof(T).
     48   size_t size_in_bytes() const {
     49     return size_t((char*)EndX - (char*)BeginX);
     50   }
     51 
     52   /// capacity_in_bytes - This returns capacity()*sizeof(T).
     53   size_t capacity_in_bytes() const {
     54     return size_t((char*)CapacityX - (char*)BeginX);
     55   }
     56 
     57   bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const { return BeginX == EndX; }
     58 };
     59 
     60 template <typename T, unsigned N> struct SmallVectorStorage;
     61 
     62 /// SmallVectorTemplateCommon - This is the part of SmallVectorTemplateBase
     63 /// which does not depend on whether the type T is a POD. The extra dummy
     64 /// template argument is used by ArrayRef to avoid unnecessarily requiring T
     65 /// to be complete.
     66 template <typename T, typename = void>
     67 class SmallVectorTemplateCommon : public SmallVectorBase {
     68 private:
     69   template <typename, unsigned> friend struct SmallVectorStorage;
     70 
     71   // Allocate raw space for N elements of type T.  If T has a ctor or dtor, we
     72   // don't want it to be automatically run, so we need to represent the space as
     73   // something else.  Use an array of char of sufficient alignment.
     74   typedef llvm::AlignedCharArrayUnion<T> U;
     75   U FirstEl;
     76   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
     77 
     78 protected:
     79   SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
     80 
     81   void grow_pod(size_t MinSizeInBytes, size_t TSize) {
     82     SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
     83   }
     84 
     85   /// isSmall - Return true if this is a smallvector which has not had dynamic
     86   /// memory allocated for it.
     87   bool isSmall() const {
     88     return BeginX == static_cast<const void*>(&FirstEl);
     89   }
     90 
     91   /// resetToSmall - Put this vector in a state of being small.
     92   void resetToSmall() {
     93     BeginX = EndX = CapacityX = &FirstEl;
     94   }
     95 
     96   void setEnd(T *P) { this->EndX = P; }
     97 public:
     98   typedef size_t size_type;
     99   typedef ptrdiff_t difference_type;
    100   typedef T value_type;
    101   typedef T *iterator;
    102   typedef const T *const_iterator;
    103 
    104   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
    105   typedef std::reverse_iterator<iterator> reverse_iterator;
    106 
    107   typedef T &reference;
    108   typedef const T &const_reference;
    109   typedef T *pointer;
    110   typedef const T *const_pointer;
    111 
    112   // forward iterator creation methods.
    113   iterator begin() { return (iterator)this->BeginX; }
    114   const_iterator begin() const { return (const_iterator)this->BeginX; }
    115   iterator end() { return (iterator)this->EndX; }
    116   const_iterator end() const { return (const_iterator)this->EndX; }
    117 protected:
    118   iterator capacity_ptr() { return (iterator)this->CapacityX; }
    119   const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
    120 public:
    121 
    122   // reverse iterator creation methods.
    123   reverse_iterator rbegin()            { return reverse_iterator(end()); }
    124   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
    125   reverse_iterator rend()              { return reverse_iterator(begin()); }
    126   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
    127 
    128   size_type size() const { return end()-begin(); }
    129   size_type max_size() const { return size_type(-1) / sizeof(T); }
    130 
    131   /// capacity - Return the total number of elements in the currently allocated
    132   /// buffer.
    133   size_t capacity() const { return capacity_ptr() - begin(); }
    134 
    135   /// data - Return a pointer to the vector's buffer, even if empty().
    136   pointer data() { return pointer(begin()); }
    137   /// data - Return a pointer to the vector's buffer, even if empty().
    138   const_pointer data() const { return const_pointer(begin()); }
    139 
    140   reference operator[](unsigned idx) {
    141     assert(begin() + idx < end());
    142     return begin()[idx];
    143   }
    144   const_reference operator[](unsigned idx) const {
    145     assert(begin() + idx < end());
    146     return begin()[idx];
    147   }
    148 
    149   reference front() {
    150     assert(!empty());
    151     return begin()[0];
    152   }
    153   const_reference front() const {
    154     assert(!empty());
    155     return begin()[0];
    156   }
    157 
    158   reference back() {
    159     assert(!empty());
    160     return end()[-1];
    161   }
    162   const_reference back() const {
    163     assert(!empty());
    164     return end()[-1];
    165   }
    166 };
    167 
    168 /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
    169 /// implementations that are designed to work with non-POD-like T's.
    170 template <typename T, bool isPodLike>
    171 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
    172 protected:
    173   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
    174 
    175   static void destroy_range(T *S, T *E) {
    176     while (S != E) {
    177       --E;
    178       E->~T();
    179     }
    180   }
    181 
    182   /// move - Use move-assignment to move the range [I, E) onto the
    183   /// objects starting with "Dest".  This is just <memory>'s
    184   /// std::move, but not all stdlibs actually provide that.
    185   template<typename It1, typename It2>
    186   static It2 move(It1 I, It1 E, It2 Dest) {
    187     for (; I != E; ++I, ++Dest)
    188       *Dest = ::std::move(*I);
    189     return Dest;
    190   }
    191 
    192   /// move_backward - Use move-assignment to move the range
    193   /// [I, E) onto the objects ending at "Dest", moving objects
    194   /// in reverse order.  This is just <algorithm>'s
    195   /// std::move_backward, but not all stdlibs actually provide that.
    196   template<typename It1, typename It2>
    197   static It2 move_backward(It1 I, It1 E, It2 Dest) {
    198     while (I != E)
    199       *--Dest = ::std::move(*--E);
    200     return Dest;
    201   }
    202 
    203   /// uninitialized_move - Move the range [I, E) into the uninitialized
    204   /// memory starting with "Dest", constructing elements as needed.
    205   template<typename It1, typename It2>
    206   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    207     for (; I != E; ++I, ++Dest)
    208       ::new ((void*) &*Dest) T(::std::move(*I));
    209   }
    210 
    211   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized
    212   /// memory starting with "Dest", constructing elements as needed.
    213   template<typename It1, typename It2>
    214   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    215     std::uninitialized_copy(I, E, Dest);
    216   }
    217 
    218   /// grow - Grow the allocated memory (without initializing new
    219   /// elements), doubling the size of the allocated memory.
    220   /// Guarantees space for at least one more element, or MinSize more
    221   /// elements if specified.
    222   void grow(size_t MinSize = 0);
    223 
    224 public:
    225   void push_back(const T &Elt) {
    226     if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
    227       this->grow();
    228     ::new ((void*) this->end()) T(Elt);
    229     this->setEnd(this->end()+1);
    230   }
    231 
    232   void push_back(T &&Elt) {
    233     if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
    234       this->grow();
    235     ::new ((void*) this->end()) T(::std::move(Elt));
    236     this->setEnd(this->end()+1);
    237   }
    238 
    239   void pop_back() {
    240     this->setEnd(this->end()-1);
    241     this->end()->~T();
    242   }
    243 };
    244 
    245 // Define this out-of-line to dissuade the C++ compiler from inlining it.
    246 template <typename T, bool isPodLike>
    247 void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
    248   size_t CurCapacity = this->capacity();
    249   size_t CurSize = this->size();
    250   // Always grow, even from zero.
    251   size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
    252   if (NewCapacity < MinSize)
    253     NewCapacity = MinSize;
    254   T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
    255 
    256   // Move the elements over.
    257   this->uninitialized_move(this->begin(), this->end(), NewElts);
    258 
    259   // Destroy the original elements.
    260   destroy_range(this->begin(), this->end());
    261 
    262   // If this wasn't grown from the inline copy, deallocate the old space.
    263   if (!this->isSmall())
    264     free(this->begin());
    265 
    266   this->setEnd(NewElts+CurSize);
    267   this->BeginX = NewElts;
    268   this->CapacityX = this->begin()+NewCapacity;
    269 }
    270 
    271 
    272 /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
    273 /// implementations that are designed to work with POD-like T's.
    274 template <typename T>
    275 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
    276 protected:
    277   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
    278 
    279   // No need to do a destroy loop for POD's.
    280   static void destroy_range(T *, T *) {}
    281 
    282   /// move - Use move-assignment to move the range [I, E) onto the
    283   /// objects starting with "Dest".  For PODs, this is just memcpy.
    284   template<typename It1, typename It2>
    285   static It2 move(It1 I, It1 E, It2 Dest) {
    286     return ::std::copy(I, E, Dest);
    287   }
    288 
    289   /// move_backward - Use move-assignment to move the range
    290   /// [I, E) onto the objects ending at "Dest", moving objects
    291   /// in reverse order.
    292   template<typename It1, typename It2>
    293   static It2 move_backward(It1 I, It1 E, It2 Dest) {
    294     return ::std::copy_backward(I, E, Dest);
    295   }
    296 
    297   /// uninitialized_move - Move the range [I, E) onto the uninitialized memory
    298   /// starting with "Dest", constructing elements into it as needed.
    299   template<typename It1, typename It2>
    300   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    301     // Just do a copy.
    302     uninitialized_copy(I, E, Dest);
    303   }
    304 
    305   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
    306   /// starting with "Dest", constructing elements into it as needed.
    307   template<typename It1, typename It2>
    308   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    309     // Arbitrary iterator types; just use the basic implementation.
    310     std::uninitialized_copy(I, E, Dest);
    311   }
    312 
    313   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
    314   /// starting with "Dest", constructing elements into it as needed.
    315   template<typename T1, typename T2>
    316   static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
    317     // Use memcpy for PODs iterated by pointers (which includes SmallVector
    318     // iterators): std::uninitialized_copy optimizes to memmove, but we can
    319     // use memcpy here.
    320     memcpy(Dest, I, (E-I)*sizeof(T));
    321   }
    322 
    323   /// grow - double the size of the allocated memory, guaranteeing space for at
    324   /// least one more element or MinSize if specified.
    325   void grow(size_t MinSize = 0) {
    326     this->grow_pod(MinSize*sizeof(T), sizeof(T));
    327   }
    328 public:
    329   void push_back(const T &Elt) {
    330     if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
    331       this->grow();
    332     memcpy(this->end(), &Elt, sizeof(T));
    333     this->setEnd(this->end()+1);
    334   }
    335 
    336   void pop_back() {
    337     this->setEnd(this->end()-1);
    338   }
    339 };
    340 
    341 
    342 /// SmallVectorImpl - This class consists of common code factored out of the
    343 /// SmallVector class to reduce code duplication based on the SmallVector 'N'
    344 /// template parameter.
    345 template <typename T>
    346 class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
    347   typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
    348 
    349   SmallVectorImpl(const SmallVectorImpl&) LLVM_DELETED_FUNCTION;
    350 public:
    351   typedef typename SuperClass::iterator iterator;
    352   typedef typename SuperClass::size_type size_type;
    353 
    354 protected:
    355   // Default ctor - Initialize to empty.
    356   explicit SmallVectorImpl(unsigned N)
    357     : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
    358   }
    359 
    360 public:
    361   ~SmallVectorImpl() {
    362     // Destroy the constructed elements in the vector.
    363     this->destroy_range(this->begin(), this->end());
    364 
    365     // If this wasn't grown from the inline copy, deallocate the old space.
    366     if (!this->isSmall())
    367       free(this->begin());
    368   }
    369 
    370 
    371   void clear() {
    372     this->destroy_range(this->begin(), this->end());
    373     this->EndX = this->BeginX;
    374   }
    375 
    376   void resize(unsigned N) {
    377     if (N < this->size()) {
    378       this->destroy_range(this->begin()+N, this->end());
    379       this->setEnd(this->begin()+N);
    380     } else if (N > this->size()) {
    381       if (this->capacity() < N)
    382         this->grow(N);
    383       for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
    384         new (&*I) T();
    385       this->setEnd(this->begin()+N);
    386     }
    387   }
    388 
    389   void resize(unsigned N, const T &NV) {
    390     if (N < this->size()) {
    391       this->destroy_range(this->begin()+N, this->end());
    392       this->setEnd(this->begin()+N);
    393     } else if (N > this->size()) {
    394       if (this->capacity() < N)
    395         this->grow(N);
    396       std::uninitialized_fill(this->end(), this->begin()+N, NV);
    397       this->setEnd(this->begin()+N);
    398     }
    399   }
    400 
    401   void reserve(unsigned N) {
    402     if (this->capacity() < N)
    403       this->grow(N);
    404   }
    405 
    406   T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val() {
    407     T Result = ::std::move(this->back());
    408     this->pop_back();
    409     return Result;
    410   }
    411 
    412   void swap(SmallVectorImpl &RHS);
    413 
    414   /// append - Add the specified range to the end of the SmallVector.
    415   ///
    416   template<typename in_iter>
    417   void append(in_iter in_start, in_iter in_end) {
    418     size_type NumInputs = std::distance(in_start, in_end);
    419     // Grow allocated space if needed.
    420     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
    421       this->grow(this->size()+NumInputs);
    422 
    423     // Copy the new elements over.
    424     // TODO: NEED To compile time dispatch on whether in_iter is a random access
    425     // iterator to use the fast uninitialized_copy.
    426     std::uninitialized_copy(in_start, in_end, this->end());
    427     this->setEnd(this->end() + NumInputs);
    428   }
    429 
    430   /// append - Add the specified range to the end of the SmallVector.
    431   ///
    432   void append(size_type NumInputs, const T &Elt) {
    433     // Grow allocated space if needed.
    434     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
    435       this->grow(this->size()+NumInputs);
    436 
    437     // Copy the new elements over.
    438     std::uninitialized_fill_n(this->end(), NumInputs, Elt);
    439     this->setEnd(this->end() + NumInputs);
    440   }
    441 
    442   void assign(unsigned NumElts, const T &Elt) {
    443     clear();
    444     if (this->capacity() < NumElts)
    445       this->grow(NumElts);
    446     this->setEnd(this->begin()+NumElts);
    447     std::uninitialized_fill(this->begin(), this->end(), Elt);
    448   }
    449 
    450   iterator erase(iterator I) {
    451     assert(I >= this->begin() && "Iterator to erase is out of bounds.");
    452     assert(I < this->end() && "Erasing at past-the-end iterator.");
    453 
    454     iterator N = I;
    455     // Shift all elts down one.
    456     this->move(I+1, this->end(), I);
    457     // Drop the last elt.
    458     this->pop_back();
    459     return(N);
    460   }
    461 
    462   iterator erase(iterator S, iterator E) {
    463     assert(S >= this->begin() && "Range to erase is out of bounds.");
    464     assert(S <= E && "Trying to erase invalid range.");
    465     assert(E <= this->end() && "Trying to erase past the end.");
    466 
    467     iterator N = S;
    468     // Shift all elts down.
    469     iterator I = this->move(E, this->end(), S);
    470     // Drop the last elts.
    471     this->destroy_range(I, this->end());
    472     this->setEnd(I);
    473     return(N);
    474   }
    475 
    476   iterator insert(iterator I, T &&Elt) {
    477     if (I == this->end()) {  // Important special case for empty vector.
    478       this->push_back(::std::move(Elt));
    479       return this->end()-1;
    480     }
    481 
    482     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    483     assert(I <= this->end() && "Inserting past the end of the vector.");
    484 
    485     if (this->EndX >= this->CapacityX) {
    486       size_t EltNo = I-this->begin();
    487       this->grow();
    488       I = this->begin()+EltNo;
    489     }
    490 
    491     ::new ((void*) this->end()) T(::std::move(this->back()));
    492     // Push everything else over.
    493     this->move_backward(I, this->end()-1, this->end());
    494     this->setEnd(this->end()+1);
    495 
    496     // If we just moved the element we're inserting, be sure to update
    497     // the reference.
    498     T *EltPtr = &Elt;
    499     if (I <= EltPtr && EltPtr < this->EndX)
    500       ++EltPtr;
    501 
    502     *I = ::std::move(*EltPtr);
    503     return I;
    504   }
    505 
    506   iterator insert(iterator I, const T &Elt) {
    507     if (I == this->end()) {  // Important special case for empty vector.
    508       this->push_back(Elt);
    509       return this->end()-1;
    510     }
    511 
    512     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    513     assert(I <= this->end() && "Inserting past the end of the vector.");
    514 
    515     if (this->EndX >= this->CapacityX) {
    516       size_t EltNo = I-this->begin();
    517       this->grow();
    518       I = this->begin()+EltNo;
    519     }
    520     ::new ((void*) this->end()) T(std::move(this->back()));
    521     // Push everything else over.
    522     this->move_backward(I, this->end()-1, this->end());
    523     this->setEnd(this->end()+1);
    524 
    525     // If we just moved the element we're inserting, be sure to update
    526     // the reference.
    527     const T *EltPtr = &Elt;
    528     if (I <= EltPtr && EltPtr < this->EndX)
    529       ++EltPtr;
    530 
    531     *I = *EltPtr;
    532     return I;
    533   }
    534 
    535   iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
    536     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    537     size_t InsertElt = I - this->begin();
    538 
    539     if (I == this->end()) {  // Important special case for empty vector.
    540       append(NumToInsert, Elt);
    541       return this->begin()+InsertElt;
    542     }
    543 
    544     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    545     assert(I <= this->end() && "Inserting past the end of the vector.");
    546 
    547     // Ensure there is enough space.
    548     reserve(static_cast<unsigned>(this->size() + NumToInsert));
    549 
    550     // Uninvalidate the iterator.
    551     I = this->begin()+InsertElt;
    552 
    553     // If there are more elements between the insertion point and the end of the
    554     // range than there are being inserted, we can use a simple approach to
    555     // insertion.  Since we already reserved space, we know that this won't
    556     // reallocate the vector.
    557     if (size_t(this->end()-I) >= NumToInsert) {
    558       T *OldEnd = this->end();
    559       append(std::move_iterator<iterator>(this->end() - NumToInsert),
    560              std::move_iterator<iterator>(this->end()));
    561 
    562       // Copy the existing elements that get replaced.
    563       this->move_backward(I, OldEnd-NumToInsert, OldEnd);
    564 
    565       std::fill_n(I, NumToInsert, Elt);
    566       return I;
    567     }
    568 
    569     // Otherwise, we're inserting more elements than exist already, and we're
    570     // not inserting at the end.
    571 
    572     // Move over the elements that we're about to overwrite.
    573     T *OldEnd = this->end();
    574     this->setEnd(this->end() + NumToInsert);
    575     size_t NumOverwritten = OldEnd-I;
    576     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
    577 
    578     // Replace the overwritten part.
    579     std::fill_n(I, NumOverwritten, Elt);
    580 
    581     // Insert the non-overwritten middle part.
    582     std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
    583     return I;
    584   }
    585 
    586   template<typename ItTy>
    587   iterator insert(iterator I, ItTy From, ItTy To) {
    588     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    589     size_t InsertElt = I - this->begin();
    590 
    591     if (I == this->end()) {  // Important special case for empty vector.
    592       append(From, To);
    593       return this->begin()+InsertElt;
    594     }
    595 
    596     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    597     assert(I <= this->end() && "Inserting past the end of the vector.");
    598 
    599     size_t NumToInsert = std::distance(From, To);
    600 
    601     // Ensure there is enough space.
    602     reserve(static_cast<unsigned>(this->size() + NumToInsert));
    603 
    604     // Uninvalidate the iterator.
    605     I = this->begin()+InsertElt;
    606 
    607     // If there are more elements between the insertion point and the end of the
    608     // range than there are being inserted, we can use a simple approach to
    609     // insertion.  Since we already reserved space, we know that this won't
    610     // reallocate the vector.
    611     if (size_t(this->end()-I) >= NumToInsert) {
    612       T *OldEnd = this->end();
    613       append(std::move_iterator<iterator>(this->end() - NumToInsert),
    614              std::move_iterator<iterator>(this->end()));
    615 
    616       // Copy the existing elements that get replaced.
    617       this->move_backward(I, OldEnd-NumToInsert, OldEnd);
    618 
    619       std::copy(From, To, I);
    620       return I;
    621     }
    622 
    623     // Otherwise, we're inserting more elements than exist already, and we're
    624     // not inserting at the end.
    625 
    626     // Move over the elements that we're about to overwrite.
    627     T *OldEnd = this->end();
    628     this->setEnd(this->end() + NumToInsert);
    629     size_t NumOverwritten = OldEnd-I;
    630     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
    631 
    632     // Replace the overwritten part.
    633     for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
    634       *J = *From;
    635       ++J; ++From;
    636     }
    637 
    638     // Insert the non-overwritten middle part.
    639     this->uninitialized_copy(From, To, OldEnd);
    640     return I;
    641   }
    642 
    643   SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
    644 
    645   SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
    646 
    647   bool operator==(const SmallVectorImpl &RHS) const {
    648     if (this->size() != RHS.size()) return false;
    649     return std::equal(this->begin(), this->end(), RHS.begin());
    650   }
    651   bool operator!=(const SmallVectorImpl &RHS) const {
    652     return !(*this == RHS);
    653   }
    654 
    655   bool operator<(const SmallVectorImpl &RHS) const {
    656     return std::lexicographical_compare(this->begin(), this->end(),
    657                                         RHS.begin(), RHS.end());
    658   }
    659 
    660   /// Set the array size to \p N, which the current array must have enough
    661   /// capacity for.
    662   ///
    663   /// This does not construct or destroy any elements in the vector.
    664   ///
    665   /// Clients can use this in conjunction with capacity() to write past the end
    666   /// of the buffer when they know that more elements are available, and only
    667   /// update the size later. This avoids the cost of value initializing elements
    668   /// which will only be overwritten.
    669   void set_size(unsigned N) {
    670     assert(N <= this->capacity());
    671     this->setEnd(this->begin() + N);
    672   }
    673 };
    674 
    675 
    676 template <typename T>
    677 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
    678   if (this == &RHS) return;
    679 
    680   // We can only avoid copying elements if neither vector is small.
    681   if (!this->isSmall() && !RHS.isSmall()) {
    682     std::swap(this->BeginX, RHS.BeginX);
    683     std::swap(this->EndX, RHS.EndX);
    684     std::swap(this->CapacityX, RHS.CapacityX);
    685     return;
    686   }
    687   if (RHS.size() > this->capacity())
    688     this->grow(RHS.size());
    689   if (this->size() > RHS.capacity())
    690     RHS.grow(this->size());
    691 
    692   // Swap the shared elements.
    693   size_t NumShared = this->size();
    694   if (NumShared > RHS.size()) NumShared = RHS.size();
    695   for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
    696     std::swap((*this)[i], RHS[i]);
    697 
    698   // Copy over the extra elts.
    699   if (this->size() > RHS.size()) {
    700     size_t EltDiff = this->size() - RHS.size();
    701     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
    702     RHS.setEnd(RHS.end()+EltDiff);
    703     this->destroy_range(this->begin()+NumShared, this->end());
    704     this->setEnd(this->begin()+NumShared);
    705   } else if (RHS.size() > this->size()) {
    706     size_t EltDiff = RHS.size() - this->size();
    707     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
    708     this->setEnd(this->end() + EltDiff);
    709     this->destroy_range(RHS.begin()+NumShared, RHS.end());
    710     RHS.setEnd(RHS.begin()+NumShared);
    711   }
    712 }
    713 
    714 template <typename T>
    715 SmallVectorImpl<T> &SmallVectorImpl<T>::
    716   operator=(const SmallVectorImpl<T> &RHS) {
    717   // Avoid self-assignment.
    718   if (this == &RHS) return *this;
    719 
    720   // If we already have sufficient space, assign the common elements, then
    721   // destroy any excess.
    722   size_t RHSSize = RHS.size();
    723   size_t CurSize = this->size();
    724   if (CurSize >= RHSSize) {
    725     // Assign common elements.
    726     iterator NewEnd;
    727     if (RHSSize)
    728       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
    729     else
    730       NewEnd = this->begin();
    731 
    732     // Destroy excess elements.
    733     this->destroy_range(NewEnd, this->end());
    734 
    735     // Trim.
    736     this->setEnd(NewEnd);
    737     return *this;
    738   }
    739 
    740   // If we have to grow to have enough elements, destroy the current elements.
    741   // This allows us to avoid copying them during the grow.
    742   // FIXME: don't do this if they're efficiently moveable.
    743   if (this->capacity() < RHSSize) {
    744     // Destroy current elements.
    745     this->destroy_range(this->begin(), this->end());
    746     this->setEnd(this->begin());
    747     CurSize = 0;
    748     this->grow(RHSSize);
    749   } else if (CurSize) {
    750     // Otherwise, use assignment for the already-constructed elements.
    751     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
    752   }
    753 
    754   // Copy construct the new elements in place.
    755   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
    756                            this->begin()+CurSize);
    757 
    758   // Set end.
    759   this->setEnd(this->begin()+RHSSize);
    760   return *this;
    761 }
    762 
    763 template <typename T>
    764 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
    765   // Avoid self-assignment.
    766   if (this == &RHS) return *this;
    767 
    768   // If the RHS isn't small, clear this vector and then steal its buffer.
    769   if (!RHS.isSmall()) {
    770     this->destroy_range(this->begin(), this->end());
    771     if (!this->isSmall()) free(this->begin());
    772     this->BeginX = RHS.BeginX;
    773     this->EndX = RHS.EndX;
    774     this->CapacityX = RHS.CapacityX;
    775     RHS.resetToSmall();
    776     return *this;
    777   }
    778 
    779   // If we already have sufficient space, assign the common elements, then
    780   // destroy any excess.
    781   size_t RHSSize = RHS.size();
    782   size_t CurSize = this->size();
    783   if (CurSize >= RHSSize) {
    784     // Assign common elements.
    785     iterator NewEnd = this->begin();
    786     if (RHSSize)
    787       NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd);
    788 
    789     // Destroy excess elements and trim the bounds.
    790     this->destroy_range(NewEnd, this->end());
    791     this->setEnd(NewEnd);
    792 
    793     // Clear the RHS.
    794     RHS.clear();
    795 
    796     return *this;
    797   }
    798 
    799   // If we have to grow to have enough elements, destroy the current elements.
    800   // This allows us to avoid copying them during the grow.
    801   // FIXME: this may not actually make any sense if we can efficiently move
    802   // elements.
    803   if (this->capacity() < RHSSize) {
    804     // Destroy current elements.
    805     this->destroy_range(this->begin(), this->end());
    806     this->setEnd(this->begin());
    807     CurSize = 0;
    808     this->grow(RHSSize);
    809   } else if (CurSize) {
    810     // Otherwise, use assignment for the already-constructed elements.
    811     this->move(RHS.begin(), RHS.begin()+CurSize, this->begin());
    812   }
    813 
    814   // Move-construct the new elements in place.
    815   this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
    816                            this->begin()+CurSize);
    817 
    818   // Set end.
    819   this->setEnd(this->begin()+RHSSize);
    820 
    821   RHS.clear();
    822   return *this;
    823 }
    824 
    825 /// Storage for the SmallVector elements which aren't contained in
    826 /// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
    827 /// element is in the base class. This is specialized for the N=1 and N=0 cases
    828 /// to avoid allocating unnecessary storage.
    829 template <typename T, unsigned N>
    830 struct SmallVectorStorage {
    831   typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
    832 };
    833 template <typename T> struct SmallVectorStorage<T, 1> {};
    834 template <typename T> struct SmallVectorStorage<T, 0> {};
    835 
    836 /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
    837 /// for the case when the array is small.  It contains some number of elements
    838 /// in-place, which allows it to avoid heap allocation when the actual number of
    839 /// elements is below that threshold.  This allows normal "small" cases to be
    840 /// fast without losing generality for large inputs.
    841 ///
    842 /// Note that this does not attempt to be exception safe.
    843 ///
    844 template <typename T, unsigned N>
    845 class SmallVector : public SmallVectorImpl<T> {
    846   /// Storage - Inline space for elements which aren't stored in the base class.
    847   SmallVectorStorage<T, N> Storage;
    848 public:
    849   SmallVector() : SmallVectorImpl<T>(N) {
    850   }
    851 
    852   explicit SmallVector(unsigned Size, const T &Value = T())
    853     : SmallVectorImpl<T>(N) {
    854     this->assign(Size, Value);
    855   }
    856 
    857   template<typename ItTy>
    858   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
    859     this->append(S, E);
    860   }
    861 
    862   template <typename RangeTy>
    863   explicit SmallVector(const llvm::iterator_range<RangeTy> R)
    864       : SmallVectorImpl<T>(N) {
    865     this->append(R.begin(), R.end());
    866   }
    867 
    868   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
    869     if (!RHS.empty())
    870       SmallVectorImpl<T>::operator=(RHS);
    871   }
    872 
    873   const SmallVector &operator=(const SmallVector &RHS) {
    874     SmallVectorImpl<T>::operator=(RHS);
    875     return *this;
    876   }
    877 
    878   SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
    879     if (!RHS.empty())
    880       SmallVectorImpl<T>::operator=(::std::move(RHS));
    881   }
    882 
    883   const SmallVector &operator=(SmallVector &&RHS) {
    884     SmallVectorImpl<T>::operator=(::std::move(RHS));
    885     return *this;
    886   }
    887 };
    888 
    889 template<typename T, unsigned N>
    890 static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
    891   return X.capacity_in_bytes();
    892 }
    893 
    894 } // End llvm namespace
    895 
    896 namespace std {
    897   /// Implement std::swap in terms of SmallVector swap.
    898   template<typename T>
    899   inline void
    900   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
    901     LHS.swap(RHS);
    902   }
    903 
    904   /// Implement std::swap in terms of SmallVector swap.
    905   template<typename T, unsigned N>
    906   inline void
    907   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
    908     LHS.swap(RHS);
    909   }
    910 }
    911 
    912 #endif
    913