Home | History | Annotate | Download | only in arm
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /* This file contains codegen for the Thumb2 ISA. */
     18 
     19 #include "arm_lir.h"
     20 #include "codegen_arm.h"
     21 #include "dex/quick/mir_to_lir-inl.h"
     22 #include "dex/reg_storage_eq.h"
     23 #include "entrypoints/quick/quick_entrypoints.h"
     24 #include "mirror/array.h"
     25 
     26 namespace art {
     27 
     28 LIR* ArmMir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
     29   OpRegReg(kOpCmp, src1, src2);
     30   return OpCondBranch(cond, target);
     31 }
     32 
     33 /*
     34  * Generate a Thumb2 IT instruction, which can nullify up to
     35  * four subsequent instructions based on a condition and its
     36  * inverse.  The condition applies to the first instruction, which
     37  * is executed if the condition is met.  The string "guide" consists
     38  * of 0 to 3 chars, and applies to the 2nd through 4th instruction.
     39  * A "T" means the instruction is executed if the condition is
     40  * met, and an "E" means the instruction is executed if the condition
     41  * is not met.
     42  */
     43 LIR* ArmMir2Lir::OpIT(ConditionCode ccode, const char* guide) {
     44   int mask;
     45   int mask3 = 0;
     46   int mask2 = 0;
     47   int mask1 = 0;
     48   ArmConditionCode code = ArmConditionEncoding(ccode);
     49   int cond_bit = code & 1;
     50   int alt_bit = cond_bit ^ 1;
     51 
     52   // Note: case fallthroughs intentional
     53   switch (strlen(guide)) {
     54     case 3:
     55       mask1 = (guide[2] == 'T') ? cond_bit : alt_bit;
     56     case 2:
     57       mask2 = (guide[1] == 'T') ? cond_bit : alt_bit;
     58     case 1:
     59       mask3 = (guide[0] == 'T') ? cond_bit : alt_bit;
     60       break;
     61     case 0:
     62       break;
     63     default:
     64       LOG(FATAL) << "OAT: bad case in OpIT";
     65   }
     66   mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
     67        (1 << (3 - strlen(guide)));
     68   return NewLIR2(kThumb2It, code, mask);
     69 }
     70 
     71 void ArmMir2Lir::UpdateIT(LIR* it, const char* new_guide) {
     72   int mask;
     73   int mask3 = 0;
     74   int mask2 = 0;
     75   int mask1 = 0;
     76   ArmConditionCode code = static_cast<ArmConditionCode>(it->operands[0]);
     77   int cond_bit = code & 1;
     78   int alt_bit = cond_bit ^ 1;
     79 
     80   // Note: case fallthroughs intentional
     81   switch (strlen(new_guide)) {
     82     case 3:
     83       mask1 = (new_guide[2] == 'T') ? cond_bit : alt_bit;
     84     case 2:
     85       mask2 = (new_guide[1] == 'T') ? cond_bit : alt_bit;
     86     case 1:
     87       mask3 = (new_guide[0] == 'T') ? cond_bit : alt_bit;
     88       break;
     89     case 0:
     90       break;
     91     default:
     92       LOG(FATAL) << "OAT: bad case in UpdateIT";
     93   }
     94   mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
     95       (1 << (3 - strlen(new_guide)));
     96   it->operands[1] = mask;
     97 }
     98 
     99 void ArmMir2Lir::OpEndIT(LIR* it) {
    100   // TODO: use the 'it' pointer to do some checks with the LIR, for example
    101   //       we could check that the number of instructions matches the mask
    102   //       in the IT instruction.
    103   CHECK(it != nullptr);
    104   GenBarrier();
    105 }
    106 
    107 /*
    108  * 64-bit 3way compare function.
    109  *     mov   rX, #-1
    110  *     cmp   op1hi, op2hi
    111  *     blt   done
    112  *     bgt   flip
    113  *     sub   rX, op1lo, op2lo (treat as unsigned)
    114  *     beq   done
    115  *     ite   hi
    116  *     mov(hi)   rX, #-1
    117  *     mov(!hi)  rX, #1
    118  * flip:
    119  *     neg   rX
    120  * done:
    121  */
    122 void ArmMir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
    123   LIR* target1;
    124   LIR* target2;
    125   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
    126   rl_src2 = LoadValueWide(rl_src2, kCoreReg);
    127   RegStorage t_reg = AllocTemp();
    128   LoadConstant(t_reg, -1);
    129   OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
    130   LIR* branch1 = OpCondBranch(kCondLt, NULL);
    131   LIR* branch2 = OpCondBranch(kCondGt, NULL);
    132   OpRegRegReg(kOpSub, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
    133   LIR* branch3 = OpCondBranch(kCondEq, NULL);
    134 
    135   LIR* it = OpIT(kCondHi, "E");
    136   NewLIR2(kThumb2MovI8M, t_reg.GetReg(), ModifiedImmediate(-1));
    137   LoadConstant(t_reg, 1);
    138   OpEndIT(it);
    139 
    140   target2 = NewLIR0(kPseudoTargetLabel);
    141   OpRegReg(kOpNeg, t_reg, t_reg);
    142 
    143   target1 = NewLIR0(kPseudoTargetLabel);
    144 
    145   RegLocation rl_temp = LocCReturn();  // Just using as template, will change
    146   rl_temp.reg.SetReg(t_reg.GetReg());
    147   StoreValue(rl_dest, rl_temp);
    148   FreeTemp(t_reg);
    149 
    150   branch1->target = target1;
    151   branch2->target = target2;
    152   branch3->target = branch1->target;
    153 }
    154 
    155 void ArmMir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
    156                                           int64_t val, ConditionCode ccode) {
    157   int32_t val_lo = Low32Bits(val);
    158   int32_t val_hi = High32Bits(val);
    159   DCHECK_GE(ModifiedImmediate(val_lo), 0);
    160   DCHECK_GE(ModifiedImmediate(val_hi), 0);
    161   LIR* taken = &block_label_list_[bb->taken];
    162   LIR* not_taken = &block_label_list_[bb->fall_through];
    163   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
    164   RegStorage low_reg = rl_src1.reg.GetLow();
    165   RegStorage high_reg = rl_src1.reg.GetHigh();
    166 
    167   if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
    168     RegStorage t_reg = AllocTemp();
    169     NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), low_reg.GetReg(), high_reg.GetReg(), 0);
    170     FreeTemp(t_reg);
    171     OpCondBranch(ccode, taken);
    172     return;
    173   }
    174 
    175   switch (ccode) {
    176     case kCondEq:
    177     case kCondNe:
    178       OpCmpImmBranch(kCondNe, high_reg, val_hi, (ccode == kCondEq) ? not_taken : taken);
    179       break;
    180     case kCondLt:
    181       OpCmpImmBranch(kCondLt, high_reg, val_hi, taken);
    182       OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken);
    183       ccode = kCondUlt;
    184       break;
    185     case kCondLe:
    186       OpCmpImmBranch(kCondLt, high_reg, val_hi, taken);
    187       OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken);
    188       ccode = kCondLs;
    189       break;
    190     case kCondGt:
    191       OpCmpImmBranch(kCondGt, high_reg, val_hi, taken);
    192       OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken);
    193       ccode = kCondHi;
    194       break;
    195     case kCondGe:
    196       OpCmpImmBranch(kCondGt, high_reg, val_hi, taken);
    197       OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken);
    198       ccode = kCondUge;
    199       break;
    200     default:
    201       LOG(FATAL) << "Unexpected ccode: " << ccode;
    202   }
    203   OpCmpImmBranch(ccode, low_reg, val_lo, taken);
    204 }
    205 
    206 void ArmMir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
    207                                   int32_t true_val, int32_t false_val, RegStorage rs_dest,
    208                                   int dest_reg_class) {
    209   // TODO: Generalize the IT below to accept more than one-instruction loads.
    210   DCHECK(InexpensiveConstantInt(true_val));
    211   DCHECK(InexpensiveConstantInt(false_val));
    212 
    213   if ((true_val == 0 && code == kCondEq) ||
    214       (false_val == 0 && code == kCondNe)) {
    215     OpRegRegReg(kOpSub, rs_dest, left_op, right_op);
    216     DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
    217     LIR* it = OpIT(kCondNe, "");
    218     LoadConstant(rs_dest, code == kCondEq ? false_val : true_val);
    219     OpEndIT(it);
    220     return;
    221   }
    222 
    223   OpRegReg(kOpCmp, left_op, right_op);  // Same?
    224   LIR* it = OpIT(code, "E");   // if-convert the test
    225   LoadConstant(rs_dest, true_val);      // .eq case - load true
    226   LoadConstant(rs_dest, false_val);     // .eq case - load true
    227   OpEndIT(it);
    228 }
    229 
    230 void ArmMir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
    231   RegLocation rl_result;
    232   RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
    233   RegLocation rl_dest = mir_graph_->GetDest(mir);
    234   // Avoid using float regs here.
    235   RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg;
    236   RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
    237   rl_src = LoadValue(rl_src, src_reg_class);
    238   ConditionCode ccode = mir->meta.ccode;
    239   if (mir->ssa_rep->num_uses == 1) {
    240     // CONST case
    241     int true_val = mir->dalvikInsn.vB;
    242     int false_val = mir->dalvikInsn.vC;
    243     rl_result = EvalLoc(rl_dest, result_reg_class, true);
    244     // Change kCondNe to kCondEq for the special cases below.
    245     if (ccode == kCondNe) {
    246       ccode = kCondEq;
    247       std::swap(true_val, false_val);
    248     }
    249     bool cheap_false_val = InexpensiveConstantInt(false_val);
    250     if (cheap_false_val && ccode == kCondEq && (true_val == 0 || true_val == -1)) {
    251       OpRegRegImm(kOpSub, rl_result.reg, rl_src.reg, -true_val);
    252       DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
    253       LIR* it = OpIT(true_val == 0 ? kCondNe : kCondUge, "");
    254       LoadConstant(rl_result.reg, false_val);
    255       OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
    256     } else if (cheap_false_val && ccode == kCondEq && true_val == 1) {
    257       OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, 1);
    258       DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
    259       LIR* it = OpIT(kCondLs, "");
    260       LoadConstant(rl_result.reg, false_val);
    261       OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
    262     } else if (cheap_false_val && InexpensiveConstantInt(true_val)) {
    263       OpRegImm(kOpCmp, rl_src.reg, 0);
    264       LIR* it = OpIT(ccode, "E");
    265       LoadConstant(rl_result.reg, true_val);
    266       LoadConstant(rl_result.reg, false_val);
    267       OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
    268     } else {
    269       // Unlikely case - could be tuned.
    270       RegStorage t_reg1 = AllocTypedTemp(false, result_reg_class);
    271       RegStorage t_reg2 = AllocTypedTemp(false, result_reg_class);
    272       LoadConstant(t_reg1, true_val);
    273       LoadConstant(t_reg2, false_val);
    274       OpRegImm(kOpCmp, rl_src.reg, 0);
    275       LIR* it = OpIT(ccode, "E");
    276       OpRegCopy(rl_result.reg, t_reg1);
    277       OpRegCopy(rl_result.reg, t_reg2);
    278       OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
    279     }
    280   } else {
    281     // MOVE case
    282     RegLocation rl_true = mir_graph_->reg_location_[mir->ssa_rep->uses[1]];
    283     RegLocation rl_false = mir_graph_->reg_location_[mir->ssa_rep->uses[2]];
    284     rl_true = LoadValue(rl_true, result_reg_class);
    285     rl_false = LoadValue(rl_false, result_reg_class);
    286     rl_result = EvalLoc(rl_dest, result_reg_class, true);
    287     OpRegImm(kOpCmp, rl_src.reg, 0);
    288     LIR* it = nullptr;
    289     if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {  // Is the "true" case already in place?
    290       it = OpIT(NegateComparison(ccode), "");
    291       OpRegCopy(rl_result.reg, rl_false.reg);
    292     } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {  // False case in place?
    293       it = OpIT(ccode, "");
    294       OpRegCopy(rl_result.reg, rl_true.reg);
    295     } else {  // Normal - select between the two.
    296       it = OpIT(ccode, "E");
    297       OpRegCopy(rl_result.reg, rl_true.reg);
    298       OpRegCopy(rl_result.reg, rl_false.reg);
    299     }
    300     OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
    301   }
    302   StoreValue(rl_dest, rl_result);
    303 }
    304 
    305 void ArmMir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
    306   RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
    307   RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
    308   // Normalize such that if either operand is constant, src2 will be constant.
    309   ConditionCode ccode = mir->meta.ccode;
    310   if (rl_src1.is_const) {
    311     std::swap(rl_src1, rl_src2);
    312     ccode = FlipComparisonOrder(ccode);
    313   }
    314   if (rl_src2.is_const) {
    315     rl_src2 = UpdateLocWide(rl_src2);
    316     // Do special compare/branch against simple const operand if not already in registers.
    317     int64_t val = mir_graph_->ConstantValueWide(rl_src2);
    318     if ((rl_src2.location != kLocPhysReg) &&
    319         ((ModifiedImmediate(Low32Bits(val)) >= 0) && (ModifiedImmediate(High32Bits(val)) >= 0))) {
    320       GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
    321       return;
    322     }
    323   }
    324   LIR* taken = &block_label_list_[bb->taken];
    325   LIR* not_taken = &block_label_list_[bb->fall_through];
    326   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
    327   rl_src2 = LoadValueWide(rl_src2, kCoreReg);
    328   OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
    329   switch (ccode) {
    330     case kCondEq:
    331       OpCondBranch(kCondNe, not_taken);
    332       break;
    333     case kCondNe:
    334       OpCondBranch(kCondNe, taken);
    335       break;
    336     case kCondLt:
    337       OpCondBranch(kCondLt, taken);
    338       OpCondBranch(kCondGt, not_taken);
    339       ccode = kCondUlt;
    340       break;
    341     case kCondLe:
    342       OpCondBranch(kCondLt, taken);
    343       OpCondBranch(kCondGt, not_taken);
    344       ccode = kCondLs;
    345       break;
    346     case kCondGt:
    347       OpCondBranch(kCondGt, taken);
    348       OpCondBranch(kCondLt, not_taken);
    349       ccode = kCondHi;
    350       break;
    351     case kCondGe:
    352       OpCondBranch(kCondGt, taken);
    353       OpCondBranch(kCondLt, not_taken);
    354       ccode = kCondUge;
    355       break;
    356     default:
    357       LOG(FATAL) << "Unexpected ccode: " << ccode;
    358   }
    359   OpRegReg(kOpCmp, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
    360   OpCondBranch(ccode, taken);
    361 }
    362 
    363 /*
    364  * Generate a register comparison to an immediate and branch.  Caller
    365  * is responsible for setting branch target field.
    366  */
    367 LIR* ArmMir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) {
    368   LIR* branch = nullptr;
    369   ArmConditionCode arm_cond = ArmConditionEncoding(cond);
    370   /*
    371    * A common use of OpCmpImmBranch is for null checks, and using the Thumb 16-bit
    372    * compare-and-branch if zero is ideal if it will reach.  However, because null checks
    373    * branch forward to a slow path, they will frequently not reach - and thus have to
    374    * be converted to a long form during assembly (which will trigger another assembly
    375    * pass).  Here we estimate the branch distance for checks, and if large directly
    376    * generate the long form in an attempt to avoid an extra assembly pass.
    377    * TODO: consider interspersing slowpaths in code following unconditional branches.
    378    */
    379   bool skip = ((target != NULL) && (target->opcode == kPseudoThrowTarget));
    380   skip &= ((cu_->code_item->insns_size_in_code_units_ - current_dalvik_offset_) > 64);
    381   if (!skip && reg.Low8() && (check_value == 0)) {
    382     if (arm_cond == kArmCondEq || arm_cond == kArmCondNe) {
    383       branch = NewLIR2((arm_cond == kArmCondEq) ? kThumb2Cbz : kThumb2Cbnz,
    384                        reg.GetReg(), 0);
    385     } else if (arm_cond == kArmCondLs) {
    386       // kArmCondLs is an unsigned less or equal. A comparison r <= 0 is then the same as cbz.
    387       // This case happens for a bounds check of array[0].
    388       branch = NewLIR2(kThumb2Cbz, reg.GetReg(), 0);
    389     }
    390   }
    391 
    392   if (branch == nullptr) {
    393     OpRegImm(kOpCmp, reg, check_value);
    394     branch = NewLIR2(kThumbBCond, 0, arm_cond);
    395   }
    396 
    397   branch->target = target;
    398   return branch;
    399 }
    400 
    401 LIR* ArmMir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
    402   LIR* res;
    403   int opcode;
    404   // If src or dest is a pair, we'll be using low reg.
    405   if (r_dest.IsPair()) {
    406     r_dest = r_dest.GetLow();
    407   }
    408   if (r_src.IsPair()) {
    409     r_src = r_src.GetLow();
    410   }
    411   if (r_dest.IsFloat() || r_src.IsFloat())
    412     return OpFpRegCopy(r_dest, r_src);
    413   if (r_dest.Low8() && r_src.Low8())
    414     opcode = kThumbMovRR;
    415   else if (!r_dest.Low8() && !r_src.Low8())
    416      opcode = kThumbMovRR_H2H;
    417   else if (r_dest.Low8())
    418      opcode = kThumbMovRR_H2L;
    419   else
    420      opcode = kThumbMovRR_L2H;
    421   res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
    422   if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
    423     res->flags.is_nop = true;
    424   }
    425   return res;
    426 }
    427 
    428 void ArmMir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
    429   if (r_dest != r_src) {
    430     LIR* res = OpRegCopyNoInsert(r_dest, r_src);
    431     AppendLIR(res);
    432   }
    433 }
    434 
    435 void ArmMir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
    436   if (r_dest != r_src) {
    437     bool dest_fp = r_dest.IsFloat();
    438     bool src_fp = r_src.IsFloat();
    439     DCHECK(r_dest.Is64Bit());
    440     DCHECK(r_src.Is64Bit());
    441     if (dest_fp) {
    442       if (src_fp) {
    443         OpRegCopy(r_dest, r_src);
    444       } else {
    445         NewLIR3(kThumb2Fmdrr, r_dest.GetReg(), r_src.GetLowReg(), r_src.GetHighReg());
    446       }
    447     } else {
    448       if (src_fp) {
    449         NewLIR3(kThumb2Fmrrd, r_dest.GetLowReg(), r_dest.GetHighReg(), r_src.GetReg());
    450       } else {
    451         // Handle overlap
    452         if (r_src.GetHighReg() == r_dest.GetLowReg()) {
    453           DCHECK_NE(r_src.GetLowReg(), r_dest.GetHighReg());
    454           OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
    455           OpRegCopy(r_dest.GetLow(), r_src.GetLow());
    456         } else {
    457           OpRegCopy(r_dest.GetLow(), r_src.GetLow());
    458           OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
    459         }
    460       }
    461     }
    462   }
    463 }
    464 
    465 // Table of magic divisors
    466 struct MagicTable {
    467   uint32_t magic;
    468   uint32_t shift;
    469   DividePattern pattern;
    470 };
    471 
    472 static const MagicTable magic_table[] = {
    473   {0, 0, DivideNone},        // 0
    474   {0, 0, DivideNone},        // 1
    475   {0, 0, DivideNone},        // 2
    476   {0x55555556, 0, Divide3},  // 3
    477   {0, 0, DivideNone},        // 4
    478   {0x66666667, 1, Divide5},  // 5
    479   {0x2AAAAAAB, 0, Divide3},  // 6
    480   {0x92492493, 2, Divide7},  // 7
    481   {0, 0, DivideNone},        // 8
    482   {0x38E38E39, 1, Divide5},  // 9
    483   {0x66666667, 2, Divide5},  // 10
    484   {0x2E8BA2E9, 1, Divide5},  // 11
    485   {0x2AAAAAAB, 1, Divide5},  // 12
    486   {0x4EC4EC4F, 2, Divide5},  // 13
    487   {0x92492493, 3, Divide7},  // 14
    488   {0x88888889, 3, Divide7},  // 15
    489 };
    490 
    491 // Integer division by constant via reciprocal multiply (Hacker's Delight, 10-4)
    492 bool ArmMir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
    493                                     RegLocation rl_src, RegLocation rl_dest, int lit) {
    494   if ((lit < 0) || (lit >= static_cast<int>(sizeof(magic_table)/sizeof(magic_table[0])))) {
    495     return false;
    496   }
    497   DividePattern pattern = magic_table[lit].pattern;
    498   if (pattern == DivideNone) {
    499     return false;
    500   }
    501 
    502   RegStorage r_magic = AllocTemp();
    503   LoadConstant(r_magic, magic_table[lit].magic);
    504   rl_src = LoadValue(rl_src, kCoreReg);
    505   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    506   RegStorage r_hi = AllocTemp();
    507   RegStorage r_lo = AllocTemp();
    508 
    509   // rl_dest and rl_src might overlap.
    510   // Reuse r_hi to save the div result for reminder case.
    511   RegStorage r_div_result = is_div ? rl_result.reg : r_hi;
    512 
    513   NewLIR4(kThumb2Smull, r_lo.GetReg(), r_hi.GetReg(), r_magic.GetReg(), rl_src.reg.GetReg());
    514   switch (pattern) {
    515     case Divide3:
    516       OpRegRegRegShift(kOpSub, r_div_result, r_hi, rl_src.reg, EncodeShift(kArmAsr, 31));
    517       break;
    518     case Divide5:
    519       OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31);
    520       OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi,
    521                        EncodeShift(kArmAsr, magic_table[lit].shift));
    522       break;
    523     case Divide7:
    524       OpRegReg(kOpAdd, r_hi, rl_src.reg);
    525       OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31);
    526       OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi,
    527                        EncodeShift(kArmAsr, magic_table[lit].shift));
    528       break;
    529     default:
    530       LOG(FATAL) << "Unexpected pattern: " << pattern;
    531   }
    532 
    533   if (!is_div) {
    534     // div_result = src / lit
    535     // tmp1 = div_result * lit
    536     // dest = src - tmp1
    537     RegStorage tmp1 = r_lo;
    538     EasyMultiplyOp ops[2];
    539 
    540     bool canEasyMultiply = GetEasyMultiplyTwoOps(lit, ops);
    541     DCHECK_NE(canEasyMultiply, false);
    542 
    543     GenEasyMultiplyTwoOps(tmp1, r_div_result, ops);
    544     OpRegRegReg(kOpSub, rl_result.reg, rl_src.reg, tmp1);
    545   }
    546 
    547   StoreValue(rl_dest, rl_result);
    548   return true;
    549 }
    550 
    551 // Try to convert *lit to 1 RegRegRegShift/RegRegShift form.
    552 bool ArmMir2Lir::GetEasyMultiplyOp(int lit, ArmMir2Lir::EasyMultiplyOp* op) {
    553   if (IsPowerOfTwo(lit)) {
    554     op->op = kOpLsl;
    555     op->shift = LowestSetBit(lit);
    556     return true;
    557   }
    558 
    559   if (IsPowerOfTwo(lit - 1)) {
    560     op->op = kOpAdd;
    561     op->shift = LowestSetBit(lit - 1);
    562     return true;
    563   }
    564 
    565   if (IsPowerOfTwo(lit + 1)) {
    566     op->op = kOpRsub;
    567     op->shift = LowestSetBit(lit + 1);
    568     return true;
    569   }
    570 
    571   op->op = kOpInvalid;
    572   op->shift = 0;
    573   return false;
    574 }
    575 
    576 // Try to convert *lit to 1~2 RegRegRegShift/RegRegShift forms.
    577 bool ArmMir2Lir::GetEasyMultiplyTwoOps(int lit, EasyMultiplyOp* ops) {
    578   GetEasyMultiplyOp(lit, &ops[0]);
    579   if (GetEasyMultiplyOp(lit, &ops[0])) {
    580     ops[1].op = kOpInvalid;
    581     ops[1].shift = 0;
    582     return true;
    583   }
    584 
    585   int lit1 = lit;
    586   uint32_t shift = LowestSetBit(lit1);
    587   if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
    588     ops[1].op = kOpLsl;
    589     ops[1].shift = shift;
    590     return true;
    591   }
    592 
    593   lit1 = lit - 1;
    594   shift = LowestSetBit(lit1);
    595   if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
    596     ops[1].op = kOpAdd;
    597     ops[1].shift = shift;
    598     return true;
    599   }
    600 
    601   lit1 = lit + 1;
    602   shift = LowestSetBit(lit1);
    603   if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
    604     ops[1].op = kOpRsub;
    605     ops[1].shift = shift;
    606     return true;
    607   }
    608 
    609   return false;
    610 }
    611 
    612 // Generate instructions to do multiply.
    613 // Additional temporary register is required,
    614 // if it need to generate 2 instructions and src/dest overlap.
    615 void ArmMir2Lir::GenEasyMultiplyTwoOps(RegStorage r_dest, RegStorage r_src, EasyMultiplyOp* ops) {
    616   // tmp1 = ( src << shift1) + [ src | -src | 0 ]
    617   // dest = (tmp1 << shift2) + [ src | -src | 0 ]
    618 
    619   RegStorage r_tmp1;
    620   if (ops[1].op == kOpInvalid) {
    621     r_tmp1 = r_dest;
    622   } else if (r_dest.GetReg() != r_src.GetReg()) {
    623     r_tmp1 = r_dest;
    624   } else {
    625     r_tmp1 = AllocTemp();
    626   }
    627 
    628   switch (ops[0].op) {
    629     case kOpLsl:
    630       OpRegRegImm(kOpLsl, r_tmp1, r_src, ops[0].shift);
    631       break;
    632     case kOpAdd:
    633       OpRegRegRegShift(kOpAdd, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift));
    634       break;
    635     case kOpRsub:
    636       OpRegRegRegShift(kOpRsub, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift));
    637       break;
    638     default:
    639       DCHECK_EQ(ops[0].op, kOpInvalid);
    640       break;
    641   }
    642 
    643   switch (ops[1].op) {
    644     case kOpInvalid:
    645       return;
    646     case kOpLsl:
    647       OpRegRegImm(kOpLsl, r_dest, r_tmp1, ops[1].shift);
    648       break;
    649     case kOpAdd:
    650       OpRegRegRegShift(kOpAdd, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift));
    651       break;
    652     case kOpRsub:
    653       OpRegRegRegShift(kOpRsub, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift));
    654       break;
    655     default:
    656       LOG(FATAL) << "Unexpected opcode passed to GenEasyMultiplyTwoOps";
    657       break;
    658   }
    659 }
    660 
    661 bool ArmMir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
    662   EasyMultiplyOp ops[2];
    663 
    664   if (!GetEasyMultiplyTwoOps(lit, ops)) {
    665     return false;
    666   }
    667 
    668   rl_src = LoadValue(rl_src, kCoreReg);
    669   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    670 
    671   GenEasyMultiplyTwoOps(rl_result.reg, rl_src.reg, ops);
    672   StoreValue(rl_dest, rl_result);
    673   return true;
    674 }
    675 
    676 RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
    677                       RegLocation rl_src2, bool is_div, bool check_zero) {
    678   LOG(FATAL) << "Unexpected use of GenDivRem for Arm";
    679   return rl_dest;
    680 }
    681 
    682 RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit, bool is_div) {
    683   LOG(FATAL) << "Unexpected use of GenDivRemLit for Arm";
    684   return rl_dest;
    685 }
    686 
    687 RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg1, int lit, bool is_div) {
    688   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    689 
    690   // Put the literal in a temp.
    691   RegStorage lit_temp = AllocTemp();
    692   LoadConstant(lit_temp, lit);
    693   // Use the generic case for div/rem with arg2 in a register.
    694   // TODO: The literal temp can be freed earlier during a modulus to reduce reg pressure.
    695   rl_result = GenDivRem(rl_result, reg1, lit_temp, is_div);
    696   FreeTemp(lit_temp);
    697 
    698   return rl_result;
    699 }
    700 
    701 RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg1, RegStorage reg2,
    702                                   bool is_div) {
    703   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    704   if (is_div) {
    705     // Simple case, use sdiv instruction.
    706     OpRegRegReg(kOpDiv, rl_result.reg, reg1, reg2);
    707   } else {
    708     // Remainder case, use the following code:
    709     // temp = reg1 / reg2      - integer division
    710     // temp = temp * reg2
    711     // dest = reg1 - temp
    712 
    713     RegStorage temp = AllocTemp();
    714     OpRegRegReg(kOpDiv, temp, reg1, reg2);
    715     OpRegReg(kOpMul, temp, reg2);
    716     OpRegRegReg(kOpSub, rl_result.reg, reg1, temp);
    717     FreeTemp(temp);
    718   }
    719 
    720   return rl_result;
    721 }
    722 
    723 bool ArmMir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) {
    724   DCHECK_EQ(cu_->instruction_set, kThumb2);
    725   if (is_long) {
    726     return false;
    727   }
    728   RegLocation rl_src1 = info->args[0];
    729   RegLocation rl_src2 = info->args[1];
    730   rl_src1 = LoadValue(rl_src1, kCoreReg);
    731   rl_src2 = LoadValue(rl_src2, kCoreReg);
    732   RegLocation rl_dest = InlineTarget(info);
    733   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    734   OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
    735   LIR* it = OpIT((is_min) ? kCondGt : kCondLt, "E");
    736   OpRegReg(kOpMov, rl_result.reg, rl_src2.reg);
    737   OpRegReg(kOpMov, rl_result.reg, rl_src1.reg);
    738   OpEndIT(it);
    739   StoreValue(rl_dest, rl_result);
    740   return true;
    741 }
    742 
    743 bool ArmMir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
    744   RegLocation rl_src_address = info->args[0];  // long address
    745   rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
    746   RegLocation rl_dest = InlineTarget(info);
    747   RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
    748   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    749   if (size == k64) {
    750     // Fake unaligned LDRD by two unaligned LDR instructions on ARMv7 with SCTLR.A set to 0.
    751     if (rl_address.reg.GetReg() != rl_result.reg.GetLowReg()) {
    752       Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow());
    753       Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh());
    754     } else {
    755       Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh());
    756       Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow());
    757     }
    758     StoreValueWide(rl_dest, rl_result);
    759   } else {
    760     DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
    761     // Unaligned load with LDR and LDRSH is allowed on ARMv7 with SCTLR.A set to 0.
    762     LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile);
    763     StoreValue(rl_dest, rl_result);
    764   }
    765   return true;
    766 }
    767 
    768 bool ArmMir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
    769   RegLocation rl_src_address = info->args[0];  // long address
    770   rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
    771   RegLocation rl_src_value = info->args[2];  // [size] value
    772   RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
    773   if (size == k64) {
    774     // Fake unaligned STRD by two unaligned STR instructions on ARMv7 with SCTLR.A set to 0.
    775     RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
    776     StoreBaseDisp(rl_address.reg, 0, rl_value.reg.GetLow(), k32, kNotVolatile);
    777     StoreBaseDisp(rl_address.reg, 4, rl_value.reg.GetHigh(), k32, kNotVolatile);
    778   } else {
    779     DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
    780     // Unaligned store with STR and STRSH is allowed on ARMv7 with SCTLR.A set to 0.
    781     RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
    782     StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile);
    783   }
    784   return true;
    785 }
    786 
    787 // Generate a CAS with memory_order_seq_cst semantics.
    788 bool ArmMir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
    789   DCHECK_EQ(cu_->instruction_set, kThumb2);
    790   // Unused - RegLocation rl_src_unsafe = info->args[0];
    791   RegLocation rl_src_obj = info->args[1];  // Object - known non-null
    792   RegLocation rl_src_offset = info->args[2];  // long low
    793   rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
    794   RegLocation rl_src_expected = info->args[4];  // int, long or Object
    795   // If is_long, high half is in info->args[5]
    796   RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
    797   // If is_long, high half is in info->args[7]
    798   RegLocation rl_dest = InlineTarget(info);  // boolean place for result
    799 
    800   // We have only 5 temporary registers available and actually only 4 if the InlineTarget
    801   // above locked one of the temps. For a straightforward CAS64 we need 7 registers:
    802   // r_ptr (1), new_value (2), expected(2) and ldrexd result (2). If neither expected nor
    803   // new_value is in a non-temp core register we shall reload them in the ldrex/strex loop
    804   // into the same temps, reducing the number of required temps down to 5. We shall work
    805   // around the potentially locked temp by using LR for r_ptr, unconditionally.
    806   // TODO: Pass information about the need for more temps to the stack frame generation
    807   // code so that we can rely on being able to allocate enough temps.
    808   DCHECK(!GetRegInfo(rs_rARM_LR)->IsTemp());
    809   MarkTemp(rs_rARM_LR);
    810   FreeTemp(rs_rARM_LR);
    811   LockTemp(rs_rARM_LR);
    812   bool load_early = true;
    813   if (is_long) {
    814     RegStorage expected_reg = rl_src_expected.reg.IsPair() ? rl_src_expected.reg.GetLow() :
    815         rl_src_expected.reg;
    816     RegStorage new_val_reg = rl_src_new_value.reg.IsPair() ? rl_src_new_value.reg.GetLow() :
    817         rl_src_new_value.reg;
    818     bool expected_is_core_reg = rl_src_expected.location == kLocPhysReg && !expected_reg.IsFloat();
    819     bool new_value_is_core_reg = rl_src_new_value.location == kLocPhysReg && !new_val_reg.IsFloat();
    820     bool expected_is_good_reg = expected_is_core_reg && !IsTemp(expected_reg);
    821     bool new_value_is_good_reg = new_value_is_core_reg && !IsTemp(new_val_reg);
    822 
    823     if (!expected_is_good_reg && !new_value_is_good_reg) {
    824       // None of expected/new_value is non-temp reg, need to load both late
    825       load_early = false;
    826       // Make sure they are not in the temp regs and the load will not be skipped.
    827       if (expected_is_core_reg) {
    828         FlushRegWide(rl_src_expected.reg);
    829         ClobberSReg(rl_src_expected.s_reg_low);
    830         ClobberSReg(GetSRegHi(rl_src_expected.s_reg_low));
    831         rl_src_expected.location = kLocDalvikFrame;
    832       }
    833       if (new_value_is_core_reg) {
    834         FlushRegWide(rl_src_new_value.reg);
    835         ClobberSReg(rl_src_new_value.s_reg_low);
    836         ClobberSReg(GetSRegHi(rl_src_new_value.s_reg_low));
    837         rl_src_new_value.location = kLocDalvikFrame;
    838       }
    839     }
    840   }
    841 
    842   // Prevent reordering with prior memory operations.
    843   GenMemBarrier(kAnyStore);
    844 
    845   RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
    846   RegLocation rl_new_value;
    847   if (!is_long) {
    848     rl_new_value = LoadValue(rl_src_new_value);
    849   } else if (load_early) {
    850     rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg);
    851   }
    852 
    853   if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
    854     // Mark card for object assuming new value is stored.
    855     MarkGCCard(rl_new_value.reg, rl_object.reg);
    856   }
    857 
    858   RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
    859 
    860   RegStorage r_ptr = rs_rARM_LR;
    861   OpRegRegReg(kOpAdd, r_ptr, rl_object.reg, rl_offset.reg);
    862 
    863   // Free now unneeded rl_object and rl_offset to give more temps.
    864   ClobberSReg(rl_object.s_reg_low);
    865   FreeTemp(rl_object.reg);
    866   ClobberSReg(rl_offset.s_reg_low);
    867   FreeTemp(rl_offset.reg);
    868 
    869   RegLocation rl_expected;
    870   if (!is_long) {
    871     rl_expected = LoadValue(rl_src_expected);
    872   } else if (load_early) {
    873     rl_expected = LoadValueWide(rl_src_expected, kCoreReg);
    874   } else {
    875     // NOTE: partially defined rl_expected & rl_new_value - but we just want the regs.
    876     RegStorage low_reg = AllocTemp();
    877     RegStorage high_reg = AllocTemp();
    878     rl_new_value.reg = RegStorage::MakeRegPair(low_reg, high_reg);
    879     rl_expected = rl_new_value;
    880   }
    881 
    882   // do {
    883   //   tmp = [r_ptr] - expected;
    884   // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
    885   // result = tmp != 0;
    886 
    887   RegStorage r_tmp = AllocTemp();
    888   LIR* target = NewLIR0(kPseudoTargetLabel);
    889 
    890   LIR* it = nullptr;
    891   if (is_long) {
    892     RegStorage r_tmp_high = AllocTemp();
    893     if (!load_early) {
    894       LoadValueDirectWide(rl_src_expected, rl_expected.reg);
    895     }
    896     NewLIR3(kThumb2Ldrexd, r_tmp.GetReg(), r_tmp_high.GetReg(), r_ptr.GetReg());
    897     OpRegReg(kOpSub, r_tmp, rl_expected.reg.GetLow());
    898     OpRegReg(kOpSub, r_tmp_high, rl_expected.reg.GetHigh());
    899     if (!load_early) {
    900       LoadValueDirectWide(rl_src_new_value, rl_new_value.reg);
    901     }
    902     // Make sure we use ORR that sets the ccode
    903     if (r_tmp.Low8() && r_tmp_high.Low8()) {
    904       NewLIR2(kThumbOrr, r_tmp.GetReg(), r_tmp_high.GetReg());
    905     } else {
    906       NewLIR4(kThumb2OrrRRRs, r_tmp.GetReg(), r_tmp.GetReg(), r_tmp_high.GetReg(), 0);
    907     }
    908     FreeTemp(r_tmp_high);  // Now unneeded
    909 
    910     DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
    911     it = OpIT(kCondEq, "T");
    912     NewLIR4(kThumb2Strexd /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetLowReg(), rl_new_value.reg.GetHighReg(), r_ptr.GetReg());
    913 
    914   } else {
    915     NewLIR3(kThumb2Ldrex, r_tmp.GetReg(), r_ptr.GetReg(), 0);
    916     OpRegReg(kOpSub, r_tmp, rl_expected.reg);
    917     DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
    918     it = OpIT(kCondEq, "T");
    919     NewLIR4(kThumb2Strex /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetReg(), r_ptr.GetReg(), 0);
    920   }
    921 
    922   // Still one conditional left from OpIT(kCondEq, "T") from either branch
    923   OpRegImm(kOpCmp /* eq */, r_tmp, 1);
    924   OpEndIT(it);
    925 
    926   OpCondBranch(kCondEq, target);
    927 
    928   if (!load_early) {
    929     FreeTemp(rl_expected.reg);  // Now unneeded.
    930   }
    931 
    932   // Prevent reordering with subsequent memory operations.
    933   GenMemBarrier(kLoadAny);
    934 
    935   // result := (tmp1 != 0) ? 0 : 1;
    936   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    937   OpRegRegImm(kOpRsub, rl_result.reg, r_tmp, 1);
    938   DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
    939   it = OpIT(kCondUlt, "");
    940   LoadConstant(rl_result.reg, 0); /* cc */
    941   FreeTemp(r_tmp);  // Now unneeded.
    942   OpEndIT(it);     // Barrier to terminate OpIT.
    943 
    944   StoreValue(rl_dest, rl_result);
    945 
    946   // Now, restore lr to its non-temp status.
    947   Clobber(rs_rARM_LR);
    948   UnmarkTemp(rs_rARM_LR);
    949   return true;
    950 }
    951 
    952 bool ArmMir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
    953   constexpr int kLargeArrayThreshold = 256;
    954 
    955   RegLocation rl_src = info->args[0];
    956   RegLocation rl_src_pos = info->args[1];
    957   RegLocation rl_dst = info->args[2];
    958   RegLocation rl_dst_pos = info->args[3];
    959   RegLocation rl_length = info->args[4];
    960   // Compile time check, handle exception by non-inline method to reduce related meta-data.
    961   if ((rl_src_pos.is_const && (mir_graph_->ConstantValue(rl_src_pos) < 0)) ||
    962       (rl_dst_pos.is_const && (mir_graph_->ConstantValue(rl_dst_pos) < 0)) ||
    963       (rl_length.is_const && (mir_graph_->ConstantValue(rl_length) < 0))) {
    964     return false;
    965   }
    966 
    967   ClobberCallerSave();
    968   LockCallTemps();  // Prepare for explicit register usage.
    969   LockTemp(rs_r12);
    970   RegStorage rs_src = rs_r0;
    971   RegStorage rs_dst = rs_r1;
    972   LoadValueDirectFixed(rl_src, rs_src);
    973   LoadValueDirectFixed(rl_dst, rs_dst);
    974 
    975   // Handle null pointer exception in slow-path.
    976   LIR* src_check_branch = OpCmpImmBranch(kCondEq, rs_src, 0, nullptr);
    977   LIR* dst_check_branch = OpCmpImmBranch(kCondEq, rs_dst, 0, nullptr);
    978   // Handle potential overlapping in slow-path.
    979   LIR* src_dst_same = OpCmpBranch(kCondEq, rs_src, rs_dst, nullptr);
    980   // Handle exception or big length in slow-path.
    981   RegStorage rs_length = rs_r2;
    982   LoadValueDirectFixed(rl_length, rs_length);
    983   LIR* len_neg_or_too_big = OpCmpImmBranch(kCondHi, rs_length, kLargeArrayThreshold, nullptr);
    984   // Src bounds check.
    985   RegStorage rs_pos = rs_r3;
    986   RegStorage rs_arr_length = rs_r12;
    987   LoadValueDirectFixed(rl_src_pos, rs_pos);
    988   LIR* src_pos_negative = OpCmpImmBranch(kCondLt, rs_pos, 0, nullptr);
    989   Load32Disp(rs_src, mirror::Array::LengthOffset().Int32Value(), rs_arr_length);
    990   OpRegReg(kOpSub, rs_arr_length, rs_pos);
    991   LIR* src_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr);
    992   // Dst bounds check.
    993   LoadValueDirectFixed(rl_dst_pos, rs_pos);
    994   LIR* dst_pos_negative = OpCmpImmBranch(kCondLt, rs_pos, 0, nullptr);
    995   Load32Disp(rs_dst, mirror::Array::LengthOffset().Int32Value(), rs_arr_length);
    996   OpRegReg(kOpSub, rs_arr_length, rs_pos);
    997   LIR* dst_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr);
    998 
    999   // Everything is checked now.
   1000   OpRegImm(kOpAdd, rs_dst, mirror::Array::DataOffset(2).Int32Value());
   1001   OpRegReg(kOpAdd, rs_dst, rs_pos);
   1002   OpRegReg(kOpAdd, rs_dst, rs_pos);
   1003   OpRegImm(kOpAdd, rs_src, mirror::Array::DataOffset(2).Int32Value());
   1004   LoadValueDirectFixed(rl_src_pos, rs_pos);
   1005   OpRegReg(kOpAdd, rs_src, rs_pos);
   1006   OpRegReg(kOpAdd, rs_src, rs_pos);
   1007 
   1008   RegStorage rs_tmp = rs_pos;
   1009   OpRegRegImm(kOpLsl, rs_length, rs_length, 1);
   1010 
   1011   // Copy one element.
   1012   OpRegRegImm(kOpAnd, rs_tmp, rs_length, 2);
   1013   LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_tmp, 0, nullptr);
   1014   OpRegImm(kOpSub, rs_length, 2);
   1015   LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, kSignedHalf);
   1016   StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, kSignedHalf);
   1017 
   1018   // Copy two elements.
   1019   LIR *begin_loop = NewLIR0(kPseudoTargetLabel);
   1020   LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_length, 0, nullptr);
   1021   OpRegImm(kOpSub, rs_length, 4);
   1022   LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, k32);
   1023   StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, k32);
   1024   OpUnconditionalBranch(begin_loop);
   1025 
   1026   LIR *check_failed = NewLIR0(kPseudoTargetLabel);
   1027   LIR* launchpad_branch = OpUnconditionalBranch(nullptr);
   1028   LIR* return_point = NewLIR0(kPseudoTargetLabel);
   1029 
   1030   src_check_branch->target = check_failed;
   1031   dst_check_branch->target = check_failed;
   1032   src_dst_same->target = check_failed;
   1033   len_neg_or_too_big->target = check_failed;
   1034   src_pos_negative->target = check_failed;
   1035   src_bad_len->target = check_failed;
   1036   dst_pos_negative->target = check_failed;
   1037   dst_bad_len->target = check_failed;
   1038   jmp_to_begin_loop->target = begin_loop;
   1039   jmp_to_ret->target = return_point;
   1040 
   1041   AddIntrinsicSlowPath(info, launchpad_branch, return_point);
   1042   ClobberCallerSave();  // We must clobber everything because slow path will return here
   1043 
   1044   return true;
   1045 }
   1046 
   1047 LIR* ArmMir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
   1048   return RawLIR(current_dalvik_offset_, kThumb2LdrPcRel12, reg.GetReg(), 0, 0, 0, 0, target);
   1049 }
   1050 
   1051 LIR* ArmMir2Lir::OpVldm(RegStorage r_base, int count) {
   1052   return NewLIR3(kThumb2Vldms, r_base.GetReg(), rs_fr0.GetReg(), count);
   1053 }
   1054 
   1055 LIR* ArmMir2Lir::OpVstm(RegStorage r_base, int count) {
   1056   return NewLIR3(kThumb2Vstms, r_base.GetReg(), rs_fr0.GetReg(), count);
   1057 }
   1058 
   1059 void ArmMir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
   1060                                                RegLocation rl_result, int lit,
   1061                                                int first_bit, int second_bit) {
   1062   OpRegRegRegShift(kOpAdd, rl_result.reg, rl_src.reg, rl_src.reg,
   1063                    EncodeShift(kArmLsl, second_bit - first_bit));
   1064   if (first_bit != 0) {
   1065     OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
   1066   }
   1067 }
   1068 
   1069 void ArmMir2Lir::GenDivZeroCheckWide(RegStorage reg) {
   1070   DCHECK(reg.IsPair());   // TODO: support k64BitSolo.
   1071   RegStorage t_reg = AllocTemp();
   1072   NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), reg.GetLowReg(), reg.GetHighReg(), 0);
   1073   FreeTemp(t_reg);
   1074   GenDivZeroCheck(kCondEq);
   1075 }
   1076 
   1077 // Test suspend flag, return target of taken suspend branch
   1078 LIR* ArmMir2Lir::OpTestSuspend(LIR* target) {
   1079 #ifdef ARM_R4_SUSPEND_FLAG
   1080   NewLIR2(kThumbSubRI8, rs_rARM_SUSPEND.GetReg(), 1);
   1081   return OpCondBranch((target == NULL) ? kCondEq : kCondNe, target);
   1082 #else
   1083   RegStorage t_reg = AllocTemp();
   1084   LoadBaseDisp(rs_rARM_SELF, Thread::ThreadFlagsOffset<4>().Int32Value(),
   1085     t_reg, kUnsignedHalf);
   1086   LIR* cmp_branch = OpCmpImmBranch((target == NULL) ? kCondNe : kCondEq, t_reg,
   1087     0, target);
   1088   FreeTemp(t_reg);
   1089   return cmp_branch;
   1090 #endif
   1091 }
   1092 
   1093 // Decrement register and branch on condition
   1094 LIR* ArmMir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
   1095   // Combine sub & test using sub setflags encoding here
   1096   OpRegRegImm(kOpSub, reg, reg, 1);  // For value == 1, this should set flags.
   1097   DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
   1098   return OpCondBranch(c_code, target);
   1099 }
   1100 
   1101 bool ArmMir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
   1102 #if ANDROID_SMP != 0
   1103   // Start off with using the last LIR as the barrier. If it is not enough, then we will generate one.
   1104   LIR* barrier = last_lir_insn_;
   1105 
   1106   int dmb_flavor;
   1107   // TODO: revisit Arm barrier kinds
   1108   switch (barrier_kind) {
   1109     case kAnyStore: dmb_flavor = kISH; break;
   1110     case kLoadAny: dmb_flavor = kISH; break;
   1111     case kStoreStore: dmb_flavor = kISHST; break;
   1112     case kAnyAny: dmb_flavor = kISH; break;
   1113     default:
   1114       LOG(FATAL) << "Unexpected MemBarrierKind: " << barrier_kind;
   1115       dmb_flavor = kSY;  // quiet gcc.
   1116       break;
   1117   }
   1118 
   1119   bool ret = false;
   1120 
   1121   // If the same barrier already exists, don't generate another.
   1122   if (barrier == nullptr
   1123       || (barrier != nullptr && (barrier->opcode != kThumb2Dmb || barrier->operands[0] != dmb_flavor))) {
   1124     barrier = NewLIR1(kThumb2Dmb, dmb_flavor);
   1125     ret = true;
   1126   }
   1127 
   1128   // At this point we must have a memory barrier. Mark it as a scheduling barrier as well.
   1129   DCHECK(!barrier->flags.use_def_invalid);
   1130   barrier->u.m.def_mask = &kEncodeAll;
   1131   return ret;
   1132 #else
   1133   return false;
   1134 #endif
   1135 }
   1136 
   1137 void ArmMir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
   1138   rl_src = LoadValueWide(rl_src, kCoreReg);
   1139   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1140   RegStorage z_reg = AllocTemp();
   1141   LoadConstantNoClobber(z_reg, 0);
   1142   // Check for destructive overlap
   1143   if (rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
   1144     RegStorage t_reg = AllocTemp();
   1145     OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow());
   1146     OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, t_reg);
   1147     FreeTemp(t_reg);
   1148   } else {
   1149     OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow());
   1150     OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, rl_src.reg.GetHigh());
   1151   }
   1152   FreeTemp(z_reg);
   1153   StoreValueWide(rl_dest, rl_result);
   1154 }
   1155 
   1156 void ArmMir2Lir::GenMulLong(Instruction::Code opcode, RegLocation rl_dest,
   1157                             RegLocation rl_src1, RegLocation rl_src2) {
   1158     /*
   1159      * tmp1     = src1.hi * src2.lo;  // src1.hi is no longer needed
   1160      * dest     = src1.lo * src2.lo;
   1161      * tmp1    += src1.lo * src2.hi;
   1162      * dest.hi += tmp1;
   1163      *
   1164      * To pull off inline multiply, we have a worst-case requirement of 7 temporary
   1165      * registers.  Normally for Arm, we get 5.  We can get to 6 by including
   1166      * lr in the temp set.  The only problematic case is all operands and result are
   1167      * distinct, and none have been promoted.  In that case, we can succeed by aggressively
   1168      * freeing operand temp registers after they are no longer needed.  All other cases
   1169      * can proceed normally.  We'll just punt on the case of the result having a misaligned
   1170      * overlap with either operand and send that case to a runtime handler.
   1171      */
   1172     RegLocation rl_result;
   1173     if (BadOverlap(rl_src1, rl_dest) || (BadOverlap(rl_src2, rl_dest))) {
   1174       FlushAllRegs();
   1175       CallRuntimeHelperRegLocationRegLocation(kQuickLmul, rl_src1, rl_src2, false);
   1176       rl_result = GetReturnWide(kCoreReg);
   1177       StoreValueWide(rl_dest, rl_result);
   1178       return;
   1179     }
   1180 
   1181     rl_src1 = LoadValueWide(rl_src1, kCoreReg);
   1182     rl_src2 = LoadValueWide(rl_src2, kCoreReg);
   1183 
   1184     int reg_status = 0;
   1185     RegStorage res_lo;
   1186     RegStorage res_hi;
   1187     bool dest_promoted = rl_dest.location == kLocPhysReg && rl_dest.reg.Valid() &&
   1188         !IsTemp(rl_dest.reg.GetLow()) && !IsTemp(rl_dest.reg.GetHigh());
   1189     bool src1_promoted = !IsTemp(rl_src1.reg.GetLow()) && !IsTemp(rl_src1.reg.GetHigh());
   1190     bool src2_promoted = !IsTemp(rl_src2.reg.GetLow()) && !IsTemp(rl_src2.reg.GetHigh());
   1191     // Check if rl_dest is *not* either operand and we have enough temp registers.
   1192     if ((rl_dest.s_reg_low != rl_src1.s_reg_low && rl_dest.s_reg_low != rl_src2.s_reg_low) &&
   1193         (dest_promoted || src1_promoted || src2_promoted)) {
   1194       // In this case, we do not need to manually allocate temp registers for result.
   1195       rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1196       res_lo = rl_result.reg.GetLow();
   1197       res_hi = rl_result.reg.GetHigh();
   1198     } else {
   1199       res_lo = AllocTemp();
   1200       if ((rl_src1.s_reg_low == rl_src2.s_reg_low) || src1_promoted || src2_promoted) {
   1201         // In this case, we have enough temp registers to be allocated for result.
   1202         res_hi = AllocTemp();
   1203         reg_status = 1;
   1204       } else {
   1205         // In this case, all temps are now allocated.
   1206         // res_hi will be allocated after we can free src1_hi.
   1207         reg_status = 2;
   1208       }
   1209     }
   1210 
   1211     // Temporarily add LR to the temp pool, and assign it to tmp1
   1212     MarkTemp(rs_rARM_LR);
   1213     FreeTemp(rs_rARM_LR);
   1214     RegStorage tmp1 = rs_rARM_LR;
   1215     LockTemp(rs_rARM_LR);
   1216 
   1217     if (rl_src1.reg == rl_src2.reg) {
   1218       DCHECK(res_hi.Valid());
   1219       DCHECK(res_lo.Valid());
   1220       NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src1.reg.GetHighReg());
   1221       NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src1.reg.GetLowReg(),
   1222               rl_src1.reg.GetLowReg());
   1223       OpRegRegRegShift(kOpAdd, res_hi, res_hi, tmp1, EncodeShift(kArmLsl, 1));
   1224     } else {
   1225       NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src2.reg.GetLowReg(), rl_src1.reg.GetHighReg());
   1226       if (reg_status == 2) {
   1227         DCHECK(!res_hi.Valid());
   1228         DCHECK_NE(rl_src1.reg.GetLowReg(), rl_src2.reg.GetLowReg());
   1229         DCHECK_NE(rl_src1.reg.GetHighReg(), rl_src2.reg.GetHighReg());
   1230         // Will force free src1_hi, so must clobber.
   1231         Clobber(rl_src1.reg);
   1232         FreeTemp(rl_src1.reg.GetHigh());
   1233         res_hi = AllocTemp();
   1234       }
   1235       DCHECK(res_hi.Valid());
   1236       DCHECK(res_lo.Valid());
   1237       NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src2.reg.GetLowReg(),
   1238               rl_src1.reg.GetLowReg());
   1239       NewLIR4(kThumb2Mla, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src2.reg.GetHighReg(),
   1240               tmp1.GetReg());
   1241       NewLIR4(kThumb2AddRRR, res_hi.GetReg(), tmp1.GetReg(), res_hi.GetReg(), 0);
   1242       if (reg_status == 2) {
   1243         FreeTemp(rl_src1.reg.GetLow());
   1244       }
   1245     }
   1246 
   1247     // Now, restore lr to its non-temp status.
   1248     FreeTemp(tmp1);
   1249     Clobber(rs_rARM_LR);
   1250     UnmarkTemp(rs_rARM_LR);
   1251 
   1252     if (reg_status != 0) {
   1253       // We had manually allocated registers for rl_result.
   1254       // Now construct a RegLocation.
   1255       rl_result = GetReturnWide(kCoreReg);  // Just using as a template.
   1256       rl_result.reg = RegStorage::MakeRegPair(res_lo, res_hi);
   1257     }
   1258 
   1259     StoreValueWide(rl_dest, rl_result);
   1260 }
   1261 
   1262 void ArmMir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
   1263                                 RegLocation rl_src2) {
   1264   switch (opcode) {
   1265     case Instruction::MUL_LONG:
   1266     case Instruction::MUL_LONG_2ADDR:
   1267       GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
   1268       return;
   1269     case Instruction::NEG_LONG:
   1270       GenNegLong(rl_dest, rl_src2);
   1271       return;
   1272 
   1273     default:
   1274       break;
   1275   }
   1276 
   1277   // Fallback for all other ops.
   1278   Mir2Lir::GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
   1279 }
   1280 
   1281 /*
   1282  * Generate array load
   1283  */
   1284 void ArmMir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
   1285                              RegLocation rl_index, RegLocation rl_dest, int scale) {
   1286   RegisterClass reg_class = RegClassBySize(size);
   1287   int len_offset = mirror::Array::LengthOffset().Int32Value();
   1288   int data_offset;
   1289   RegLocation rl_result;
   1290   bool constant_index = rl_index.is_const;
   1291   rl_array = LoadValue(rl_array, kRefReg);
   1292   if (!constant_index) {
   1293     rl_index = LoadValue(rl_index, kCoreReg);
   1294   }
   1295 
   1296   if (rl_dest.wide) {
   1297     data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
   1298   } else {
   1299     data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
   1300   }
   1301 
   1302   // If index is constant, just fold it into the data offset
   1303   if (constant_index) {
   1304     data_offset += mir_graph_->ConstantValue(rl_index) << scale;
   1305   }
   1306 
   1307   /* null object? */
   1308   GenNullCheck(rl_array.reg, opt_flags);
   1309 
   1310   bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
   1311   RegStorage reg_len;
   1312   if (needs_range_check) {
   1313     reg_len = AllocTemp();
   1314     /* Get len */
   1315     Load32Disp(rl_array.reg, len_offset, reg_len);
   1316     MarkPossibleNullPointerException(opt_flags);
   1317   } else {
   1318     ForceImplicitNullCheck(rl_array.reg, opt_flags);
   1319   }
   1320   if (rl_dest.wide || rl_dest.fp || constant_index) {
   1321     RegStorage reg_ptr;
   1322     if (constant_index) {
   1323       reg_ptr = rl_array.reg;  // NOTE: must not alter reg_ptr in constant case.
   1324     } else {
   1325       // No special indexed operation, lea + load w/ displacement
   1326       reg_ptr = AllocTempRef();
   1327       OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale));
   1328       FreeTemp(rl_index.reg);
   1329     }
   1330     rl_result = EvalLoc(rl_dest, reg_class, true);
   1331 
   1332     if (needs_range_check) {
   1333       if (constant_index) {
   1334         GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len);
   1335       } else {
   1336         GenArrayBoundsCheck(rl_index.reg, reg_len);
   1337       }
   1338       FreeTemp(reg_len);
   1339     }
   1340     LoadBaseDisp(reg_ptr, data_offset, rl_result.reg, size, kNotVolatile);
   1341     MarkPossibleNullPointerException(opt_flags);
   1342     if (!constant_index) {
   1343       FreeTemp(reg_ptr);
   1344     }
   1345     if (rl_dest.wide) {
   1346       StoreValueWide(rl_dest, rl_result);
   1347     } else {
   1348       StoreValue(rl_dest, rl_result);
   1349     }
   1350   } else {
   1351     // Offset base, then use indexed load
   1352     RegStorage reg_ptr = AllocTempRef();
   1353     OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset);
   1354     FreeTemp(rl_array.reg);
   1355     rl_result = EvalLoc(rl_dest, reg_class, true);
   1356 
   1357     if (needs_range_check) {
   1358       GenArrayBoundsCheck(rl_index.reg, reg_len);
   1359       FreeTemp(reg_len);
   1360     }
   1361     LoadBaseIndexed(reg_ptr, rl_index.reg, rl_result.reg, scale, size);
   1362     MarkPossibleNullPointerException(opt_flags);
   1363     FreeTemp(reg_ptr);
   1364     StoreValue(rl_dest, rl_result);
   1365   }
   1366 }
   1367 
   1368 /*
   1369  * Generate array store
   1370  *
   1371  */
   1372 void ArmMir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
   1373                              RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
   1374   RegisterClass reg_class = RegClassBySize(size);
   1375   int len_offset = mirror::Array::LengthOffset().Int32Value();
   1376   bool constant_index = rl_index.is_const;
   1377 
   1378   int data_offset;
   1379   if (size == k64 || size == kDouble) {
   1380     data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
   1381   } else {
   1382     data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
   1383   }
   1384 
   1385   // If index is constant, just fold it into the data offset.
   1386   if (constant_index) {
   1387     data_offset += mir_graph_->ConstantValue(rl_index) << scale;
   1388   }
   1389 
   1390   rl_array = LoadValue(rl_array, kRefReg);
   1391   if (!constant_index) {
   1392     rl_index = LoadValue(rl_index, kCoreReg);
   1393   }
   1394 
   1395   RegStorage reg_ptr;
   1396   bool allocated_reg_ptr_temp = false;
   1397   if (constant_index) {
   1398     reg_ptr = rl_array.reg;
   1399   } else if (IsTemp(rl_array.reg) && !card_mark) {
   1400     Clobber(rl_array.reg);
   1401     reg_ptr = rl_array.reg;
   1402   } else {
   1403     allocated_reg_ptr_temp = true;
   1404     reg_ptr = AllocTempRef();
   1405   }
   1406 
   1407   /* null object? */
   1408   GenNullCheck(rl_array.reg, opt_flags);
   1409 
   1410   bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
   1411   RegStorage reg_len;
   1412   if (needs_range_check) {
   1413     reg_len = AllocTemp();
   1414     // NOTE: max live temps(4) here.
   1415     /* Get len */
   1416     Load32Disp(rl_array.reg, len_offset, reg_len);
   1417     MarkPossibleNullPointerException(opt_flags);
   1418   } else {
   1419     ForceImplicitNullCheck(rl_array.reg, opt_flags);
   1420   }
   1421   /* at this point, reg_ptr points to array, 2 live temps */
   1422   if (rl_src.wide || rl_src.fp || constant_index) {
   1423     if (rl_src.wide) {
   1424       rl_src = LoadValueWide(rl_src, reg_class);
   1425     } else {
   1426       rl_src = LoadValue(rl_src, reg_class);
   1427     }
   1428     if (!constant_index) {
   1429       OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale));
   1430     }
   1431     if (needs_range_check) {
   1432       if (constant_index) {
   1433         GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len);
   1434       } else {
   1435         GenArrayBoundsCheck(rl_index.reg, reg_len);
   1436       }
   1437       FreeTemp(reg_len);
   1438     }
   1439 
   1440     StoreBaseDisp(reg_ptr, data_offset, rl_src.reg, size, kNotVolatile);
   1441     MarkPossibleNullPointerException(opt_flags);
   1442   } else {
   1443     /* reg_ptr -> array data */
   1444     OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset);
   1445     rl_src = LoadValue(rl_src, reg_class);
   1446     if (needs_range_check) {
   1447       GenArrayBoundsCheck(rl_index.reg, reg_len);
   1448       FreeTemp(reg_len);
   1449     }
   1450     StoreBaseIndexed(reg_ptr, rl_index.reg, rl_src.reg, scale, size);
   1451     MarkPossibleNullPointerException(opt_flags);
   1452   }
   1453   if (allocated_reg_ptr_temp) {
   1454     FreeTemp(reg_ptr);
   1455   }
   1456   if (card_mark) {
   1457     MarkGCCard(rl_src.reg, rl_array.reg);
   1458   }
   1459 }
   1460 
   1461 
   1462 void ArmMir2Lir::GenShiftImmOpLong(Instruction::Code opcode,
   1463                                    RegLocation rl_dest, RegLocation rl_src, RegLocation rl_shift) {
   1464   rl_src = LoadValueWide(rl_src, kCoreReg);
   1465   // Per spec, we only care about low 6 bits of shift amount.
   1466   int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
   1467   if (shift_amount == 0) {
   1468     StoreValueWide(rl_dest, rl_src);
   1469     return;
   1470   }
   1471   if (BadOverlap(rl_src, rl_dest)) {
   1472     GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
   1473     return;
   1474   }
   1475   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1476   switch (opcode) {
   1477     case Instruction::SHL_LONG:
   1478     case Instruction::SHL_LONG_2ADDR:
   1479       if (shift_amount == 1) {
   1480         OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), rl_src.reg.GetLow());
   1481         OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), rl_src.reg.GetHigh());
   1482       } else if (shift_amount == 32) {
   1483         OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg);
   1484         LoadConstant(rl_result.reg.GetLow(), 0);
   1485       } else if (shift_amount > 31) {
   1486         OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetLow(), shift_amount - 32);
   1487         LoadConstant(rl_result.reg.GetLow(), 0);
   1488       } else {
   1489         OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
   1490         OpRegRegRegShift(kOpOr, rl_result.reg.GetHigh(), rl_result.reg.GetHigh(), rl_src.reg.GetLow(),
   1491                          EncodeShift(kArmLsr, 32 - shift_amount));
   1492         OpRegRegImm(kOpLsl, rl_result.reg.GetLow(), rl_src.reg.GetLow(), shift_amount);
   1493       }
   1494       break;
   1495     case Instruction::SHR_LONG:
   1496     case Instruction::SHR_LONG_2ADDR:
   1497       if (shift_amount == 32) {
   1498         OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
   1499         OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31);
   1500       } else if (shift_amount > 31) {
   1501         OpRegRegImm(kOpAsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32);
   1502         OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31);
   1503       } else {
   1504         RegStorage t_reg = AllocTemp();
   1505         OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount);
   1506         OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(),
   1507                          EncodeShift(kArmLsl, 32 - shift_amount));
   1508         FreeTemp(t_reg);
   1509         OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
   1510       }
   1511       break;
   1512     case Instruction::USHR_LONG:
   1513     case Instruction::USHR_LONG_2ADDR:
   1514       if (shift_amount == 32) {
   1515         OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
   1516         LoadConstant(rl_result.reg.GetHigh(), 0);
   1517       } else if (shift_amount > 31) {
   1518         OpRegRegImm(kOpLsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32);
   1519         LoadConstant(rl_result.reg.GetHigh(), 0);
   1520       } else {
   1521         RegStorage t_reg = AllocTemp();
   1522         OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount);
   1523         OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(),
   1524                          EncodeShift(kArmLsl, 32 - shift_amount));
   1525         FreeTemp(t_reg);
   1526         OpRegRegImm(kOpLsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
   1527       }
   1528       break;
   1529     default:
   1530       LOG(FATAL) << "Unexpected case";
   1531   }
   1532   StoreValueWide(rl_dest, rl_result);
   1533 }
   1534 
   1535 void ArmMir2Lir::GenArithImmOpLong(Instruction::Code opcode,
   1536                                    RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
   1537   if ((opcode == Instruction::SUB_LONG_2ADDR) || (opcode == Instruction::SUB_LONG)) {
   1538     if (!rl_src2.is_const) {
   1539       // Don't bother with special handling for subtract from immediate.
   1540       GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
   1541       return;
   1542     }
   1543   } else {
   1544     // Normalize
   1545     if (!rl_src2.is_const) {
   1546       DCHECK(rl_src1.is_const);
   1547       std::swap(rl_src1, rl_src2);
   1548     }
   1549   }
   1550   if (BadOverlap(rl_src1, rl_dest)) {
   1551     GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
   1552     return;
   1553   }
   1554   DCHECK(rl_src2.is_const);
   1555   int64_t val = mir_graph_->ConstantValueWide(rl_src2);
   1556   uint32_t val_lo = Low32Bits(val);
   1557   uint32_t val_hi = High32Bits(val);
   1558   int32_t mod_imm_lo = ModifiedImmediate(val_lo);
   1559   int32_t mod_imm_hi = ModifiedImmediate(val_hi);
   1560 
   1561   // Only a subset of add/sub immediate instructions set carry - so bail if we don't fit
   1562   switch (opcode) {
   1563     case Instruction::ADD_LONG:
   1564     case Instruction::ADD_LONG_2ADDR:
   1565     case Instruction::SUB_LONG:
   1566     case Instruction::SUB_LONG_2ADDR:
   1567       if ((mod_imm_lo < 0) || (mod_imm_hi < 0)) {
   1568         GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
   1569         return;
   1570       }
   1571       break;
   1572     default:
   1573       break;
   1574   }
   1575   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
   1576   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1577   // NOTE: once we've done the EvalLoc on dest, we can no longer bail.
   1578   switch (opcode) {
   1579     case Instruction::ADD_LONG:
   1580     case Instruction::ADD_LONG_2ADDR:
   1581       NewLIR3(kThumb2AddRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo);
   1582       NewLIR3(kThumb2AdcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi);
   1583       break;
   1584     case Instruction::OR_LONG:
   1585     case Instruction::OR_LONG_2ADDR:
   1586       if ((val_lo != 0) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) {
   1587         OpRegRegImm(kOpOr, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
   1588       }
   1589       if ((val_hi != 0) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) {
   1590         OpRegRegImm(kOpOr, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
   1591       }
   1592       break;
   1593     case Instruction::XOR_LONG:
   1594     case Instruction::XOR_LONG_2ADDR:
   1595       OpRegRegImm(kOpXor, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
   1596       OpRegRegImm(kOpXor, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
   1597       break;
   1598     case Instruction::AND_LONG:
   1599     case Instruction::AND_LONG_2ADDR:
   1600       if ((val_lo != 0xffffffff) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) {
   1601         OpRegRegImm(kOpAnd, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
   1602       }
   1603       if ((val_hi != 0xffffffff) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) {
   1604         OpRegRegImm(kOpAnd, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
   1605       }
   1606       break;
   1607     case Instruction::SUB_LONG_2ADDR:
   1608     case Instruction::SUB_LONG:
   1609       NewLIR3(kThumb2SubRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo);
   1610       NewLIR3(kThumb2SbcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi);
   1611       break;
   1612     default:
   1613       LOG(FATAL) << "Unexpected opcode " << opcode;
   1614   }
   1615   StoreValueWide(rl_dest, rl_result);
   1616 }
   1617 
   1618 }  // namespace art
   1619