Home | History | Annotate | Download | only in space
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
     18 #define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
     19 
     20 #include <stdint.h>
     21 #include <memory>
     22 
     23 #include "common_runtime_test.h"
     24 #include "globals.h"
     25 #include "mirror/array-inl.h"
     26 #include "mirror/object-inl.h"
     27 #include "scoped_thread_state_change.h"
     28 #include "zygote_space.h"
     29 
     30 namespace art {
     31 namespace gc {
     32 namespace space {
     33 
     34 class SpaceTest : public CommonRuntimeTest {
     35  public:
     36   jobject byte_array_class_;
     37 
     38   SpaceTest() : byte_array_class_(nullptr) {
     39   }
     40 
     41   void AddSpace(ContinuousSpace* space, bool revoke = true) {
     42     Heap* heap = Runtime::Current()->GetHeap();
     43     if (revoke) {
     44       heap->RevokeAllThreadLocalBuffers();
     45     }
     46     heap->AddSpace(space);
     47     heap->SetSpaceAsDefault(space);
     48   }
     49 
     50   mirror::Class* GetByteArrayClass(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
     51     StackHandleScope<1> hs(self);
     52     auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
     53     if (byte_array_class_ == nullptr) {
     54       mirror::Class* byte_array_class =
     55           Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader);
     56       EXPECT_TRUE(byte_array_class != nullptr);
     57       byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class);
     58       EXPECT_TRUE(byte_array_class_ != nullptr);
     59     }
     60     return reinterpret_cast<mirror::Class*>(self->DecodeJObject(byte_array_class_));
     61   }
     62 
     63   mirror::Object* Alloc(space::MallocSpace* alloc_space, Thread* self, size_t bytes,
     64                         size_t* bytes_allocated, size_t* usable_size)
     65       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
     66     StackHandleScope<1> hs(self);
     67     Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
     68     mirror::Object* obj = alloc_space->Alloc(self, bytes, bytes_allocated, usable_size);
     69     if (obj != nullptr) {
     70       InstallClass(obj, byte_array_class.Get(), bytes);
     71     }
     72     return obj;
     73   }
     74 
     75   mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space, Thread* self, size_t bytes,
     76                                   size_t* bytes_allocated, size_t* usable_size)
     77       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
     78     StackHandleScope<1> hs(self);
     79     Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
     80     mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size);
     81     if (obj != nullptr) {
     82       InstallClass(obj, byte_array_class.Get(), bytes);
     83     }
     84     return obj;
     85   }
     86 
     87   void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
     88       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
     89     // Note the minimum size, which is the size of a zero-length byte array.
     90     EXPECT_GE(size, SizeOfZeroLengthByteArray());
     91     EXPECT_TRUE(byte_array_class != nullptr);
     92     o->SetClass(byte_array_class);
     93     if (kUseBakerOrBrooksReadBarrier) {
     94       // Like the proper heap object allocation, install and verify
     95       // the correct read barrier pointer.
     96       if (kUseBrooksReadBarrier) {
     97         o->SetReadBarrierPointer(o);
     98       }
     99       o->AssertReadBarrierPointer();
    100     }
    101     mirror::Array* arr = o->AsArray<kVerifyNone>();
    102     size_t header_size = SizeOfZeroLengthByteArray();
    103     int32_t length = size - header_size;
    104     arr->SetLength(length);
    105     EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
    106   }
    107 
    108   static size_t SizeOfZeroLengthByteArray() {
    109     return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
    110   }
    111 
    112   typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
    113                                         size_t capacity, byte* requested_begin);
    114   void InitTestBody(CreateSpaceFn create_space);
    115   void ZygoteSpaceTestBody(CreateSpaceFn create_space);
    116   void AllocAndFreeTestBody(CreateSpaceFn create_space);
    117   void AllocAndFreeListTestBody(CreateSpaceFn create_space);
    118 
    119   void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
    120                                            int round, size_t growth_limit);
    121   void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
    122 };
    123 
    124 static inline size_t test_rand(size_t* seed) {
    125   *seed = *seed * 1103515245 + 12345;
    126   return *seed;
    127 }
    128 
    129 void SpaceTest::InitTestBody(CreateSpaceFn create_space) {
    130   {
    131     // Init < max == growth
    132     std::unique_ptr<Space> space(create_space("test", 16 * MB, 32 * MB, 32 * MB, nullptr));
    133     EXPECT_TRUE(space.get() != nullptr);
    134   }
    135   {
    136     // Init == max == growth
    137     std::unique_ptr<Space> space(create_space("test", 16 * MB, 16 * MB, 16 * MB, nullptr));
    138     EXPECT_TRUE(space.get() != nullptr);
    139   }
    140   {
    141     // Init > max == growth
    142     std::unique_ptr<Space> space(create_space("test", 32 * MB, 16 * MB, 16 * MB, nullptr));
    143     EXPECT_TRUE(space.get() == nullptr);
    144   }
    145   {
    146     // Growth == init < max
    147     std::unique_ptr<Space> space(create_space("test", 16 * MB, 16 * MB, 32 * MB, nullptr));
    148     EXPECT_TRUE(space.get() != nullptr);
    149   }
    150   {
    151     // Growth < init < max
    152     std::unique_ptr<Space> space(create_space("test", 16 * MB, 8 * MB, 32 * MB, nullptr));
    153     EXPECT_TRUE(space.get() == nullptr);
    154   }
    155   {
    156     // Init < growth < max
    157     std::unique_ptr<Space> space(create_space("test", 8 * MB, 16 * MB, 32 * MB, nullptr));
    158     EXPECT_TRUE(space.get() != nullptr);
    159   }
    160   {
    161     // Init < max < growth
    162     std::unique_ptr<Space> space(create_space("test", 8 * MB, 32 * MB, 16 * MB, nullptr));
    163     EXPECT_TRUE(space.get() == nullptr);
    164   }
    165 }
    166 
    167 // TODO: This test is not very good, we should improve it.
    168 // The test should do more allocations before the creation of the ZygoteSpace, and then do
    169 // allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that
    170 // the GC works with the ZygoteSpace.
    171 void SpaceTest::ZygoteSpaceTestBody(CreateSpaceFn create_space) {
    172   size_t dummy;
    173   MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
    174   ASSERT_TRUE(space != nullptr);
    175 
    176   // Make space findable to the heap, will also delete space when runtime is cleaned up
    177   AddSpace(space);
    178   Thread* self = Thread::Current();
    179   ScopedObjectAccess soa(self);
    180 
    181   // Succeeds, fits without adjusting the footprint limit.
    182   size_t ptr1_bytes_allocated, ptr1_usable_size;
    183   StackHandleScope<3> hs(soa.Self());
    184   Handle<mirror::Object> ptr1(
    185       hs.NewHandle(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size)));
    186   EXPECT_TRUE(ptr1.Get() != nullptr);
    187   EXPECT_LE(1U * MB, ptr1_bytes_allocated);
    188   EXPECT_LE(1U * MB, ptr1_usable_size);
    189   EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
    190 
    191   // Fails, requires a higher footprint limit.
    192   mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr);
    193   EXPECT_TRUE(ptr2 == nullptr);
    194 
    195   // Succeeds, adjusts the footprint.
    196   size_t ptr3_bytes_allocated, ptr3_usable_size;
    197   Handle<mirror::Object> ptr3(
    198       hs.NewHandle(AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size)));
    199   EXPECT_TRUE(ptr3.Get() != nullptr);
    200   EXPECT_LE(8U * MB, ptr3_bytes_allocated);
    201   EXPECT_LE(8U * MB, ptr3_usable_size);
    202   EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
    203 
    204   // Fails, requires a higher footprint limit.
    205   mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy, nullptr);
    206   EXPECT_TRUE(ptr4 == nullptr);
    207 
    208   // Also fails, requires a higher allowed footprint.
    209   mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy, nullptr);
    210   EXPECT_TRUE(ptr5 == nullptr);
    211 
    212   // Release some memory.
    213   size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
    214   EXPECT_EQ(free3, ptr3_bytes_allocated);
    215   EXPECT_EQ(free3, space->Free(self, ptr3.Assign(nullptr)));
    216   EXPECT_LE(8U * MB, free3);
    217 
    218   // Succeeds, now that memory has been freed.
    219   size_t ptr6_bytes_allocated, ptr6_usable_size;
    220   Handle<mirror::Object> ptr6(
    221       hs.NewHandle(AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size)));
    222   EXPECT_TRUE(ptr6.Get() != nullptr);
    223   EXPECT_LE(9U * MB, ptr6_bytes_allocated);
    224   EXPECT_LE(9U * MB, ptr6_usable_size);
    225   EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
    226 
    227   // Final clean up.
    228   size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
    229   space->Free(self, ptr1.Assign(nullptr));
    230   EXPECT_LE(1U * MB, free1);
    231 
    232   // Make sure that the zygote space isn't directly at the start of the space.
    233   EXPECT_TRUE(space->Alloc(self, 1U * MB, &dummy, nullptr) != nullptr);
    234 
    235   gc::Heap* heap = Runtime::Current()->GetHeap();
    236   space::Space* old_space = space;
    237   heap->RemoveSpace(old_space);
    238   heap->RevokeAllThreadLocalBuffers();
    239   space::ZygoteSpace* zygote_space = space->CreateZygoteSpace("alloc space",
    240                                                               heap->IsLowMemoryMode(),
    241                                                               &space);
    242   delete old_space;
    243   // Add the zygote space.
    244   AddSpace(zygote_space, false);
    245 
    246   // Make space findable to the heap, will also delete space when runtime is cleaned up
    247   AddSpace(space, false);
    248 
    249   // Succeeds, fits without adjusting the footprint limit.
    250   ptr1.Assign(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size));
    251   EXPECT_TRUE(ptr1.Get() != nullptr);
    252   EXPECT_LE(1U * MB, ptr1_bytes_allocated);
    253   EXPECT_LE(1U * MB, ptr1_usable_size);
    254   EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
    255 
    256   // Fails, requires a higher footprint limit.
    257   ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr);
    258   EXPECT_TRUE(ptr2 == nullptr);
    259 
    260   // Succeeds, adjusts the footprint.
    261   ptr3.Assign(AllocWithGrowth(space, self, 2 * MB, &ptr3_bytes_allocated, &ptr3_usable_size));
    262   EXPECT_TRUE(ptr3.Get() != nullptr);
    263   EXPECT_LE(2U * MB, ptr3_bytes_allocated);
    264   EXPECT_LE(2U * MB, ptr3_usable_size);
    265   EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
    266   space->Free(self, ptr3.Assign(nullptr));
    267 
    268   // Final clean up.
    269   free1 = space->AllocationSize(ptr1.Get(), nullptr);
    270   space->Free(self, ptr1.Assign(nullptr));
    271   EXPECT_LE(1U * MB, free1);
    272 }
    273 
    274 void SpaceTest::AllocAndFreeTestBody(CreateSpaceFn create_space) {
    275   size_t dummy = 0;
    276   MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
    277   ASSERT_TRUE(space != nullptr);
    278   Thread* self = Thread::Current();
    279   ScopedObjectAccess soa(self);
    280 
    281   // Make space findable to the heap, will also delete space when runtime is cleaned up
    282   AddSpace(space);
    283 
    284   // Succeeds, fits without adjusting the footprint limit.
    285   size_t ptr1_bytes_allocated, ptr1_usable_size;
    286   StackHandleScope<3> hs(soa.Self());
    287   Handle<mirror::Object> ptr1(
    288       hs.NewHandle(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size)));
    289   EXPECT_TRUE(ptr1.Get() != nullptr);
    290   EXPECT_LE(1U * MB, ptr1_bytes_allocated);
    291   EXPECT_LE(1U * MB, ptr1_usable_size);
    292   EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
    293 
    294   // Fails, requires a higher footprint limit.
    295   mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr);
    296   EXPECT_TRUE(ptr2 == nullptr);
    297 
    298   // Succeeds, adjusts the footprint.
    299   size_t ptr3_bytes_allocated, ptr3_usable_size;
    300   Handle<mirror::Object> ptr3(
    301       hs.NewHandle(AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size)));
    302   EXPECT_TRUE(ptr3.Get() != nullptr);
    303   EXPECT_LE(8U * MB, ptr3_bytes_allocated);
    304   EXPECT_LE(8U * MB, ptr3_usable_size);
    305   EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
    306 
    307   // Fails, requires a higher footprint limit.
    308   mirror::Object* ptr4 = Alloc(space, self, 8 * MB, &dummy, nullptr);
    309   EXPECT_TRUE(ptr4 == nullptr);
    310 
    311   // Also fails, requires a higher allowed footprint.
    312   mirror::Object* ptr5 = AllocWithGrowth(space, self, 8 * MB, &dummy, nullptr);
    313   EXPECT_TRUE(ptr5 == nullptr);
    314 
    315   // Release some memory.
    316   size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
    317   EXPECT_EQ(free3, ptr3_bytes_allocated);
    318   space->Free(self, ptr3.Assign(nullptr));
    319   EXPECT_LE(8U * MB, free3);
    320 
    321   // Succeeds, now that memory has been freed.
    322   size_t ptr6_bytes_allocated, ptr6_usable_size;
    323   Handle<mirror::Object> ptr6(
    324       hs.NewHandle(AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size)));
    325   EXPECT_TRUE(ptr6.Get() != nullptr);
    326   EXPECT_LE(9U * MB, ptr6_bytes_allocated);
    327   EXPECT_LE(9U * MB, ptr6_usable_size);
    328   EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
    329 
    330   // Final clean up.
    331   size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
    332   space->Free(self, ptr1.Assign(nullptr));
    333   EXPECT_LE(1U * MB, free1);
    334 }
    335 
    336 void SpaceTest::AllocAndFreeListTestBody(CreateSpaceFn create_space) {
    337   MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
    338   ASSERT_TRUE(space != nullptr);
    339 
    340   // Make space findable to the heap, will also delete space when runtime is cleaned up
    341   AddSpace(space);
    342   Thread* self = Thread::Current();
    343   ScopedObjectAccess soa(self);
    344 
    345   // Succeeds, fits without adjusting the max allowed footprint.
    346   mirror::Object* lots_of_objects[1024];
    347   for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
    348     size_t allocation_size, usable_size;
    349     size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
    350     lots_of_objects[i] = Alloc(space, self, size_of_zero_length_byte_array, &allocation_size,
    351                                &usable_size);
    352     EXPECT_TRUE(lots_of_objects[i] != nullptr);
    353     size_t computed_usable_size;
    354     EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
    355     EXPECT_EQ(usable_size, computed_usable_size);
    356   }
    357 
    358   // Release memory.
    359   space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
    360 
    361   // Succeeds, fits by adjusting the max allowed footprint.
    362   for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
    363     size_t allocation_size, usable_size;
    364     lots_of_objects[i] = AllocWithGrowth(space, self, 1024, &allocation_size, &usable_size);
    365     EXPECT_TRUE(lots_of_objects[i] != nullptr);
    366     size_t computed_usable_size;
    367     EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
    368     EXPECT_EQ(usable_size, computed_usable_size);
    369   }
    370 
    371   // Release memory.
    372   space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
    373 }
    374 
    375 void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
    376                                                     int round, size_t growth_limit) {
    377   if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
    378       ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
    379     // No allocation can succeed
    380     return;
    381   }
    382 
    383   // The space's footprint equals amount of resources requested from system
    384   size_t footprint = space->GetFootprint();
    385 
    386   // The space must at least have its book keeping allocated
    387   EXPECT_GT(footprint, 0u);
    388 
    389   // But it shouldn't exceed the initial size
    390   EXPECT_LE(footprint, growth_limit);
    391 
    392   // space's size shouldn't exceed the initial size
    393   EXPECT_LE(space->Size(), growth_limit);
    394 
    395   // this invariant should always hold or else the space has grown to be larger than what the
    396   // space believes its size is (which will break invariants)
    397   EXPECT_GE(space->Size(), footprint);
    398 
    399   // Fill the space with lots of small objects up to the growth limit
    400   size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
    401   std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
    402   size_t last_object = 0;  // last object for which allocation succeeded
    403   size_t amount_allocated = 0;  // amount of space allocated
    404   Thread* self = Thread::Current();
    405   ScopedObjectAccess soa(self);
    406   size_t rand_seed = 123456789;
    407   for (size_t i = 0; i < max_objects; i++) {
    408     size_t alloc_fails = 0;  // number of failed allocations
    409     size_t max_fails = 30;  // number of times we fail allocation before giving up
    410     for (; alloc_fails < max_fails; alloc_fails++) {
    411       size_t alloc_size;
    412       if (object_size > 0) {
    413         alloc_size = object_size;
    414       } else {
    415         alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
    416         // Note the minimum size, which is the size of a zero-length byte array.
    417         size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
    418         if (alloc_size < size_of_zero_length_byte_array) {
    419           alloc_size = size_of_zero_length_byte_array;
    420         }
    421       }
    422       StackHandleScope<1> hs(soa.Self());
    423       auto object(hs.NewHandle<mirror::Object>(nullptr));
    424       size_t bytes_allocated = 0;
    425       if (round <= 1) {
    426         object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr));
    427       } else {
    428         object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr));
    429       }
    430       footprint = space->GetFootprint();
    431       EXPECT_GE(space->Size(), footprint);  // invariant
    432       if (object.Get() != nullptr) {  // allocation succeeded
    433         lots_of_objects[i] = object.Get();
    434         size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
    435         EXPECT_EQ(bytes_allocated, allocation_size);
    436         if (object_size > 0) {
    437           EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
    438         } else {
    439           EXPECT_GE(allocation_size, 8u);
    440         }
    441         amount_allocated += allocation_size;
    442         break;
    443       }
    444     }
    445     if (alloc_fails == max_fails) {
    446       last_object = i;
    447       break;
    448     }
    449   }
    450   CHECK_NE(last_object, 0u);  // we should have filled the space
    451   EXPECT_GT(amount_allocated, 0u);
    452 
    453   // We shouldn't have gone past the growth_limit
    454   EXPECT_LE(amount_allocated, growth_limit);
    455   EXPECT_LE(footprint, growth_limit);
    456   EXPECT_LE(space->Size(), growth_limit);
    457 
    458   // footprint and size should agree with amount allocated
    459   EXPECT_GE(footprint, amount_allocated);
    460   EXPECT_GE(space->Size(), amount_allocated);
    461 
    462   // Release storage in a semi-adhoc manner
    463   size_t free_increment = 96;
    464   while (true) {
    465     {
    466       ScopedThreadStateChange tsc(self, kNative);
    467       // Give the space a haircut.
    468       space->Trim();
    469     }
    470 
    471     // Bounds sanity
    472     footprint = space->GetFootprint();
    473     EXPECT_LE(amount_allocated, growth_limit);
    474     EXPECT_GE(footprint, amount_allocated);
    475     EXPECT_LE(footprint, growth_limit);
    476     EXPECT_GE(space->Size(), amount_allocated);
    477     EXPECT_LE(space->Size(), growth_limit);
    478 
    479     if (free_increment == 0) {
    480       break;
    481     }
    482 
    483     // Free some objects
    484     for (size_t i = 0; i < last_object; i += free_increment) {
    485       mirror::Object* object = lots_of_objects.get()[i];
    486       if (object == nullptr) {
    487         continue;
    488       }
    489       size_t allocation_size = space->AllocationSize(object, nullptr);
    490       if (object_size > 0) {
    491         EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
    492       } else {
    493         EXPECT_GE(allocation_size, 8u);
    494       }
    495       space->Free(self, object);
    496       lots_of_objects.get()[i] = nullptr;
    497       amount_allocated -= allocation_size;
    498       footprint = space->GetFootprint();
    499       EXPECT_GE(space->Size(), footprint);  // invariant
    500     }
    501 
    502     free_increment >>= 1;
    503   }
    504 
    505   // The space has become empty here before allocating a large object
    506   // below. For RosAlloc, revoke thread-local runs, which are kept
    507   // even when empty for a performance reason, so that they won't
    508   // cause the following large object allocation to fail due to
    509   // potential fragmentation. Note they are normally revoked at each
    510   // GC (but no GC here.)
    511   space->RevokeAllThreadLocalBuffers();
    512 
    513   // All memory was released, try a large allocation to check freed memory is being coalesced
    514   StackHandleScope<1> hs(soa.Self());
    515   auto large_object(hs.NewHandle<mirror::Object>(nullptr));
    516   size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
    517   size_t bytes_allocated = 0;
    518   if (round <= 1) {
    519     large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr));
    520   } else {
    521     large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
    522                                         nullptr));
    523   }
    524   EXPECT_TRUE(large_object.Get() != nullptr);
    525 
    526   // Sanity check footprint
    527   footprint = space->GetFootprint();
    528   EXPECT_LE(footprint, growth_limit);
    529   EXPECT_GE(space->Size(), footprint);
    530   EXPECT_LE(space->Size(), growth_limit);
    531 
    532   // Clean up
    533   space->Free(self, large_object.Assign(nullptr));
    534 
    535   // Sanity check footprint
    536   footprint = space->GetFootprint();
    537   EXPECT_LE(footprint, growth_limit);
    538   EXPECT_GE(space->Size(), footprint);
    539   EXPECT_LE(space->Size(), growth_limit);
    540 }
    541 
    542 void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space) {
    543   if (object_size < SizeOfZeroLengthByteArray()) {
    544     // Too small for the object layout/model.
    545     return;
    546   }
    547   size_t initial_size = 4 * MB;
    548   size_t growth_limit = 8 * MB;
    549   size_t capacity = 16 * MB;
    550   MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
    551   ASSERT_TRUE(space != nullptr);
    552 
    553   // Basic sanity
    554   EXPECT_EQ(space->Capacity(), growth_limit);
    555   EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
    556 
    557   // Make space findable to the heap, will also delete space when runtime is cleaned up
    558   AddSpace(space);
    559 
    560   // In this round we don't allocate with growth and therefore can't grow past the initial size.
    561   // This effectively makes the growth_limit the initial_size, so assert this.
    562   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
    563   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
    564   // Remove growth limit
    565   space->ClearGrowthLimit();
    566   EXPECT_EQ(space->Capacity(), capacity);
    567   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
    568 }
    569 
    570 #define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
    571   TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
    572     SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
    573   }
    574 
    575 #define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
    576   TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
    577     SizeFootPrintGrowthLimitAndTrimDriver(-size, spaceFn); \
    578   }
    579 
    580 #define TEST_SPACE_CREATE_FN_BASE(spaceName, spaceFn) \
    581   class spaceName##BaseTest : public SpaceTest { \
    582   }; \
    583   \
    584   TEST_F(spaceName##BaseTest, Init) { \
    585     InitTestBody(spaceFn); \
    586   } \
    587   TEST_F(spaceName##BaseTest, ZygoteSpace) { \
    588     ZygoteSpaceTestBody(spaceFn); \
    589   } \
    590   TEST_F(spaceName##BaseTest, AllocAndFree) { \
    591     AllocAndFreeTestBody(spaceFn); \
    592   } \
    593   TEST_F(spaceName##BaseTest, AllocAndFreeList) { \
    594     AllocAndFreeListTestBody(spaceFn); \
    595   }
    596 
    597 #define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
    598   class spaceName##StaticTest : public SpaceTest { \
    599   }; \
    600   \
    601   TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
    602   TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
    603   TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
    604   TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
    605   TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
    606   TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
    607   TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
    608   TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
    609   TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
    610   TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
    611   TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
    612 
    613 #define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
    614   class spaceName##RandomTest : public SpaceTest { \
    615   }; \
    616   \
    617   TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
    618   TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
    619   TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
    620   TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
    621   TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
    622   TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
    623   TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
    624   TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
    625   TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
    626   TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
    627 
    628 }  // namespace space
    629 }  // namespace gc
    630 }  // namespace art
    631 
    632 #endif  // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
    633