Home | History | Annotate | Download | only in dalvik
      1 page.title=Bytecode for the Dalvik VM
      2 @jd:body
      3 
      4 <!--
      5     Copyright 2013 The Android Open Source Project
      6 
      7     Licensed under the Apache License, Version 2.0 (the "License");
      8     you may not use this file except in compliance with the License.
      9     You may obtain a copy of the License at
     10 
     11         http://www.apache.org/licenses/LICENSE-2.0
     12 
     13     Unless required by applicable law or agreed to in writing, software
     14     distributed under the License is distributed on an "AS IS" BASIS,
     15     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16     See the License for the specific language governing permissions and
     17     limitations under the License.
     18 -->
     19 <h2>General Design</h2>
     20 
     21 <ul>
     22 <li>The machine model and calling conventions are meant to approximately
     23   imitate common real architectures and C-style calling conventions:
     24   <ul>
     25   <li>The VM is register-based, and frames are fixed in size upon creation.
     26     Each frame consists of a particular number of registers (specified by
     27     the method) as well as any adjunct data needed to execute the method,
     28     such as (but not limited to) the program counter and a reference to the
     29     <code>.dex</code> file that contains the method.
     30   </li>
     31   <li>When used for bit values (such as integers and floating point
     32     numbers), registers are considered 32 bits wide. Adjacent register
     33     pairs are used for 64-bit values. There is no alignment requirement
     34     for register pairs.
     35   </li>
     36   <li>When used for object references, registers are considered wide enough
     37     to hold exactly one such reference.
     38   </li>
     39   <li>In terms of bitwise representation, <code>(Object) null == (int)
     40     0</code>.
     41   </li>
     42   <li>The <i>N</i> arguments to a method land in the last <i>N</i> registers
     43     of the method's invocation frame, in order. Wide arguments consume
     44     two registers. Instance methods are passed a <code>this</code> reference
     45     as their first argument.
     46   </li>
     47   </ul>
     48 <li>The storage unit in the instruction stream is a 16-bit unsigned quantity.
     49   Some bits in some instructions are ignored / must-be-zero.
     50 </li>
     51 <li>Instructions aren't gratuitously limited to a particular type. For
     52   example, instructions that move 32-bit register values without interpretation
     53   don't have to specify whether they are moving ints or floats.
     54 </li>
     55 <li>There are separately enumerated and indexed constant pools for
     56   references to strings, types, fields, and methods.
     57 </li>
     58 <li>Bitwise literal data is represented in-line in the instruction stream.</li>
     59 <li>Because, in practice, it is uncommon for a method to need more than
     60   16 registers, and because needing more than eight registers <i>is</i>
     61   reasonably common, many instructions are limited to only addressing
     62   the first 16
     63   registers. When reasonably possible, instructions allow references to
     64   up to the first 256 registers. In addition, some instructions have variants
     65   that allow for much larger register counts, including a pair of catch-all
     66   <code>move</code> instructions that can address registers in the range
     67   <code>v0</code> &ndash; <code>v65535</code>.
     68   In cases where an instruction variant isn't
     69   available to address a desired register, it is expected that the register
     70   contents get moved from the original register to a low register (before the
     71   operation) and/or moved from a low result register to a high register
     72   (after the operation).
     73 </li>
     74 <li>There are several "pseudo-instructions" that are used to hold
     75   variable-length data payloads, which are referred to by regular
     76   instructions (for example,
     77   <code>fill-array-data</code>). Such instructions must never be
     78   encountered during the normal flow of execution. In addition, the
     79   instructions must be located on even-numbered bytecode offsets (that is,
     80   4-byte aligned). In order to meet this requirement, dex generation tools
     81   must emit an extra <code>nop</code> instruction as a spacer if such an
     82   instruction would otherwise be unaligned. Finally, though not required,
     83   it is expected that most tools will choose to emit these instructions at
     84   the ends of methods, since otherwise it would likely be the case that
     85   additional instructions would be needed to branch around them.
     86 </li>
     87 <li>When installed on a running system, some instructions may be altered,
     88   changing their format, as an install-time static linking optimization.
     89   This is to allow for faster execution once linkage is known.
     90   See the associated
     91   <a href="instruction-formats.html">instruction formats document</a>
     92   for the suggested variants. The word "suggested" is used advisedly;
     93   it is not mandatory to implement these.
     94 </li>
     95 <li>Human-syntax and mnemonics:
     96   <ul>
     97   <li>Dest-then-source ordering for arguments.</li>
     98   <li>Some opcodes have a disambiguating name suffix to indicate the type(s)
     99     they operate on:
    100     <ul>
    101     <li>Type-general 32-bit opcodes are unmarked.</li>
    102     <li>Type-general 64-bit opcodes are suffixed with <code>-wide</code>.</li>
    103     <li>Type-specific opcodes are suffixed with their type (or a
    104     straightforward abbreviation), one of: <code>-boolean</code>
    105     <code>-byte</code> <code>-char</code> <code>-short</code>
    106     <code>-int</code> <code>-long</code> <code>-float</code>
    107     <code>-double</code> <code>-object</code> <code>-string</code>
    108     <code>-class</code> <code>-void</code>.</li>
    109     </ul>
    110   </li>
    111   <li>Some opcodes have a disambiguating suffix to distinguish
    112     otherwise-identical operations that have different instruction layouts
    113     or options. These suffixes are separated from the main names with a slash
    114     ("<code>/</code>") and mainly exist at all to make there be a one-to-one
    115     mapping with static constants in the code that generates and interprets
    116     executables (that is, to reduce ambiguity for humans).
    117   </li>
    118   <li>In the descriptions here, the width of a value (indicating, e.g., the
    119     range of a constant or the number of registers possibly addressed) is
    120     emphasized by the use of a character per four bits of width.
    121   </li>
    122   <li>For example, in the instruction
    123     "<code>move-wide/from16 vAA, vBBBB</code>":
    124     <ul>
    125     <li>"<code>move</code>" is the base opcode, indicating the base operation
    126     (move a register's value).</li>
    127     <li>"<code>wide</code>" is the name suffix, indicating that it operates
    128     on wide (64 bit) data.</li>
    129     <li>"<code>from16</code>" is the opcode suffix, indicating a variant
    130     that has a 16-bit register reference as a source.</li>
    131     <li>"<code>vAA</code>" is the destination register (implied by the
    132     operation; again, the rule is that destination arguments always come
    133     first), which must be in the range <code>v0</code> &ndash;
    134     <code>v255</code>.</li>
    135     <li>"<code>vBBBB</code>" is the source register, which must be in the
    136     range <code>v0</code> &ndash; <code>v65535</code>.</li>
    137     </ul>
    138   </li>
    139   </ul>
    140 </li>
    141 <li>See the <a href="instruction-formats.html">instruction formats
    142   document</a> for more details about the various instruction formats
    143   (listed under "Op &amp; Format") as well as details about the opcode
    144   syntax.
    145 </li>
    146 <li>See the <a href="dex-format.html"><code>.dex</code> file format
    147   document</a> for more details about where the bytecode fits into
    148   the bigger picture.
    149 </li>
    150 </ul>
    151 
    152 <h2>Summary of Instruction Set</h2>
    153 
    154 <table class="instruc">
    155 <thead>
    156 <tr>
    157   <th>Op &amp; Format</th>
    158   <th>Mnemonic / Syntax</th>
    159   <th>Arguments</th>
    160   <th>Description</th>
    161 </tr>
    162 </thead>
    163 <tbody>
    164 <tr>
    165   <td>00 10x</td>
    166   <td>nop</td>
    167   <td>&nbsp;</td>
    168   <td>Waste cycles.
    169     <p><b>Note:</b>
    170     Data-bearing pseudo-instructions are tagged with this opcode, in which
    171     case the high-order byte of the opcode unit indicates the nature of
    172     the data. See "<code>packed-switch-payload</code> Format",
    173     "<code>sparse-switch-payload</code> Format", and
    174     "<code>fill-array-data-payload</code> Format" below.</p>
    175   </td>
    176 </tr>
    177 <tr>
    178   <td>01 12x</td>
    179   <td>move vA, vB</td>
    180   <td><code>A:</code> destination register (4 bits)<br/>
    181     <code>B:</code> source register (4 bits)</td>
    182   <td>Move the contents of one non-object register to another.</td>
    183 </tr>
    184 <tr>
    185   <td>02 22x</td>
    186   <td>move/from16 vAA, vBBBB</td>
    187   <td><code>A:</code> destination register (8 bits)<br/>
    188     <code>B:</code> source register (16 bits)</td>
    189   <td>Move the contents of one non-object register to another.</td>
    190 </tr>
    191 <tr>
    192   <td>03 32x</td>
    193   <td>move/16 vAAAA, vBBBB</td>
    194   <td><code>A:</code> destination register (16 bits)<br/>
    195     <code>B:</code> source register (16 bits)</td>
    196   <td>Move the contents of one non-object register to another.</td>
    197 </tr>
    198 <tr>
    199   <td>04 12x</td>
    200   <td>move-wide vA, vB</td>
    201   <td><code>A:</code> destination register pair (4 bits)<br/>
    202     <code>B:</code> source register pair (4 bits)</td>
    203   <td>Move the contents of one register-pair to another.
    204     <p><b>Note:</b>
    205     It is legal to move from <code>v<i>N</i></code> to either
    206     <code>v<i>N-1</i></code> or <code>v<i>N+1</i></code>, so implementations
    207     must arrange for both halves of a register pair to be read before
    208     anything is written.</p>
    209   </td>
    210 </tr>
    211 <tr>
    212   <td>05 22x</td>
    213   <td>move-wide/from16 vAA, vBBBB</td>
    214   <td><code>A:</code> destination register pair (8 bits)<br/>
    215     <code>B:</code> source register pair (16 bits)</td>
    216   <td>Move the contents of one register-pair to another.
    217     <p><b>Note:</b>
    218     Implementation considerations are the same as <code>move-wide</code>,
    219     above.</p>
    220   </td>
    221 </tr>
    222 <tr>
    223   <td>06 32x</td>
    224   <td>move-wide/16 vAAAA, vBBBB</td>
    225   <td><code>A:</code> destination register pair (16 bits)<br/>
    226     <code>B:</code> source register pair (16 bits)</td>
    227   <td>Move the contents of one register-pair to another.
    228     <p><b>Note:</b>
    229     Implementation considerations are the same as <code>move-wide</code>,
    230     above.</p>
    231   </td>
    232 </tr>
    233 <tr>
    234   <td>07 12x</td>
    235   <td>move-object vA, vB</td>
    236   <td><code>A:</code> destination register (4 bits)<br/>
    237     <code>B:</code> source register (4 bits)</td>
    238   <td>Move the contents of one object-bearing register to another.</td>
    239 </tr>
    240 <tr>
    241   <td>08 22x</td>
    242   <td>move-object/from16 vAA, vBBBB</td>
    243   <td><code>A:</code> destination register (8 bits)<br/>
    244     <code>B:</code> source register (16 bits)</td>
    245   <td>Move the contents of one object-bearing register to another.</td>
    246 </tr>
    247 <tr>
    248   <td>09 32x</td>
    249   <td>move-object/16 vAAAA, vBBBB</td>
    250   <td><code>A:</code> destination register (16 bits)<br/>
    251     <code>B:</code> source register (16 bits)</td>
    252   <td>Move the contents of one object-bearing register to another.</td>
    253 </tr>
    254 <tr>
    255   <td>0a 11x</td>
    256   <td>move-result vAA</td>
    257   <td><code>A:</code> destination register (8 bits)</td>
    258   <td>Move the single-word non-object result of the most recent
    259     <code>invoke-<i>kind</i></code> into the indicated register.
    260     This must be done as the instruction immediately after an
    261     <code>invoke-<i>kind</i></code> whose (single-word, non-object) result
    262     is not to be ignored; anywhere else is invalid.</td>
    263 </tr>
    264 <tr>
    265   <td>0b 11x</td>
    266   <td>move-result-wide vAA</td>
    267   <td><code>A:</code> destination register pair (8 bits)</td>
    268   <td>Move the double-word result of the most recent
    269     <code>invoke-<i>kind</i></code> into the indicated register pair.
    270     This must be done as the instruction immediately after an
    271     <code>invoke-<i>kind</i></code> whose (double-word) result
    272     is not to be ignored; anywhere else is invalid.</td>
    273 </tr>
    274 <tr>
    275   <td>0c 11x</td>
    276   <td>move-result-object vAA</td>
    277   <td><code>A:</code> destination register (8 bits)</td>
    278   <td>Move the object result of the most recent <code>invoke-<i>kind</i></code>
    279     into the indicated register. This must be done as the instruction
    280     immediately after an <code>invoke-<i>kind</i></code> or
    281     <code>filled-new-array</code>
    282     whose (object) result is not to be ignored; anywhere else is invalid.</td>
    283 </tr>
    284 <tr>
    285   <td>0d 11x</td>
    286   <td>move-exception vAA</td>
    287   <td><code>A:</code> destination register (8 bits)</td>
    288   <td>Save a just-caught exception into the given register. This must
    289     be the first instruction of any exception handler whose caught
    290     exception is not to be ignored, and this instruction must <i>only</i>
    291     ever occur as the first instruction of an exception handler; anywhere
    292     else is invalid.</td>
    293 </tr>
    294 <tr>
    295   <td>0e 10x</td>
    296   <td>return-void</td>
    297   <td>&nbsp;</td>
    298   <td>Return from a <code>void</code> method.</td>
    299 </tr>
    300 <tr>
    301   <td>0f 11x</td>
    302   <td>return vAA</td>
    303   <td><code>A:</code> return value register (8 bits)</td>
    304   <td>Return from a single-width (32-bit) non-object value-returning
    305     method.
    306   </td>
    307 </tr>
    308 <tr>
    309   <td>10 11x</td>
    310   <td>return-wide vAA</td>
    311   <td><code>A:</code> return value register-pair (8 bits)</td>
    312   <td>Return from a double-width (64-bit) value-returning method.</td>
    313 </tr>
    314 <tr>
    315   <td>11 11x</td>
    316   <td>return-object vAA</td>
    317   <td><code>A:</code> return value register (8 bits)</td>
    318   <td>Return from an object-returning method.</td>
    319 </tr>
    320 <tr>
    321   <td>12 11n</td>
    322   <td>const/4 vA, #+B</td>
    323   <td><code>A:</code> destination register (4 bits)<br/>
    324     <code>B:</code> signed int (4 bits)</td>
    325   <td>Move the given literal value (sign-extended to 32 bits) into
    326     the specified register.</td>
    327 </tr>
    328 <tr>
    329   <td>13 21s</td>
    330   <td>const/16 vAA, #+BBBB</td>
    331   <td><code>A:</code> destination register (8 bits)<br/>
    332     <code>B:</code> signed int (16 bits)</td>
    333   <td>Move the given literal value (sign-extended to 32 bits) into
    334     the specified register.</td>
    335 </tr>
    336 <tr>
    337   <td>14 31i</td>
    338   <td>const vAA, #+BBBBBBBB</td>
    339   <td><code>A:</code> destination register (8 bits)<br/>
    340     <code>B:</code> arbitrary 32-bit constant</td>
    341   <td>Move the given literal value into the specified register.</td>
    342 </tr>
    343 <tr>
    344   <td>15 21h</td>
    345   <td>const/high16 vAA, #+BBBB0000</td>
    346   <td><code>A:</code> destination register (8 bits)<br/>
    347     <code>B:</code> signed int (16 bits)</td>
    348   <td>Move the given literal value (right-zero-extended to 32 bits) into
    349     the specified register.</td>
    350 </tr>
    351 <tr>
    352   <td>16 21s</td>
    353   <td>const-wide/16 vAA, #+BBBB</td>
    354   <td><code>A:</code> destination register (8 bits)<br/>
    355     <code>B:</code> signed int (16 bits)</td>
    356   <td>Move the given literal value (sign-extended to 64 bits) into
    357     the specified register-pair.</td>
    358 </tr>
    359 <tr>
    360   <td>17 31i</td>
    361   <td>const-wide/32 vAA, #+BBBBBBBB</td>
    362   <td><code>A:</code> destination register (8 bits)<br/>
    363     <code>B:</code> signed int (32 bits)</td>
    364   <td>Move the given literal value (sign-extended to 64 bits) into
    365     the specified register-pair.</td>
    366 </tr>
    367 <tr>
    368   <td>18 51l</td>
    369   <td>const-wide vAA, #+BBBBBBBBBBBBBBBB</td>
    370   <td><code>A:</code> destination register (8 bits)<br/>
    371     <code>B:</code> arbitrary double-width (64-bit) constant</td>
    372   <td>Move the given literal value into
    373     the specified register-pair.</td>
    374 </tr>
    375 <tr>
    376   <td>19 21h</td>
    377   <td>const-wide/high16 vAA, #+BBBB000000000000</td>
    378   <td><code>A:</code> destination register (8 bits)<br/>
    379     <code>B:</code> signed int (16 bits)</td>
    380   <td>Move the given literal value (right-zero-extended to 64 bits) into
    381     the specified register-pair.</td>
    382 </tr>
    383 <tr>
    384   <td>1a 21c</td>
    385   <td>const-string vAA, string@BBBB</td>
    386   <td><code>A:</code> destination register (8 bits)<br/>
    387     <code>B:</code> string index</td>
    388   <td>Move a reference to the string specified by the given index into the
    389     specified register.</td>
    390 </tr>
    391 <tr>
    392   <td>1b 31c</td>
    393   <td>const-string/jumbo vAA, string@BBBBBBBB</td>
    394   <td><code>A:</code> destination register (8 bits)<br/>
    395     <code>B:</code> string index</td>
    396   <td>Move a reference to the string specified by the given index into the
    397     specified register.</td>
    398 </tr>
    399 <tr>
    400   <td>1c 21c</td>
    401   <td>const-class vAA, type@BBBB</td>
    402   <td><code>A:</code> destination register (8 bits)<br/>
    403     <code>B:</code> type index</td>
    404   <td>Move a reference to the class specified by the given index into the
    405     specified register. In the case where the indicated type is primitive,
    406     this will store a reference to the primitive type's degenerate
    407     class.</td>
    408 </tr>
    409 <tr>
    410   <td>1d 11x</td>
    411   <td>monitor-enter vAA</td>
    412   <td><code>A:</code> reference-bearing register (8 bits)</td>
    413   <td>Acquire the monitor for the indicated object.</td>
    414 </tr>
    415 <tr>
    416   <td>1e 11x</td>
    417   <td>monitor-exit vAA</td>
    418   <td><code>A:</code> reference-bearing register (8 bits)</td>
    419   <td>Release the monitor for the indicated object.
    420     <p><b>Note:</b>
    421     If this instruction needs to throw an exception, it must do
    422     so as if the pc has already advanced past the instruction.
    423     It may be useful to think of this as the instruction successfully
    424     executing (in a sense), and the exception getting thrown <i>after</i>
    425     the instruction but <i>before</i> the next one gets a chance to
    426     run. This definition makes it possible for a method to use
    427     a monitor cleanup catch-all (e.g., <code>finally</code>) block as
    428     the monitor cleanup for that block itself, as a way to handle the
    429     arbitrary exceptions that might get thrown due to the historical
    430     implementation of <code>Thread.stop()</code>, while still managing
    431     to have proper monitor hygiene.</p>
    432   </td>
    433 </tr>
    434 <tr>
    435   <td>1f 21c</td>
    436   <td>check-cast vAA, type@BBBB</td>
    437   <td><code>A:</code> reference-bearing register (8 bits)<br/>
    438     <code>B:</code> type index (16 bits)</td>
    439   <td>Throw a <code>ClassCastException</code> if the reference in the
    440     given register cannot be cast to the indicated type.
    441     <p><b>Note:</b> Since <code>A</code> must always be a reference
    442     (and not a primitive value), this will necessarily fail at runtime
    443     (that is, it will throw an exception) if <code>B</code> refers to a
    444     primitive type.</p>
    445   </td>
    446 </tr>
    447 <tr>
    448   <td>20 22c</td>
    449   <td>instance-of vA, vB, type@CCCC</td>
    450   <td><code>A:</code> destination register (4 bits)<br/>
    451     <code>B:</code> reference-bearing register (4 bits)<br/>
    452     <code>C:</code> type index (16 bits)</td>
    453   <td>Store in the given destination register <code>1</code>
    454     if the indicated reference is an instance of the given type,
    455     or <code>0</code> if not.
    456     <p><b>Note:</b> Since <code>B</code> must always be a reference
    457     (and not a primitive value), this will always result
    458     in <code>0</code> being stored if <code>C</code> refers to a primitive
    459     type.</td>
    460 </tr>
    461 <tr>
    462   <td>21 12x</td>
    463   <td>array-length vA, vB</td>
    464   <td><code>A:</code> destination register (4 bits)<br/>
    465     <code>B:</code> array reference-bearing register (4 bits)</td>
    466   <td>Store in the given destination register the length of the indicated
    467     array, in entries</td>
    468 </tr>
    469 <tr>
    470   <td>22 21c</td>
    471   <td>new-instance vAA, type@BBBB</td>
    472   <td><code>A:</code> destination register (8 bits)<br/>
    473     <code>B:</code> type index</td>
    474   <td>Construct a new instance of the indicated type, storing a
    475     reference to it in the destination. The type must refer to a
    476     non-array class.</td>
    477 </tr>
    478 <tr>
    479   <td>23 22c</td>
    480   <td>new-array vA, vB, type@CCCC</td>
    481   <td><code>A:</code> destination register (8 bits)<br/>
    482     <code>B:</code> size register<br/>
    483     <code>C:</code> type index</td>
    484   <td>Construct a new array of the indicated type and size. The type
    485     must be an array type.</td>
    486 </tr>
    487 <tr>
    488   <td>24 35c</td>
    489   <td>filled-new-array {vC, vD, vE, vF, vG}, type@BBBB</td>
    490   <td>
    491     <code>A:</code> array size and argument word count (4 bits)<br/>
    492     <code>B:</code> type index (16 bits)<br/>
    493     <code>C..G:</code> argument registers (4 bits each)
    494   </td>
    495   <td>Construct an array of the given type and size, filling it with the
    496     supplied contents. The type must be an array type. The array's
    497     contents must be single-word (that is,
    498     no arrays of <code>long</code> or <code>double</code>, but reference
    499     types are acceptable). The constructed
    500     instance is stored as a "result" in the same way that the method invocation
    501     instructions store their results, so the constructed instance must
    502     be moved to a register with an immediately subsequent
    503     <code>move-result-object</code> instruction (if it is to be used).</td>
    504 </tr>
    505 <tr>
    506   <td>25 3rc</td>
    507   <td>filled-new-array/range {vCCCC .. vNNNN}, type@BBBB</td>
    508   <td><code>A:</code> array size and argument word count (8 bits)<br/>
    509     <code>B:</code> type index (16 bits)<br/>
    510     <code>C:</code> first argument register (16 bits)<br/>
    511     <code>N = A + C - 1</code></td>
    512   <td>Construct an array of the given type and size, filling it with
    513     the supplied contents. Clarifications and restrictions are the same
    514     as <code>filled-new-array</code>, described above.</td>
    515 </tr>
    516 <tr>
    517   <td>26 31t</td>
    518   <td>fill-array-data vAA, +BBBBBBBB <i>(with supplemental data as specified
    519     below in "<code>fill-array-data-payload</code> Format")</i></td>
    520   <td><code>A:</code> array reference (8 bits)<br/>
    521     <code>B:</code> signed "branch" offset to table data pseudo-instruction
    522     (32 bits)
    523   </td>
    524   <td>Fill the given array with the indicated data. The reference must be
    525     to an array of primitives, and the data table must match it in type and
    526     must contain no more elements than will fit in the array. That is,
    527     the array may be larger than the table, and if so, only the initial
    528     elements of the array are set, leaving the remainder alone.
    529   </td>
    530 </tr>
    531 <tr>
    532   <td>27 11x</td>
    533   <td>throw vAA</td>
    534   <td><code>A:</code> exception-bearing register (8 bits)<br/></td>
    535   <td>Throw the indicated exception.</td>
    536 </tr>
    537 <tr>
    538   <td>28 10t</td>
    539   <td>goto +AA</td>
    540   <td><code>A:</code> signed branch offset (8 bits)</td>
    541   <td>Unconditionally jump to the indicated instruction.
    542     <p><b>Note:</b>
    543     The branch offset must not be <code>0</code>. (A spin
    544     loop may be legally constructed either with <code>goto/32</code> or
    545     by including a <code>nop</code> as a target before the branch.)</p>
    546   </td>
    547 </tr>
    548 <tr>
    549   <td>29 20t</td>
    550   <td>goto/16 +AAAA</td>
    551   <td><code>A:</code> signed branch offset (16 bits)<br/></td>
    552   <td>Unconditionally jump to the indicated instruction.
    553     <p><b>Note:</b>
    554     The branch offset must not be <code>0</code>. (A spin
    555     loop may be legally constructed either with <code>goto/32</code> or
    556     by including a <code>nop</code> as a target before the branch.)</p>
    557   </td>
    558 </tr>
    559 <tr>
    560   <td>2a 30t</td>
    561   <td>goto/32 +AAAAAAAA</td>
    562   <td><code>A:</code> signed branch offset (32 bits)<br/></td>
    563   <td>Unconditionally jump to the indicated instruction.</td>
    564 </tr>
    565 <tr>
    566   <td>2b 31t</td>
    567   <td>packed-switch vAA, +BBBBBBBB <i>(with supplemental data as
    568     specified below in "<code>packed-switch-payload</code> Format")</i></td>
    569   <td><code>A:</code> register to test<br/>
    570     <code>B:</code> signed "branch" offset to table data pseudo-instruction
    571     (32 bits)
    572   </td>
    573   <td>Jump to a new instruction based on the value in the
    574     given register, using a table of offsets corresponding to each value
    575     in a particular integral range, or fall through to the next
    576     instruction if there is no match.
    577   </td>
    578 </tr>
    579 <tr>
    580   <td>2c 31t</td>
    581   <td>sparse-switch vAA, +BBBBBBBB <i>(with supplemental data as
    582     specified below in "<code>sparse-switch-payload</code> Format")</i></td>
    583   <td><code>A:</code> register to test<br/>
    584     <code>B:</code> signed "branch" offset to table data pseudo-instruction
    585     (32 bits)
    586   </td>
    587   <td>Jump to a new instruction based on the value in the given
    588     register, using an ordered table of value-offset pairs, or fall
    589     through to the next instruction if there is no match.
    590   </td>
    591 </tr>
    592 <tr>
    593   <td>2d..31 23x</td>
    594   <td>cmp<i>kind</i> vAA, vBB, vCC<br/>
    595     2d: cmpl-float <i>(lt bias)</i><br/>
    596     2e: cmpg-float <i>(gt bias)</i><br/>
    597     2f: cmpl-double <i>(lt bias)</i><br/>
    598     30: cmpg-double <i>(gt bias)</i><br/>
    599     31: cmp-long
    600   </td>
    601   <td><code>A:</code> destination register (8 bits)<br/>
    602     <code>B:</code> first source register or pair<br/>
    603     <code>C:</code> second source register or pair</td>
    604   <td>Perform the indicated floating point or <code>long</code> comparison,
    605     setting <code>a</code> to <code>0</code> if <code>b == c</code>,
    606     <code>1</code> if <code>b &gt; c</code>,
    607     or <code>-1</code> if <code>b &lt; c</code>.
    608     The "bias" listed for the floating point operations
    609     indicates how <code>NaN</code> comparisons are treated: "gt bias"
    610     instructions return <code>1</code> for <code>NaN</code> comparisons,
    611     and "lt bias" instructions return <code>-1</code>.
    612     <p>For example, to check to see if floating point
    613     <code>x &lt; y</code> it is advisable to use
    614     <code>cmpg-float</code>; a result of <code>-1</code> indicates that
    615     the test was true, and the other values indicate it was false either
    616     due to a valid comparison or because one of the values was
    617     <code>NaN</code>.</p>
    618   </td>
    619 </tr>
    620 <tr>
    621   <td>32..37 22t</td>
    622   <td>if-<i>test</i> vA, vB, +CCCC<br/>
    623     32: if-eq<br/>
    624     33: if-ne<br/>
    625     34: if-lt<br/>
    626     35: if-ge<br/>
    627     36: if-gt<br/>
    628     37: if-le<br/>
    629   </td>
    630   <td><code>A:</code> first register to test (4 bits)<br/>
    631     <code>B:</code> second register to test (4 bits)<br/>
    632     <code>C:</code> signed branch offset (16 bits)</td>
    633   <td>Branch to the given destination if the given two registers' values
    634     compare as specified.
    635     <p><b>Note:</b>
    636     The branch offset must not be <code>0</code>. (A spin
    637     loop may be legally constructed either by branching around a
    638     backward <code>goto</code> or by including a <code>nop</code> as
    639     a target before the branch.)</p>
    640   </td>
    641 </tr>
    642 <tr>
    643   <td>38..3d 21t</td>
    644   <td>if-<i>test</i>z vAA, +BBBB<br/>
    645     38: if-eqz<br/>
    646     39: if-nez<br/>
    647     3a: if-ltz<br/>
    648     3b: if-gez<br/>
    649     3c: if-gtz<br/>
    650     3d: if-lez<br/>
    651   </td>
    652   <td><code>A:</code> register to test (8 bits)<br/>
    653     <code>B:</code> signed branch offset (16 bits)</td>
    654   <td>Branch to the given destination if the given register's value compares
    655     with 0 as specified.
    656     <p><b>Note:</b>
    657     The branch offset must not be <code>0</code>. (A spin
    658     loop may be legally constructed either by branching around a
    659     backward <code>goto</code> or by including a <code>nop</code> as
    660     a target before the branch.)</p>
    661   </td>
    662 </tr>
    663 <tr>
    664   <td>3e..43 10x</td>
    665   <td><i>(unused)</i></td>
    666   <td>&nbsp;</td>
    667   <td><i>(unused)</i></td>
    668 </tr>
    669 <tr>
    670   <td>44..51 23x</td>
    671   <td><i>arrayop</i> vAA, vBB, vCC<br/>
    672     44: aget<br/>
    673     45: aget-wide<br/>
    674     46: aget-object<br/>
    675     47: aget-boolean<br/>
    676     48: aget-byte<br/>
    677     49: aget-char<br/>
    678     4a: aget-short<br/>
    679     4b: aput<br/>
    680     4c: aput-wide<br/>
    681     4d: aput-object<br/>
    682     4e: aput-boolean<br/>
    683     4f: aput-byte<br/>
    684     50: aput-char<br/>
    685     51: aput-short
    686   </td>
    687   <td><code>A:</code> value register or pair; may be source or dest
    688       (8 bits)<br/>
    689     <code>B:</code> array register (8 bits)<br/>
    690     <code>C:</code> index register (8 bits)</td>
    691   <td>Perform the identified array operation at the identified index of
    692     the given array, loading or storing into the value register.</td>
    693 </tr>
    694 <tr>
    695   <td>52..5f 22c</td>
    696   <td>i<i>instanceop</i> vA, vB, field@CCCC<br/>
    697     52: iget<br/>
    698     53: iget-wide<br/>
    699     54: iget-object<br/>
    700     55: iget-boolean<br/>
    701     56: iget-byte<br/>
    702     57: iget-char<br/>
    703     58: iget-short<br/>
    704     59: iput<br/>
    705     5a: iput-wide<br/>
    706     5b: iput-object<br/>
    707     5c: iput-boolean<br/>
    708     5d: iput-byte<br/>
    709     5e: iput-char<br/>
    710     5f: iput-short
    711   </td>
    712   <td><code>A:</code> value register or pair; may be source or dest
    713       (4 bits)<br/>
    714     <code>B:</code> object register (4 bits)<br/>
    715     <code>C:</code> instance field reference index (16 bits)</td>
    716   <td>Perform the identified object instance field operation with
    717     the identified field, loading or storing into the value register.
    718     <p><b>Note:</b> These opcodes are reasonable candidates for static linking,
    719     altering the field argument to be a more direct offset.</p>
    720   </td>
    721 </tr>
    722 <tr>
    723   <td>60..6d 21c</td>
    724   <td>s<i>staticop</i> vAA, field@BBBB<br/>
    725     60: sget<br/>
    726     61: sget-wide<br/>
    727     62: sget-object<br/>
    728     63: sget-boolean<br/>
    729     64: sget-byte<br/>
    730     65: sget-char<br/>
    731     66: sget-short<br/>
    732     67: sput<br/>
    733     68: sput-wide<br/>
    734     69: sput-object<br/>
    735     6a: sput-boolean<br/>
    736     6b: sput-byte<br/>
    737     6c: sput-char<br/>
    738     6d: sput-short
    739   </td>
    740   <td><code>A:</code> value register or pair; may be source or dest
    741       (8 bits)<br/>
    742     <code>B:</code> static field reference index (16 bits)</td>
    743   <td>Perform the identified object static field operation with the identified
    744     static field, loading or storing into the value register.
    745     <p><b>Note:</b> These opcodes are reasonable candidates for static linking,
    746     altering the field argument to be a more direct offset.</p>
    747   </td>
    748 </tr>
    749 <tr>
    750   <td>6e..72 35c</td>
    751   <td>invoke-<i>kind</i> {vC, vD, vE, vF, vG}, meth@BBBB<br/>
    752     6e: invoke-virtual<br/>
    753     6f: invoke-super<br/>
    754     70: invoke-direct<br/>
    755     71: invoke-static<br/>
    756     72: invoke-interface
    757   </td>
    758   <td>
    759     <code>A:</code> argument word count (4 bits)<br/>
    760     <code>B:</code> method reference index (16 bits)<br/>
    761     <code>C..G:</code> argument registers (4 bits each)
    762   </td>
    763   <td>Call the indicated method. The result (if any) may be stored
    764     with an appropriate <code>move-result*</code> variant as the immediately
    765     subsequent instruction.
    766     <p><code>invoke-virtual</code> is used to invoke a normal virtual
    767     method (a method that is not <code>private</code>, <code>static</code>,
    768     or <code>final</code>, and is also not a constructor).</p>
    769     <p><code>invoke-super</code> is used to invoke the closest superclass's
    770     virtual method (as opposed to the one with the same <code>method_id</code>
    771     in the calling class). The same method restrictions hold as for
    772     <code>invoke-virtual</code>.</p>
    773     <p><code>invoke-direct</code> is used to invoke a non-<code>static</code>
    774     direct method (that is, an instance method that is by its nature
    775     non-overridable, namely either a <code>private</code> instance method
    776     or a constructor).</p>
    777     <p><code>invoke-static</code> is used to invoke a <code>static</code>
    778     method (which is always considered a direct method).</p>
    779     <p><code>invoke-interface</code> is used to invoke an
    780     <code>interface</code> method, that is, on an object whose concrete
    781     class isn't known, using a <code>method_id</code> that refers to
    782     an <code>interface</code>.</p>
    783     <p><b>Note:</b> These opcodes are reasonable candidates for static linking,
    784     altering the method argument to be a more direct offset
    785     (or pair thereof).</p>
    786   </td>
    787 </tr>
    788 <tr>
    789   <td>73 10x</td>
    790   <td><i>(unused)</i></td>
    791   <td>&nbsp;</td>
    792   <td><i>(unused)</i></td>
    793 </tr>
    794 <tr>
    795   <td>74..78 3rc</td>
    796   <td>invoke-<i>kind</i>/range {vCCCC .. vNNNN}, meth@BBBB<br/>
    797     74: invoke-virtual/range<br/>
    798     75: invoke-super/range<br/>
    799     76: invoke-direct/range<br/>
    800     77: invoke-static/range<br/>
    801     78: invoke-interface/range
    802   </td>
    803   <td><code>A:</code> argument word count (8 bits)<br/>
    804     <code>B:</code> method reference index (16 bits)<br/>
    805     <code>C:</code> first argument register (16 bits)<br/>
    806     <code>N = A + C - 1</code></td>
    807   <td>Call the indicated method. See first <code>invoke-<i>kind</i></code>
    808     description above for details, caveats, and suggestions.
    809   </td>
    810 </tr>
    811 <tr>
    812   <td>79..7a 10x</td>
    813   <td><i>(unused)</i></td>
    814   <td>&nbsp;</td>
    815   <td><i>(unused)</i></td>
    816 </tr>
    817 <tr>
    818   <td>7b..8f 12x</td>
    819   <td><i>unop</i> vA, vB<br/>
    820     7b: neg-int<br/>
    821     7c: not-int<br/>
    822     7d: neg-long<br/>
    823     7e: not-long<br/>
    824     7f: neg-float<br/>
    825     80: neg-double<br/>
    826     81: int-to-long<br/>
    827     82: int-to-float<br/>
    828     83: int-to-double<br/>
    829     84: long-to-int<br/>
    830     85: long-to-float<br/>
    831     86: long-to-double<br/>
    832     87: float-to-int<br/>
    833     88: float-to-long<br/>
    834     89: float-to-double<br/>
    835     8a: double-to-int<br/>
    836     8b: double-to-long<br/>
    837     8c: double-to-float<br/>
    838     8d: int-to-byte<br/>
    839     8e: int-to-char<br/>
    840     8f: int-to-short
    841   </td>
    842   <td><code>A:</code> destination register or pair (4 bits)<br/>
    843     <code>B:</code> source register or pair (4 bits)</td>
    844   <td>Perform the identified unary operation on the source register,
    845     storing the result in the destination register.</td>
    846 </tr>
    847 
    848 <tr>
    849   <td>90..af 23x</td>
    850   <td><i>binop</i> vAA, vBB, vCC<br/>
    851     90: add-int<br/>
    852     91: sub-int<br/>
    853     92: mul-int<br/>
    854     93: div-int<br/>
    855     94: rem-int<br/>
    856     95: and-int<br/>
    857     96: or-int<br/>
    858     97: xor-int<br/>
    859     98: shl-int<br/>
    860     99: shr-int<br/>
    861     9a: ushr-int<br/>
    862     9b: add-long<br/>
    863     9c: sub-long<br/>
    864     9d: mul-long<br/>
    865     9e: div-long<br/>
    866     9f: rem-long<br/>
    867     a0: and-long<br/>
    868     a1: or-long<br/>
    869     a2: xor-long<br/>
    870     a3: shl-long<br/>
    871     a4: shr-long<br/>
    872     a5: ushr-long<br/>
    873     a6: add-float<br/>
    874     a7: sub-float<br/>
    875     a8: mul-float<br/>
    876     a9: div-float<br/>
    877     aa: rem-float<br/>
    878     ab: add-double<br/>
    879     ac: sub-double<br/>
    880     ad: mul-double<br/>
    881     ae: div-double<br/>
    882     af: rem-double
    883   </td>
    884   <td><code>A:</code> destination register or pair (8 bits)<br/>
    885     <code>B:</code> first source register or pair (8 bits)<br/>
    886     <code>C:</code> second source register or pair (8 bits)</td>
    887   <td>Perform the identified binary operation on the two source registers,
    888     storing the result in the first source register.</td>
    889 </tr>
    890 <tr>
    891   <td>b0..cf 12x</td>
    892   <td><i>binop</i>/2addr vA, vB<br/>
    893     b0: add-int/2addr<br/>
    894     b1: sub-int/2addr<br/>
    895     b2: mul-int/2addr<br/>
    896     b3: div-int/2addr<br/>
    897     b4: rem-int/2addr<br/>
    898     b5: and-int/2addr<br/>
    899     b6: or-int/2addr<br/>
    900     b7: xor-int/2addr<br/>
    901     b8: shl-int/2addr<br/>
    902     b9: shr-int/2addr<br/>
    903     ba: ushr-int/2addr<br/>
    904     bb: add-long/2addr<br/>
    905     bc: sub-long/2addr<br/>
    906     bd: mul-long/2addr<br/>
    907     be: div-long/2addr<br/>
    908     bf: rem-long/2addr<br/>
    909     c0: and-long/2addr<br/>
    910     c1: or-long/2addr<br/>
    911     c2: xor-long/2addr<br/>
    912     c3: shl-long/2addr<br/>
    913     c4: shr-long/2addr<br/>
    914     c5: ushr-long/2addr<br/>
    915     c6: add-float/2addr<br/>
    916     c7: sub-float/2addr<br/>
    917     c8: mul-float/2addr<br/>
    918     c9: div-float/2addr<br/>
    919     ca: rem-float/2addr<br/>
    920     cb: add-double/2addr<br/>
    921     cc: sub-double/2addr<br/>
    922     cd: mul-double/2addr<br/>
    923     ce: div-double/2addr<br/>
    924     cf: rem-double/2addr
    925   </td>
    926   <td><code>A:</code> destination and first source register or pair
    927       (4 bits)<br/>
    928     <code>B:</code> second source register or pair (4 bits)</td>
    929   <td>Perform the identified binary operation on the two source registers,
    930     storing the result in the first source register.</td>
    931 </tr>
    932 <tr>
    933   <td>d0..d7 22s</td>
    934   <td><i>binop</i>/lit16 vA, vB, #+CCCC<br/>
    935     d0: add-int/lit16<br/>
    936     d1: rsub-int (reverse subtract)<br/>
    937     d2: mul-int/lit16<br/>
    938     d3: div-int/lit16<br/>
    939     d4: rem-int/lit16<br/>
    940     d5: and-int/lit16<br/>
    941     d6: or-int/lit16<br/>
    942     d7: xor-int/lit16
    943   </td>
    944   <td><code>A:</code> destination register (4 bits)<br/>
    945     <code>B:</code> source register (4 bits)<br/>
    946     <code>C:</code> signed int constant (16 bits)</td>
    947   <td>Perform the indicated binary op on the indicated register (first
    948     argument) and literal value (second argument), storing the result in
    949     the destination register.
    950     <p><b>Note:</b>
    951     <code>rsub-int</code> does not have a suffix since this version is the
    952     main opcode of its family. Also, see below for details on its semantics.
    953     </p>
    954   </td>
    955 </tr>
    956 <tr>
    957   <td>d8..e2 22b</td>
    958   <td><i>binop</i>/lit8 vAA, vBB, #+CC<br/>
    959     d8: add-int/lit8<br/>
    960     d9: rsub-int/lit8<br/>
    961     da: mul-int/lit8<br/>
    962     db: div-int/lit8<br/>
    963     dc: rem-int/lit8<br/>
    964     dd: and-int/lit8<br/>
    965     de: or-int/lit8<br/>
    966     df: xor-int/lit8<br/>
    967     e0: shl-int/lit8<br/>
    968     e1: shr-int/lit8<br/>
    969     e2: ushr-int/lit8
    970   </td>
    971   <td><code>A:</code> destination register (8 bits)<br/>
    972     <code>B:</code> source register (8 bits)<br/>
    973     <code>C:</code> signed int constant (8 bits)</td>
    974   <td>Perform the indicated binary op on the indicated register (first
    975     argument) and literal value (second argument), storing the result
    976     in the destination register.
    977     <p><b>Note:</b> See below for details on the semantics of
    978     <code>rsub-int</code>.</p>
    979   </td>
    980 </tr>
    981 <tr>
    982   <td>e3..ff 10x</td>
    983   <td><i>(unused)</i></td>
    984   <td>&nbsp;</td>
    985   <td><i>(unused)</i></td>
    986 </tr>
    987 </tbody>
    988 </table>
    989 
    990 <h2>packed-switch-payload Format</h2>
    991 
    992 <table class="supplement">
    993 <thead>
    994 <tr>
    995   <th>Name</th>
    996   <th>Format</th>
    997   <th>Description</th>
    998 </tr>
    999 </thead>
   1000 <tbody>
   1001 <tr>
   1002   <td>ident</td>
   1003   <td>ushort = 0x0100</td>
   1004   <td>identifying pseudo-opcode</td>
   1005 </tr>
   1006 <tr>
   1007   <td>size</td>
   1008   <td>ushort</td>
   1009   <td>number of entries in the table</td>
   1010 </tr>
   1011 <tr>
   1012   <td>first_key</td>
   1013   <td>int</td>
   1014   <td>first (and lowest) switch case value</td>
   1015 </tr>
   1016 <tr>
   1017   <td>targets</td>
   1018   <td>int[]</td>
   1019   <td>list of <code>size</code> relative branch targets. The targets are
   1020     relative to the address of the switch opcode, not of this table.
   1021   </td>
   1022 </tr>
   1023 </tbody>
   1024 </table>
   1025 
   1026 <p><b>Note:</b> The total number of code units for an instance of this
   1027 table is <code>(size * 2) + 4</code>.</p>
   1028 
   1029 <h2>sparse-switch-payload Format</h2>
   1030 
   1031 <table class="supplement">
   1032 <thead>
   1033 <tr>
   1034   <th>Name</th>
   1035   <th>Format</th>
   1036   <th>Description</th>
   1037 </tr>
   1038 </thead>
   1039 <tbody>
   1040 <tr>
   1041   <td>ident</td>
   1042   <td>ushort = 0x0200</td>
   1043   <td>identifying pseudo-opcode</td>
   1044 </tr>
   1045 <tr>
   1046   <td>size</td>
   1047   <td>ushort</td>
   1048   <td>number of entries in the table</td>
   1049 </tr>
   1050 <tr>
   1051   <td>keys</td>
   1052   <td>int[]</td>
   1053   <td>list of <code>size</code> key values, sorted low-to-high</td>
   1054 </tr>
   1055 <tr>
   1056   <td>targets</td>
   1057   <td>int[]</td>
   1058   <td>list of <code>size</code> relative branch targets, each corresponding
   1059     to the key value at the same index. The targets are
   1060     relative to the address of the switch opcode, not of this table.
   1061   </td>
   1062 </tr>
   1063 </tbody>
   1064 </table>
   1065 
   1066 <p><b>Note:</b> The total number of code units for an instance of this
   1067 table is <code>(size * 4) + 2</code>.</p>
   1068 
   1069 <h2>fill-array-data-payload Format</h2>
   1070 
   1071 <table class="supplement">
   1072 <thead>
   1073 <tr>
   1074   <th>Name</th>
   1075   <th>Format</th>
   1076   <th>Description</th>
   1077 </tr>
   1078 </thead>
   1079 <tbody>
   1080 <tr>
   1081   <td>ident</td>
   1082   <td>ushort = 0x0300</td>
   1083   <td>identifying pseudo-opcode</td>
   1084 </tr>
   1085 <tr>
   1086   <td>element_width</td>
   1087   <td>ushort</td>
   1088   <td>number of bytes in each element</td>
   1089 </tr>
   1090 <tr>
   1091   <td>size</td>
   1092   <td>uint</td>
   1093   <td>number of elements in the table</td>
   1094 </tr>
   1095 <tr>
   1096   <td>data</td>
   1097   <td>ubyte[]</td>
   1098   <td>data values</td>
   1099 </tr>
   1100 </tbody>
   1101 </table>
   1102 
   1103 <p><b>Note:</b> The total number of code units for an instance of this
   1104 table is <code>(size * element_width + 1) / 2 + 4</code>.</p>
   1105 
   1106 
   1107 <h2>Mathematical Operation Details</h2>
   1108 
   1109 <p><b>Note:</b> Floating point operations must follow IEEE 754 rules, using
   1110 round-to-nearest and gradual underflow, except where stated otherwise.</p>
   1111 
   1112 <table class="math">
   1113 <thead>
   1114 <tr>
   1115   <th>Opcode</th>
   1116   <th>C Semantics</th>
   1117   <th>Notes</th>
   1118 </tr>
   1119 </thead>
   1120 <tbody>
   1121 <tr>
   1122   <td>neg-int</td>
   1123   <td>int32 a;<br/>
   1124     int32 result = -a;
   1125   </td>
   1126   <td>Unary twos-complement.</td>
   1127 </tr>
   1128 <tr>
   1129   <td>not-int</td>
   1130   <td>int32 a;<br/>
   1131     int32 result = ~a;
   1132   </td>
   1133   <td>Unary ones-complement.</td>
   1134 </tr>
   1135 <tr>
   1136   <td>neg-long</td>
   1137   <td>int64 a;<br/>
   1138     int64 result = -a;
   1139   </td>
   1140   <td>Unary twos-complement.</td>
   1141 </tr>
   1142 <tr>
   1143   <td>not-long</td>
   1144   <td>int64 a;<br/>
   1145     int64 result = ~a;
   1146   </td>
   1147   <td>Unary ones-complement.</td>
   1148 </tr>
   1149 <tr>
   1150   <td>neg-float</td>
   1151   <td>float a;<br/>
   1152     float result = -a;
   1153   </td>
   1154   <td>Floating point negation.</td>
   1155 </tr>
   1156 <tr>
   1157   <td>neg-double</td>
   1158   <td>double a;<br/>
   1159     double result = -a;
   1160   </td>
   1161   <td>Floating point negation.</td>
   1162 </tr>
   1163 <tr>
   1164   <td>int-to-long</td>
   1165   <td>int32 a;<br/>
   1166     int64 result = (int64) a;
   1167   </td>
   1168   <td>Sign extension of <code>int32</code> into <code>int64</code>.</td>
   1169 </tr>
   1170 <tr>
   1171   <td>int-to-float</td>
   1172   <td>int32 a;<br/>
   1173     float result = (float) a;
   1174   </td>
   1175   <td>Conversion of <code>int32</code> to <code>float</code>, using
   1176     round-to-nearest. This loses precision for some values.
   1177   </td>
   1178 </tr>
   1179 <tr>
   1180   <td>int-to-double</td>
   1181   <td>int32 a;<br/>
   1182     double result = (double) a;
   1183   </td>
   1184   <td>Conversion of <code>int32</code> to <code>double</code>.</td>
   1185 </tr>
   1186 <tr>
   1187   <td>long-to-int</td>
   1188   <td>int64 a;<br/>
   1189     int32 result = (int32) a;
   1190   </td>
   1191   <td>Truncation of <code>int64</code> into <code>int32</code>.</td>
   1192 </tr>
   1193 <tr>
   1194   <td>long-to-float</td>
   1195   <td>int64 a;<br/>
   1196     float result = (float) a;
   1197   </td>
   1198   <td>Conversion of <code>int64</code> to <code>float</code>, using
   1199     round-to-nearest. This loses precision for some values.
   1200   </td>
   1201 </tr>
   1202 <tr>
   1203   <td>long-to-double</td>
   1204   <td>int64 a;<br/>
   1205     double result = (double) a;
   1206   </td>
   1207   <td>Conversion of <code>int64</code> to <code>double</code>, using
   1208     round-to-nearest. This loses precision for some values.
   1209   </td>
   1210 </tr>
   1211 <tr>
   1212   <td>float-to-int</td>
   1213   <td>float a;<br/>
   1214     int32 result = (int32) a;
   1215   </td>
   1216   <td>Conversion of <code>float</code> to <code>int32</code>, using
   1217     round-toward-zero. <code>NaN</code> and <code>-0.0</code> (negative zero)
   1218     convert to the integer <code>0</code>. Infinities and values with
   1219     too large a magnitude to be represented get converted to either
   1220     <code>0x7fffffff</code> or <code>-0x80000000</code> depending on sign.
   1221   </td>
   1222 </tr>
   1223 <tr>
   1224   <td>float-to-long</td>
   1225   <td>float a;<br/>
   1226     int64 result = (int64) a;
   1227   </td>
   1228   <td>Conversion of <code>float</code> to <code>int64</code>, using
   1229     round-toward-zero. The same special case rules as for
   1230     <code>float-to-int</code> apply here, except that out-of-range values
   1231     get converted to either <code>0x7fffffffffffffff</code> or
   1232     <code>-0x8000000000000000</code> depending on sign.
   1233   </td>
   1234 </tr>
   1235 <tr>
   1236   <td>float-to-double</td>
   1237   <td>float a;<br/>
   1238     double result = (double) a;
   1239   </td>
   1240   <td>Conversion of <code>float</code> to <code>double</code>, preserving
   1241     the value exactly.
   1242   </td>
   1243 </tr>
   1244 <tr>
   1245   <td>double-to-int</td>
   1246   <td>double a;<br/>
   1247     int32 result = (int32) a;
   1248   </td>
   1249   <td>Conversion of <code>double</code> to <code>int32</code>, using
   1250     round-toward-zero. The same special case rules as for
   1251     <code>float-to-int</code> apply here.
   1252   </td>
   1253 </tr>
   1254 <tr>
   1255   <td>double-to-long</td>
   1256   <td>double a;<br/>
   1257     int64 result = (int64) a;
   1258   </td>
   1259   <td>Conversion of <code>double</code> to <code>int64</code>, using
   1260     round-toward-zero. The same special case rules as for
   1261     <code>float-to-long</code> apply here.
   1262   </td>
   1263 </tr>
   1264 <tr>
   1265   <td>double-to-float</td>
   1266   <td>double a;<br/>
   1267     float result = (float) a;
   1268   </td>
   1269   <td>Conversion of <code>double</code> to <code>float</code>, using
   1270     round-to-nearest. This loses precision for some values.
   1271   </td>
   1272 </tr>
   1273 <tr>
   1274   <td>int-to-byte</td>
   1275   <td>int32 a;<br/>
   1276     int32 result = (a &lt;&lt; 24) &gt;&gt; 24;
   1277   </td>
   1278   <td>Truncation of <code>int32</code> to <code>int8</code>, sign
   1279     extending the result.
   1280   </td>
   1281 </tr>
   1282 <tr>
   1283   <td>int-to-char</td>
   1284   <td>int32 a;<br/>
   1285     int32 result = a &amp; 0xffff;
   1286   </td>
   1287   <td>Truncation of <code>int32</code> to <code>uint16</code>, without
   1288     sign extension.
   1289   </td>
   1290 </tr>
   1291 <tr>
   1292   <td>int-to-short</td>
   1293   <td>int32 a;<br/>
   1294     int32 result = (a &lt;&lt; 16) &gt;&gt; 16;
   1295   </td>
   1296   <td>Truncation of <code>int32</code> to <code>int16</code>, sign
   1297     extending the result.
   1298   </td>
   1299 </tr>
   1300 <tr>
   1301   <td>add-int</td>
   1302   <td>int32 a, b;<br/>
   1303     int32 result = a + b;
   1304   </td>
   1305   <td>Twos-complement addition.</td>
   1306 </tr>
   1307 <tr>
   1308   <td>sub-int</td>
   1309   <td>int32 a, b;<br/>
   1310     int32 result = a - b;
   1311   </td>
   1312   <td>Twos-complement subtraction.</td>
   1313 </tr>
   1314 <tr>
   1315   <td>rsub-int</td>
   1316   <td>int32 a, b;<br/>
   1317     int32 result = b - a;
   1318   </td>
   1319   <td>Twos-complement reverse subtraction.</td>
   1320 </tr>
   1321 <tr>
   1322   <td>mul-int</td>
   1323   <td>int32 a, b;<br/>
   1324     int32 result = a * b;
   1325   </td>
   1326   <td>Twos-complement multiplication.</td>
   1327 </tr>
   1328 <tr>
   1329   <td>div-int</td>
   1330   <td>int32 a, b;<br/>
   1331     int32 result = a / b;
   1332   </td>
   1333   <td>Twos-complement division, rounded towards zero (that is, truncated to
   1334     integer). This throws <code>ArithmeticException</code> if
   1335     <code>b == 0</code>.
   1336   </td>
   1337 </tr>
   1338 <tr>
   1339   <td>rem-int</td>
   1340   <td>int32 a, b;<br/>
   1341     int32 result = a % b;
   1342   </td>
   1343   <td>Twos-complement remainder after division. The sign of the result
   1344     is the same as that of <code>a</code>, and it is more precisely
   1345     defined as <code>result == a - (a / b) * b</code>. This throws
   1346     <code>ArithmeticException</code> if <code>b == 0</code>.
   1347   </td>
   1348 </tr>
   1349 <tr>
   1350   <td>and-int</td>
   1351   <td>int32 a, b;<br/>
   1352     int32 result = a &amp; b;
   1353   </td>
   1354   <td>Bitwise AND.</td>
   1355 </tr>
   1356 <tr>
   1357   <td>or-int</td>
   1358   <td>int32 a, b;<br/>
   1359     int32 result = a | b;
   1360   </td>
   1361   <td>Bitwise OR.</td>
   1362 </tr>
   1363 <tr>
   1364   <td>xor-int</td>
   1365   <td>int32 a, b;<br/>
   1366     int32 result = a ^ b;
   1367   </td>
   1368   <td>Bitwise XOR.</td>
   1369 </tr>
   1370 <tr>
   1371   <td>shl-int</td>
   1372   <td>int32 a, b;<br/>
   1373     int32 result = a &lt;&lt; (b &amp; 0x1f);
   1374   </td>
   1375   <td>Bitwise shift left (with masked argument).</td>
   1376 </tr>
   1377 <tr>
   1378   <td>shr-int</td>
   1379   <td>int32 a, b;<br/>
   1380     int32 result = a &gt;&gt; (b &amp; 0x1f);
   1381   </td>
   1382   <td>Bitwise signed shift right (with masked argument).</td>
   1383 </tr>
   1384 <tr>
   1385   <td>ushr-int</td>
   1386   <td>uint32 a, b;<br/>
   1387     int32 result = a &gt;&gt; (b &amp; 0x1f);
   1388   </td>
   1389   <td>Bitwise unsigned shift right (with masked argument).</td>
   1390 </tr>
   1391 <tr>
   1392   <td>add-long</td>
   1393   <td>int64 a, b;<br/>
   1394     int64 result = a + b;
   1395   </td>
   1396   <td>Twos-complement addition.</td>
   1397 </tr>
   1398 <tr>
   1399   <td>sub-long</td>
   1400   <td>int64 a, b;<br/>
   1401     int64 result = a - b;
   1402   </td>
   1403   <td>Twos-complement subtraction.</td>
   1404 </tr>
   1405 <tr>
   1406   <td>mul-long</td>
   1407   <td>int64 a, b;<br/>
   1408     int64 result = a * b;
   1409   </td>
   1410   <td>Twos-complement multiplication.</td>
   1411 </tr>
   1412 <tr>
   1413   <td>div-long</td>
   1414   <td>int64 a, b;<br/>
   1415     int64 result = a / b;
   1416   </td>
   1417   <td>Twos-complement division, rounded towards zero (that is, truncated to
   1418     integer). This throws <code>ArithmeticException</code> if
   1419     <code>b == 0</code>.
   1420   </td>
   1421 </tr>
   1422 <tr>
   1423   <td>rem-long</td>
   1424   <td>int64 a, b;<br/>
   1425     int64 result = a % b;
   1426   </td>
   1427   <td>Twos-complement remainder after division. The sign of the result
   1428     is the same as that of <code>a</code>, and it is more precisely
   1429     defined as <code>result == a - (a / b) * b</code>. This throws
   1430     <code>ArithmeticException</code> if <code>b == 0</code>.
   1431   </td>
   1432 </tr>
   1433 <tr>
   1434   <td>and-long</td>
   1435   <td>int64 a, b;<br/>
   1436     int64 result = a &amp; b;
   1437   </td>
   1438   <td>Bitwise AND.</td>
   1439 </tr>
   1440 <tr>
   1441   <td>or-long</td>
   1442   <td>int64 a, b;<br/>
   1443     int64 result = a | b;
   1444   </td>
   1445   <td>Bitwise OR.</td>
   1446 </tr>
   1447 <tr>
   1448   <td>xor-long</td>
   1449   <td>int64 a, b;<br/>
   1450     int64 result = a ^ b;
   1451   </td>
   1452   <td>Bitwise XOR.</td>
   1453 </tr>
   1454 <tr>
   1455   <td>shl-long</td>
   1456   <td>int64 a, b;<br/>
   1457     int64 result = a &lt;&lt; (b &amp; 0x3f);
   1458   </td>
   1459   <td>Bitwise shift left (with masked argument).</td>
   1460 </tr>
   1461 <tr>
   1462   <td>shr-long</td>
   1463   <td>int64 a, b;<br/>
   1464     int64 result = a &gt;&gt; (b &amp; 0x3f);
   1465   </td>
   1466   <td>Bitwise signed shift right (with masked argument).</td>
   1467 </tr>
   1468 <tr>
   1469   <td>ushr-long</td>
   1470   <td>uint64 a, b;<br/>
   1471     int64 result = a &gt;&gt; (b &amp; 0x3f);
   1472   </td>
   1473   <td>Bitwise unsigned shift right (with masked argument).</td>
   1474 </tr>
   1475 <tr>
   1476   <td>add-float</td>
   1477   <td>float a, b;<br/>
   1478     float result = a + b;
   1479   </td>
   1480   <td>Floating point addition.</td>
   1481 </tr>
   1482 <tr>
   1483   <td>sub-float</td>
   1484   <td>float a, b;<br/>
   1485     float result = a - b;
   1486   </td>
   1487   <td>Floating point subtraction.</td>
   1488 </tr>
   1489 <tr>
   1490   <td>mul-float</td>
   1491   <td>float a, b;<br/>
   1492     float result = a * b;
   1493   </td>
   1494   <td>Floating point multiplication.</td>
   1495 </tr>
   1496 <tr>
   1497   <td>div-float</td>
   1498   <td>float a, b;<br/>
   1499     float result = a / b;
   1500   </td>
   1501   <td>Floating point division.</td>
   1502 </tr>
   1503 <tr>
   1504   <td>rem-float</td>
   1505   <td>float a, b;<br/>
   1506     float result = a % b;
   1507   </td>
   1508   <td>Floating point remainder after division. This function is different
   1509     than IEEE 754 remainder and is defined as
   1510     <code>result == a - roundTowardZero(a / b) * b</code>.
   1511   </td>
   1512 </tr>
   1513 <tr>
   1514   <td>add-double</td>
   1515   <td>double a, b;<br/>
   1516     double result = a + b;
   1517   </td>
   1518   <td>Floating point addition.</td>
   1519 </tr>
   1520 <tr>
   1521   <td>sub-double</td>
   1522   <td>double a, b;<br/>
   1523     double result = a - b;
   1524   </td>
   1525   <td>Floating point subtraction.</td>
   1526 </tr>
   1527 <tr>
   1528   <td>mul-double</td>
   1529   <td>double a, b;<br/>
   1530     double result = a * b;
   1531   </td>
   1532   <td>Floating point multiplication.</td>
   1533 </tr>
   1534 <tr>
   1535   <td>div-double</td>
   1536   <td>double a, b;<br/>
   1537     double result = a / b;
   1538   </td>
   1539   <td>Floating point division.</td>
   1540 </tr>
   1541 <tr>
   1542   <td>rem-double</td>
   1543   <td>double a, b;<br/>
   1544     double result = a % b;
   1545   </td>
   1546   <td>Floating point remainder after division. This function is different
   1547     than IEEE 754 remainder and is defined as
   1548     <code>result == a - roundTowardZero(a / b) * b</code>.
   1549   </td>
   1550 </tr>
   1551 </tbody>
   1552 </table>
   1553