1 page.title=Encryption 2 @jd:body 3 4 <!-- 5 Copyright 2014 The Android Open Source Project 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 --> 19 20 <div id="qv-wrapper"> 21 <div id="qv"> 22 <h2>In this document</h2> 23 <ol id="auto-toc"> 24 </ol> 25 </div> 26 </div> 27 28 <h2 id=what_is_encryption>What is encryption?</h2> 29 30 <p>Encryption is the process of encoding user data on an Android device using an 31 encrypted key. Once a device is encrypted, all user-created data is 32 automatically encrypted before committing it to disk and all reads 33 automatically decrypt data before returning it to the calling process.</p> 34 35 <h2 id=what_weve_added_for_android_l>What weve added for Android L</h2> 36 37 <ul> 38 <li>Created fast encryption, which only encrypts used blocks on the data partition 39 to avoid first boot taking a long time. Only ext4 and f2fs filesystems 40 currently support fast encryption. 41 <li>Added the <code>forceencrypt</code> flag to encrypt on first boot. 42 <li>Added support for patterns and encryption without a password. 43 <li>Added hardware-backed storage of the encryption key. See <a 44 href="#storing_the_encrypted_key">Storing the encrypted key</a> for more details. 45 </ul> 46 47 <h2 id=how_android_encryption_works>How Android encryption works</h2> 48 49 <p>Android disk encryption is based on <code>dm-crypt</code>, which is a kernel feature that works at the block device layer. Because of 50 this, encryption works with Embedded MultiMediaCard<strong> (</strong>eMMC) and similar flash devices that present themselves to the kernel as block 51 devices. Encryption is not possible with YAFFS, which talks directly to a raw 52 NAND flash chip. </p> 53 54 <p>The encryption algorithm is 128 Advanced Encryption Standard (AES) with 55 cipher-block chaining (CBC) and ESSIV:SHA256. The master key is encrypted with 56 128-bit AES via calls to the OpenSSL library. You must use 128 bits or more for 57 the key (with 256 being optional). </p> 58 59 <p class="note"><strong>Note:</strong> OEMs can use 128-bit or higher to encrypt the master key.</p> 60 61 <p>In the L release, there are four kinds of encryption states: </p> 62 63 <ul> 64 <li>default 65 <li>PIN 66 <li>password 67 <li>pattern 68 </ul> 69 70 <p>Upon first boot, the device generates a 128-bit key. This key is then encrypted 71 with a default password, and the encrypted key is stored in the crypto 72 metadata. The 128-bit key generated is valid until the next factory reset. Upon 73 factory reset, a new 128-bit key is generated.</p> 74 75 <p>When the user sets the PIN/pass or password on the device, only the 128-bit key 76 is re-encrypted and stored. (ie. user PIN/pass/pattern changes do NOT cause 77 re-encryption of userdata.) </p> 78 79 <p>Encryption is managed by <code>init</code> and <code>vold</code>. <code>init</code> calls <code>vold</code>, and vold sets properties to trigger events in init. Other parts of the system 80 also look at the properties to conduct tasks such as report status, ask for a 81 password, or prompt to factory reset in the case of a fatal error. To invoke 82 encryption features in <code>vold</code>, the system uses the command line tool <code>vdc</code>s <code>cryptfs</code> commands: <code>checkpw</code>, <code>restart</code>, <code>enablecrypto</code>, <code>changepw</code>, <code>cryptocomplete</code>, <code>verifypw</code>, <code>setfield</code>, <code>getfield</code>, <code>mountdefaultencrypted</code>, <code>getpwtype</code>, <code>getpw</code>, and <code>clearpw</code>.</p> 83 84 <p>In order to encrypt, decrypt or wipe <code>/data</code>, <code>/data</code> must not be mounted. However, in order to show any user interface (UI), the 85 framework must start and the framework requires <code>/data</code> to run. To resolve this conundrum, a temporary filesystem is mounted on <code>/data</code>. This allows Android to prompt for passwords, show progress, or suggest a data 86 wipe as needed. It does impose the limitation that in order to switch from the 87 temporary filesystem to the true <code>/data</code> filesystem, the system must stop every process with open files on the 88 temporary filesystem and restart those processes on the real <code>/data</code> filesystem. To do this, all services must be in one of three groups: <code>core</code>, <code>main</code>, and <code>late_start</code>.</p> 89 90 <ul> 91 <li><code>core</code>: Never shut down after starting. 92 <li><code>main</code>: Shut down and then restart after the disk password is entered. 93 <li><code>late_start</code>: Does not start until after <code>/data</code> has been decrypted and mounted. 94 </ul> 95 96 <p>To trigger these actions, the <code>vold.decrypt</code> property is set to <a href="https://android.googlesource.com/platform/system/vold/+/master/cryptfs.c">various strings</a>. To kill and restart services, the <code>init</code> commands are:</p> 97 98 <ul> 99 <li><code>class_reset</code>: Stops a service but allows it to be restarted with class_start. 100 <li><code>class_start</code>: Restarts a service. 101 <li><code>class_stop</code>: Stops a service and adds a <code>SVC_DISABLED</code> flag. Stopped services do not respond to <code>class_start</code>. 102 </ul> 103 104 <h2 id=flows>Flows</h2> 105 106 <p>There are four flows for an encrypted device. A device is encrypted just once 107 and then follows a normal boot flow. </p> 108 109 <ul> 110 <li>Encrypt a previously unencrypted device: 111 <ul> 112 <li>Encrypt a new device with <code>forceencrypt</code>: Mandatory encryption at first boot (starting in Android L). 113 <li>Encrypt an existing device: User-initiated encryption (Android K and earlier). 114 </ul> 115 <li>Boot an encrypted device: 116 <ul> 117 <li>Starting an encrypted device with no password: Booting an encrypted device that 118 has no set password (relevant for devices running Android L and later). 119 <li> Starting an encrypted device with a password: Booting an encrypted device that 120 has a set password. 121 </ul> 122 </ul> 123 124 <p>In addition to these flows, the device can also fail to encrypt <code>/data</code>. Each of the flows are explained in detail below.</p> 125 126 <h3 id=encrypt_a_new_device_with_forceencrypt>Encrypt a new device with <code>/forceencrypt</code></h3> 127 128 <p>This is the normal first boot for an Android L device. </p> 129 130 <ol> 131 <li><strong>Detect unencrypted filesystem with <code>/forceencrypt</code> flag</strong> 132 133 <p> 134 <code>/data</code> is not encrypted but needs to be because <code>/forceencrypt</code> mandates it. 135 Unmount <code>/data</code>.</p> 136 137 <li><strong>Start encrypting <code>/data</code></strong> 138 139 <p><code>vold.decrypt = "trigger_encryption"</code> triggers <code>init.rc</code>, which will cause <code>vold</code> to encrypt <code>/data</code> with no password. (None is set because this should be a new device.)</p> 140 141 142 <li><strong>Mount tmpfs</strong> 143 144 145 <p><code>vold</code> mounts a tmpfs <code>/data</code> (using the tmpfs options from 146 <code>ro.crypto.tmpfs_options</code>) and sets the property <code>vold.encrypt_progress</code> to 0. 147 <code>vold</code> prepepares the tmpfs <code>/data</code> for booting an encrypted system and sets the 148 property <code>vold.decrypt</code> to: <code>trigger_restart_min_framework</code> 149 </p> 150 151 <li><strong>Bring up framework to show progress</strong> 152 153 154 <p>Because the device has virtually no data to encrypt, the progress bar will 155 often not actually appear because encryption happens so quickly. See <a href="#encrypt_an_existing_device">Encrypt an existing device</a> for more details about the progress UI. </p> 156 157 <li><strong>When <code>/data</code> is encrypted, take down the framework</strong> 158 159 <p><code>vold</code> sets <code>vold.decrypt</code> to <code>trigger_default_encryption</code> which starts the <code>defaultcrypto</code> service. (This starts the flow below for mounting a default encrypted 160 userdata.) <code>trigger_default_encryption</code> checks the encryption type to see if <code>/data</code> is encrypted with or without a password. Because Android L devices are 161 encrypted on first boot, there should be no password set; therefore we decrypt 162 and mount <code>/data</code>.</p> 163 164 <li><strong>Mount <code>/data</code></strong> 165 166 <p><code>init</code> then mounts <code>/data</code> on a tmpfs RAMDisk using parameters it picks up from <code>ro.crypto.tmpfs_options</code>, which is set in <code>init.rc</code>.</p> 167 168 <li><strong>Start framework</strong> 169 170 <p>Set <code>vold</code> to <code>trigger_restart_framework</code>, which continues the usual boot process.</p> 171 </ol> 172 173 <h3 id=encrypt_an_existing_device>Encrypt an existing device</h3> 174 175 <p>This is what happens when you encrypt an unencrypted Android K or earlier 176 device that has been migrated to L. Note that this is the same flow as used in 177 K.</p> 178 179 <p>This process is user-initiated and is referred to as inplace encryption in 180 the code. When a user selects to encrypt a device, the UI makes sure the 181 battery is fully charged and the AC adapter is plugged in so there is enough 182 power to finish the encryption process.</p> 183 184 <p class="warning"><strong>Warning:</strong> If the device runs out of power and shuts down before it has finished 185 encrypting, file data is left in a partially encrypted state. The device must 186 be factory reset and all data is lost.</p> 187 188 <p>To enable inplace encryption, <code>vold</code> starts a loop to read each sector of the real block device and then write it 189 to the crypto block device. <code>vold</code> checks to see if a sector is in use before reading and writing it, which makes 190 encryption much faster on a new device that has little to no data. </p> 191 192 <p><strong>State of device</strong>: Set <code>ro.crypto.state = "unencrypted"</code> and execute the <code>on nonencrypted</code> <code>init</code> trigger to continue booting.</p> 193 194 <ol> 195 <li><strong>Check password</strong> 196 197 <p>The UI calls <code>vold</code> with the command <code>cryptfs enablecrypto inplace</code> where <code>passwd</code> is the user's lock screen password.</p> 198 199 <li><strong>Take down the framework</strong> 200 201 <p><code>vold</code> checks for errors, returns -1 if it can't encrypt, and prints a reason in the 202 log. If it can encrypt, it sets the property <code>vold.decrypt</code> to <code>trigger_shutdown_framework</code>. This causes <code>init.rc</code> to stop services in the classes <code>late_start</code> and <code>main</code>. </p> 203 204 <li><strong>Unmount <code>/data</code></strong> 205 206 <p><code>vold</code> unmounts <code>/mnt/sdcard</code> and then <code>/data</code>.</p> 207 208 <li><strong>Start encrypting <code>/data</code></strong> 209 210 <p><code>vold</code> then sets up the crypto mapping, which creates a virtual crypto block device 211 that maps onto the real block device but encrypts each sector as it is written, 212 and decrypts each sector as it is read. <code>vold</code> then creates and writes out the crypto metadata.</p> 213 214 <li><strong>While its encrypting, mount tmpfs</strong> 215 216 <p><code>vold</code> mounts a tmpfs <code>/data</code> (using the tmpfs options from <code>ro.crypto.tmpfs_options</code>) and sets the property <code>vold.encrypt_progress</code> to 0. <code>vold</code> prepares the tmpfs <code>/data</code> for booting an encrypted system and sets the property <code>vold.decrypt</code> to: <code>trigger_restart_min_framework</code> </p> 217 218 <li><strong>Bring up framework to show progress</strong> 219 220 <p><code>trigger_restart_min_framework </code>causes <code>init.rc</code> to start the <code>main</code> class of services. When the framework sees that <code>vold.encrypt_progress</code> is set to 0, it brings up the progress bar UI, which queries that property 221 every five seconds and updates a progress bar. The encryption loop updates <code>vold.encrypt_progress</code> every time it encrypts another percent of the partition. </p> 222 223 <li><strong>When<code> /data</code> is encrypted, reboot</strong> 224 225 <p>When <code>/data</code> is successfully encrypted, <code>vold</code> clears the flag <code>ENCRYPTION_IN_PROGRESS</code> in the metadata and reboots the system. </p> 226 227 <p> If the reboot fails for some reason, <code>vold</code> sets the property <code>vold.encrypt_progress</code> to <code>error_reboot_failed</code> and the UI should display a message asking the user to press a button to 228 reboot. This is not expected to ever occur.</p> 229 </ol> 230 231 <h3 id=starting_an_encrypted_device_with_default_encryption>Starting an encrypted device with default encryption</h3> 232 233 <p>This is what happens when you boot up an encrypted device with no password. 234 Because Android L devices are encrypted on first boot, there should be no set 235 password and therefore this is the <em>default encryption</em> state.</p> 236 237 <ol> 238 <li><strong>Detect encrypted <code>/data</code> with no password</strong> 239 240 <p>Detect that the Android device is encrypted because <code>/data</code> 241 cannot be mounted and one of the flags <code>encryptable</code> or 242 <code>forceencrypt</code> is set.</p> 243 244 <p><code>vold</code> sets <code>vold.decrypt</code> to <code>trigger_default_encryption</code>, which starts the <code>defaultcrypto</code> service. <code>trigger_default_encryption</code> checks the encryption type to see if <code>/data</code> is encrypted with or without a password. </p> 245 246 <li><strong>Decrypt /data</strong> 247 248 <p>Creates the <code>dm-crypt</code> device over the block device so the device is ready for use.</p> 249 250 <li><strong>Mount /data</strong> 251 252 <p><code>vold</code> then mounts the decrypted real <code>/data </code>partition and then prepares the new partition. It sets the property <code>vold.post_fs_data_done</code> to 0 and then sets <code>vold.decrypt</code> to <code>trigger_post_fs_data</code>. This causes <code>init.rc</code> to run its <code>post-fs-data</code> commands. They will create any necessary directories or links and then set <code>vold.post_fs_data_done</code> to 1.</p> 253 254 <p>Once <code>vold</code> sees the 1 in that property, it sets the property <code>vold.decrypt</code> to: <code>trigger_restart_framework.</code> This causes <code>init.rc</code> to start services in class <code>main</code> again and also start services in class <code>late_start</code> for the first time since boot.</p> 255 256 <li><strong>Start framework</strong> 257 258 <p>Now the framework boots all its services using the decrypted <code>/data</code>, and the system is ready for use.</p> 259 </ol> 260 261 <h3 id=starting_an_encrypted_device_without_default_encryption>Starting an encrypted device without default encryption</h3> 262 263 <p>This is what happens when you boot up an encrypted device that has a set 264 password. The devices password can be a pin, pattern, or password. </p> 265 266 <ol> 267 <li><strong>Detect encrypted device with a password</strong> 268 269 <p>Detect that the Android device is encrypted because the flag <code>ro.crypto.state = "encrypted"</code></p> 270 271 <p><code>vold</code> sets <code>vold.decrypt</code> to <code>trigger_restart_min_framework</code> because <code>/data</code> is encrypted with a password.</p> 272 273 <li><strong>Mount tmpfs</strong> 274 275 <p><code>init</code> sets five properties to save the initial mount options given for <code>/data</code> with parameters passed from <code>init.rc</code>. <code>vold</code> uses these properties to set up the crypto mapping:</p> 276 277 <ol> 278 <li><code>ro.crypto.fs_type</code> 279 <li><code>ro.crypto.fs_real_blkdev</code> 280 <li><code>ro.crypto.fs_mnt_point</code> 281 <li><code>ro.crypto.fs_options</code> 282 <li><code>ro.crypto.fs_flags </code>(ASCII 8-digit hex number preceded by 0x) 283 </ol> 284 285 <li><strong>Start framework to prompt for password</strong> 286 287 <p>The framework starts up and sees that <code>vold.decrypt</code> is set to <code>trigger_restart_min_framework</code>. This tells the framework that it is booting on a tmpfs <code>/data</code> disk and it needs to get the user password.</p> 288 289 <p>First, however, it needs to make sure that the disk was properly encrypted. It 290 sends the command <code>cryptfs cryptocomplete</code> to <code>vold</code>. <code>vold</code> returns 0 if encryption was completed successfully, -1 on internal error, or 291 -2 if encryption was not completed successfully. <code>vold</code> determines this by looking in the crypto metadata for the <code>CRYPTO_ENCRYPTION_IN_PROGRESS</code> flag. If it's set, the encryption process was interrupted, and there is no 292 usable data on the device. If <code>vold</code> returns an error, the UI should display a message to the user to reboot and 293 factory reset the device, and give the user a button to press to do so.</p> 294 295 <li><strong>Decrypt data with password</strong> 296 297 <p>Once <code>cryptfs cryptocomplete</code> is successful, the framework displays a UI asking for the disk password. The 298 UI checks the password by sending the command <code>cryptfs checkpw</code> to <code>vold</code>. If the password is correct (which is determined by successfully mounting the 299 decrypted <code>/data</code> at a temporary location, then unmounting it), <code>vold</code> saves the name of the decrypted block device in the property <code>ro.crypto.fs_crypto_blkdev</code> and returns status 0 to the UI. If the password is incorrect, it returns -1 to 300 the UI.</p> 301 302 <li><strong>Stop framework</strong> 303 304 <p>The UI puts up a crypto boot graphic and then calls <code>vold</code> with the command <code>cryptfs restart</code>. <code>vold</code> sets the property <code>vold.decrypt</code> to <code>trigger_reset_main</code>, which causes <code>init.rc</code> to do <code>class_reset main</code>. This stops all services in the main class, which allows the tmpfs <code>/data</code> to be unmounted. </p> 305 306 <li><strong>Mount <code>/data</code></strong> 307 308 <p><code>vold</code> then mounts the decrypted real <code>/data </code>partition and prepares the new partition (which may never have been prepared if 309 it was encrypted with the wipe option, which is not supported on first 310 release). It sets the property <code>vold.post_fs_data_done</code> to 0 and then sets <code>vold.decrypt</code> to <code>trigger_post_fs_data</code>. This causes <code>init.rc</code> to run its <code>post-fs-data</code> commands. They will create any necessary directories or links and then set <code>vold.post_fs_data_done</code> to 1. Once <code>vold</code> sees the 1 in that property, it sets the property <code>vold.decrypt</code> to <code>trigger_restart_framework</code>. This causes <code>init.rc</code> to start services in class <code>main</code> again and also start services in class <code>late_start</code> for the first time since boot.</p> 311 312 <li><strong>Start full framework</strong> 313 314 <p>Now the framework boots all its services using the decrypted <code>/data</code> filesystem, and the system is ready for use.</p> 315 </ol> 316 317 <h3 id=failure>Failure</h3> 318 319 <p>A device that fails to decrypt might be awry for a few reasons. The device 320 starts with the normal series of steps to boot:</p> 321 322 <ol> 323 <li>Detect encrypted device with a password 324 <li>Mount tmpfs 325 <li>Start framework to prompt for password 326 </ol> 327 328 <p>But after the framework opens, the device can encounter some errors:</p> 329 330 <ul> 331 <li>Password matches but cannot decrypt data 332 <li>User enters wrong password 30 times 333 </ul> 334 335 <p>If these errors are not resolved, <strong>prompt user to factory wipe</strong>:</p> 336 337 <p>If <code>vold</code> detects an error during the encryption process, and if no data has been 338 destroyed yet and the framework is up, <code>vold</code> sets the property <code>vold.encrypt_progress </code>to <code>error_not_encrypted</code>. The UI prompts the user to reboot and alerts them the encryption process 339 never started. If the error occurs after the framework has been torn down, but 340 before the progress bar UI is up, <code>vold</code> will reboot the system. If the reboot fails, it sets <code>vold.encrypt_progress</code> to <code>error_shutting_down</code> and returns -1; but there will not be anything to catch the error. This is not 341 expected to happen.</p> 342 343 <p>If <code>vold</code> detects an error during the encryption process, it sets <code>vold.encrypt_progress</code> to <code>error_partially_encrypted</code> and returns -1. The UI should then display a message saying the encryption 344 failed and provide a button for the user to factory reset the device. </p> 345 346 <h2 id=storing_the_encrypted_key>Storing the encrypted key</h2> 347 348 <p>The encrypted key is stored in the crypto metadata. Hardware backing is implemented by using Trusted Execution Environments (TEE) signing capability. 349 Previously, we encrypted the master key with a key generated by applying scrypt to the user's password and the stored salt. In order to make the key resilient 350 against off-box attacks, we extend this algorithm by signing the resultant key with a stored TEE key. The resultant signature is then turned into an appropriate length key by one more application of scrypt. This key is then used to encrypt and decrypt the master key. To store this key:</p> 351 352 <ol> 353 <li>Generate random 16-byte disk encryption key (DEK) and 16-byte salt. 354 <li>Apply scrypt to the user password and the salt to produce 16-byte intermediate 355 key 1 (IK1). 356 <li>Pad IK1 with zero bytes to the size of the hardware-bound private key (HBK). 357 Specifically, we pad as: 00 || IK1 || 00..00; one zero byte, 32 IK1 bytes, 223 358 zero bytes. 359 <li>Sign padded IK1 with HBK to produce 256-byte IK2. 360 <li>Apply scrypt to IK2 and salt (same salt as step 2) to produce 16-byte IK3. 361 <li>Use the first 16 bytes of IK3 as KEK and the last 16 bytes as IV. 362 <li>Encrypt DEK with AES_CBC, with key KEK, and initialization vector IV. 363 </ol> 364 365 <h2 id=changing_the_password>Changing the password</h2> 366 367 <p>When a user elects to change or remove their password in settings, the UI sends 368 the command <code>cryptfs changepw</code> to <code>vold</code>, and <code>vold</code> re-encrypts the disk master key with the new password.</p> 369 370 <h2 id=encryption_properties>Encryption properties</h2> 371 372 <p><code>vold</code> and <code>init</code> communicate with each other by setting properties. Here is a list of available 373 properties for encryption.</p> 374 375 <h3 id=vold_properties>Vold properties </h3> 376 377 <table> 378 <tr> 379 <th>Property</th> 380 <th>Description</th> 381 </tr> 382 <tr> 383 <td><code>vold.decrypt trigger_encryption</code></td> 384 <td>Encrypt the drive with no 385 password.</td> 386 </tr> 387 <tr> 388 <td><code>vold.decrypt trigger_default_encryption</code></td> 389 <td>Check the drive to see if it is encrypted with no password. 390 If it is, decrypt and mount it, 391 else set <code>vold.decrypt</code> to trigger_restart_min_framework.</td> 392 </tr> 393 <tr> 394 <td><code>vold.decrypt trigger_reset_main</code></td> 395 <td>Set by vold to shutdown the UI asking for the disk password.</td> 396 </tr> 397 <tr> 398 <td><code>vold.decrypt trigger_post_fs_data</code></td> 399 <td> Set by vold to prep /data with necessary directories, et al.</td> 400 </tr> 401 <tr> 402 <td><code>vold.decrypt trigger_restart_framework</code></td> 403 <td>Set by vold to start the real framework and all services.</td> 404 </tr> 405 <tr> 406 <td><code>vold.decrypt trigger_shutdown_framework</code></td> 407 <td>Set by vold to shutdown the full framework to start encryption.</td> 408 </tr> 409 <tr> 410 <td><code>vold.decrypt trigger_restart_min_framework</code></td> 411 <td>Set by vold to start the 412 progress bar UI for encryption or 413 prompt for password, depending on 414 the value of <code>ro.crypto.state</code>.</td> 415 </tr> 416 <tr> 417 <td><code>vold.encrypt_progress</code></td> 418 <td>When the framework starts up, 419 if this property is set, enter 420 the progress bar UI mode.</td> 421 </tr> 422 <tr> 423 <td><code>vold.encrypt_progress 0 to 100</code></td> 424 <td>The progress bar UI should 425 display the percentage value set.</td> 426 </tr> 427 <tr> 428 <td><code>vold.encrypt_progress error_partially_encrypted</code></td> 429 <td>The progress bar UI should display a message that the encryption failed, and 430 give the user an option to 431 factory reset the device.</td> 432 </tr> 433 <tr> 434 <td><code>vold.encrypt_progress error_reboot_failed</code></td> 435 <td>The progress bar UI should 436 display a message saying encryption completed, and give the user a button to reboot the device. This error is not expected to happen.</td> 437 </tr> 438 <tr> 439 <td><code>vold.encrypt_progress error_not_encrypted</code></td> 440 <td>The progress bar UI should 441 display a message saying an error 442 occured, no data was encrypted or 443 lost, and give the user a button to reboot the system.</td> 444 </tr> 445 <tr> 446 <td><code>vold.encrypt_progress error_shutting_down</code></td> 447 <td>The progress bar UI is not running, so it is unclear who will respond to this error. And it should never happen anyway.</td> 448 </tr> 449 <tr> 450 <td><code>vold.post_fs_data_done 0</code></td> 451 <td>Set by <code>vold</code> just before setting <code>vold.decrypt</code> to <code>trigger_post_fs_data</code>.</td> 452 </tr> 453 <tr> 454 <td><code>vold.post_fs_data_done 1</code></td> 455 <td>Set by <code>init.rc</code> or 456 <code>init.rc</code> just after finishing the task <code>post-fs-data</code>.</td> 457 </tr> 458 </table> 459 <h3 id=init_properties>init properties</h3> 460 461 <table> 462 <tr> 463 <th>Property</th> 464 <th>Description</th> 465 </tr> 466 <tr> 467 <td><code>ro.crypto.fs_crypto_blkdev</code></td> 468 <td>Set by the <code>vold</code> command <code>checkpw</code> for later use by the <code>vold</code> command <code>restart</code>.</td> 469 </tr> 470 <tr> 471 <td><code>ro.crypto.state unencrypted</code></td> 472 <td>Set by <code>init</code> to say this system is running with an unencrypted 473 <code>/data ro.crypto.state encrypted</code>. Set by <code>init</code> to say this system is running with an encrypted <code>/data</code>.</td> 474 </tr> 475 <tr> 476 <td><p><code>ro.crypto.fs_type<br> 477 ro.crypto.fs_real_blkdev <br> 478 ro.crypto.fs_mnt_point<br> 479 ro.crypto.fs_options<br> 480 ro.crypto.fs_flags <br> 481 </code></p></td> 482 <td> These five properties are set by 483 <code>init</code> when it tries to mount <code>/data</code> with parameters passed in from 484 <code>init.rc</code>. <code>vold</code> uses these to setup the crypto mapping.</td> 485 </tr> 486 <tr> 487 <td><code>ro.crypto.tmpfs_options</code></td> 488 <td>Set by <code>init.rc</code> with the options init should use when mounting the tmpfs /data filesystem.</td> 489 </tr> 490 </table> 491 <h2 id=init_actions>Init actions</h2> 492 493 <pre> 494 on post-fs-data 495 on nonencrypted 496 on property:vold.decrypt=trigger_reset_main 497 on property:vold.decrypt=trigger_post_fs_data 498 on property:vold.decrypt=trigger_restart_min_framework 499 on property:vold.decrypt=trigger_restart_framework 500 on property:vold.decrypt=trigger_shutdown_framework 501 on property:vold.decrypt=trigger_encryption 502 on property:vold.decrypt=trigger_default_encryption 503 </pre> 504