Home | History | Annotate | Download | only in nist
      1 NIST/ITL StRD
      2 Dataset Name:  DanWood           (DanWood.dat)
      3 
      4 File Format:   ASCII
      5                Starting Values   (lines 41 to 42)
      6                Certified Values  (lines 41 to 47)
      7                Data              (lines 61 to 66)
      8 
      9 Procedure:     Nonlinear Least Squares Regression
     10 
     11 Description:   These data and model are described in Daniel and Wood
     12                (1980), and originally published in E.S.Keeping, 
     13                "Introduction to Statistical Inference," Van Nostrand
     14                Company, Princeton, NJ, 1962, p. 354.  The response
     15                variable is energy radieted from a carbon filament
     16                lamp per cm**2 per second, and the predictor variable
     17                is the absolute temperature of the filament in 1000
     18                degrees Kelvin.
     19 
     20 Reference:     Daniel, C. and F. S. Wood (1980).
     21                Fitting Equations to Data, Second Edition. 
     22                New York, NY:  John Wiley and Sons, pp. 428-431.
     23 
     24 
     25 Data:          1 Response Variable  (y = energy)
     26                1 Predictor Variable (x = temperature)
     27                6 Observations
     28                Lower Level of Difficulty
     29                Observed Data
     30 
     31 Model:         Miscellaneous Class
     32                2 Parameters (b1 and b2)
     33 
     34                y  = b1*x**b2  +  e
     35 
     36 
     37  
     38           Starting values                  Certified Values
     39 
     40         Start 1     Start 2           Parameter     Standard Deviation
     41   b1 =   1           0.7           7.6886226176E-01  1.8281973860E-02
     42   b2 =   5           4             3.8604055871E+00  5.1726610913E-02
     43  
     44 Residual Sum of Squares:                    4.3173084083E-03
     45 Residual Standard Deviation:                3.2853114039E-02
     46 Degrees of Freedom:                                4
     47 Number of Observations:                            6 
     48  
     49  
     50  
     51  
     52  
     53  
     54  
     55  
     56  
     57  
     58  
     59  
     60 Data:  y              x
     61       2.138E0        1.309E0
     62       3.421E0        1.471E0
     63       3.597E0        1.490E0
     64       4.340E0        1.565E0
     65       4.882E0        1.611E0
     66       5.660E0        1.680E0
     67