Home | History | Annotate | Download | only in nist
      1 NIST/ITL StRD
      2 Dataset Name:  Lanczos2          (Lanczos2.dat)
      3 
      4 File Format:   ASCII
      5                Starting Values   (lines 41 to 46)
      6                Certified Values  (lines 41 to 51)
      7                Data              (lines 61 to 84)
      8 
      9 Procedure:     Nonlinear Least Squares Regression
     10 
     11 Description:   These data are taken from an example discussed in
     12                Lanczos (1956).  The data were generated to 6-digits
     13                of accuracy using
     14                f(x) = 0.0951*exp(-x) + 0.8607*exp(-3*x) 
     15                                      + 1.5576*exp(-5*x).
     16 
     17 
     18 Reference:     Lanczos, C. (1956).
     19                Applied Analysis.
     20                Englewood Cliffs, NJ:  Prentice Hall, pp. 272-280.
     21 
     22 
     23 
     24 
     25 Data:          1 Response  (y)
     26                1 Predictor (x)
     27                24 Observations
     28                Average Level of Difficulty
     29                Generated Data
     30  
     31 Model:         Exponential Class
     32                6 Parameters (b1 to b6)
     33  
     34                y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x)  +  e
     35  
     36 
     37 
     38           Starting values                  Certified Values
     39 
     40         Start 1     Start 2           Parameter     Standard Deviation
     41   b1 =   1.2         0.5           9.6251029939E-02  6.6770575477E-04
     42   b2 =   0.3         0.7           1.0057332849E+00  3.3989646176E-03
     43   b3 =   5.6         3.6           8.6424689056E-01  1.7185846685E-03
     44   b4 =   5.5         4.2           3.0078283915E+00  4.1707005856E-03
     45   b5 =   6.5         4             1.5529016879E+00  2.3744381417E-03
     46   b6 =   7.6         6.3           5.0028798100E+00  1.3958787284E-03
     47 
     48 Residual Sum of Squares:                    2.2299428125E-11
     49 Residual Standard Deviation:                1.1130395851E-06
     50 Degrees of Freedom:                                18
     51 Number of Observations:                            24
     52 
     53 
     54 
     55 
     56 
     57 
     58 
     59 
     60 Data:   y            x
     61        2.51340E+00  0.00000E+00
     62        2.04433E+00  5.00000E-02
     63        1.66840E+00  1.00000E-01
     64        1.36642E+00  1.50000E-01
     65        1.12323E+00  2.00000E-01
     66        9.26890E-01  2.50000E-01
     67        7.67934E-01  3.00000E-01
     68        6.38878E-01  3.50000E-01
     69        5.33784E-01  4.00000E-01
     70        4.47936E-01  4.50000E-01
     71        3.77585E-01  5.00000E-01
     72        3.19739E-01  5.50000E-01
     73        2.72013E-01  6.00000E-01
     74        2.32497E-01  6.50000E-01
     75        1.99659E-01  7.00000E-01
     76        1.72270E-01  7.50000E-01
     77        1.49341E-01  8.00000E-01
     78        1.30070E-01  8.50000E-01
     79        1.13812E-01  9.00000E-01
     80        1.00042E-01  9.50000E-01
     81        8.83321E-02  1.00000E+00
     82        7.83354E-02  1.05000E+00
     83        6.97669E-02  1.10000E+00
     84        6.23931E-02  1.15000E+00
     85