Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: moll.markus (at) arcor.de (Markus Moll)
     30 //         sameeragarwal (at) google.com (Sameer Agarwal)
     31 
     32 #include "ceres/polynomial.h"
     33 
     34 #include <cmath>
     35 #include <cstddef>
     36 #include <vector>
     37 
     38 #include "Eigen/Dense"
     39 #include "ceres/internal/port.h"
     40 #include "ceres/stringprintf.h"
     41 #include "glog/logging.h"
     42 
     43 namespace ceres {
     44 namespace internal {
     45 namespace {
     46 
     47 // Balancing function as described by B. N. Parlett and C. Reinsch,
     48 // "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors".
     49 // In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304,
     50 // Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404
     51 void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) {
     52   CHECK_NOTNULL(companion_matrix_ptr);
     53   Matrix& companion_matrix = *companion_matrix_ptr;
     54   Matrix companion_matrix_offdiagonal = companion_matrix;
     55   companion_matrix_offdiagonal.diagonal().setZero();
     56 
     57   const int degree = companion_matrix.rows();
     58 
     59   // gamma <= 1 controls how much a change in the scaling has to
     60   // lower the 1-norm of the companion matrix to be accepted.
     61   //
     62   // gamma = 1 seems to lead to cycles (numerical issues?), so
     63   // we set it slightly lower.
     64   const double gamma = 0.9;
     65 
     66   // Greedily scale row/column pairs until there is no change.
     67   bool scaling_has_changed;
     68   do {
     69     scaling_has_changed = false;
     70 
     71     for (int i = 0; i < degree; ++i) {
     72       const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>();
     73       const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>();
     74 
     75       // Decompose row_norm/col_norm into mantissa * 2^exponent,
     76       // where 0.5 <= mantissa < 1. Discard mantissa (return value
     77       // of frexp), as only the exponent is needed.
     78       int exponent = 0;
     79       std::frexp(row_norm / col_norm, &exponent);
     80       exponent /= 2;
     81 
     82       if (exponent != 0) {
     83         const double scaled_col_norm = std::ldexp(col_norm, exponent);
     84         const double scaled_row_norm = std::ldexp(row_norm, -exponent);
     85         if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) {
     86           // Accept the new scaling. (Multiplication by powers of 2 should not
     87           // introduce rounding errors (ignoring non-normalized numbers and
     88           // over- or underflow))
     89           scaling_has_changed = true;
     90           companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent);
     91           companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent);
     92         }
     93       }
     94     }
     95   } while (scaling_has_changed);
     96 
     97   companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal();
     98   companion_matrix = companion_matrix_offdiagonal;
     99   VLOG(3) << "Balanced companion matrix is\n" << companion_matrix;
    100 }
    101 
    102 void BuildCompanionMatrix(const Vector& polynomial,
    103                           Matrix* companion_matrix_ptr) {
    104   CHECK_NOTNULL(companion_matrix_ptr);
    105   Matrix& companion_matrix = *companion_matrix_ptr;
    106 
    107   const int degree = polynomial.size() - 1;
    108 
    109   companion_matrix.resize(degree, degree);
    110   companion_matrix.setZero();
    111   companion_matrix.diagonal(-1).setOnes();
    112   companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree);
    113 }
    114 
    115 // Remove leading terms with zero coefficients.
    116 Vector RemoveLeadingZeros(const Vector& polynomial_in) {
    117   int i = 0;
    118   while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) {
    119     ++i;
    120   }
    121   return polynomial_in.tail(polynomial_in.size() - i);
    122 }
    123 
    124 void FindLinearPolynomialRoots(const Vector& polynomial,
    125                                Vector* real,
    126                                Vector* imaginary) {
    127   CHECK_EQ(polynomial.size(), 2);
    128   if (real != NULL) {
    129     real->resize(1);
    130     (*real)(0) = -polynomial(1) / polynomial(0);
    131   }
    132 
    133   if (imaginary != NULL) {
    134     imaginary->setZero(1);
    135   }
    136 }
    137 
    138 void FindQuadraticPolynomialRoots(const Vector& polynomial,
    139                                   Vector* real,
    140                                   Vector* imaginary) {
    141   CHECK_EQ(polynomial.size(), 3);
    142   const double a = polynomial(0);
    143   const double b = polynomial(1);
    144   const double c = polynomial(2);
    145   const double D = b * b - 4 * a * c;
    146   const double sqrt_D = sqrt(fabs(D));
    147   if (real != NULL) {
    148     real->setZero(2);
    149   }
    150   if (imaginary != NULL) {
    151     imaginary->setZero(2);
    152   }
    153 
    154   // Real roots.
    155   if (D >= 0) {
    156     if (real != NULL) {
    157       // Stable quadratic roots according to BKP Horn.
    158       // http://people.csail.mit.edu/bkph/articles/Quadratics.pdf
    159       if (b >= 0) {
    160         (*real)(0) = (-b - sqrt_D) / (2.0 * a);
    161         (*real)(1) = (2.0 * c) / (-b - sqrt_D);
    162       } else {
    163         (*real)(0) = (2.0 * c) / (-b + sqrt_D);
    164         (*real)(1) = (-b + sqrt_D) / (2.0 * a);
    165       }
    166     }
    167     return;
    168   }
    169 
    170   // Use the normal quadratic formula for the complex case.
    171   if (real != NULL) {
    172     (*real)(0) = -b / (2.0 * a);
    173     (*real)(1) = -b / (2.0 * a);
    174   }
    175   if (imaginary != NULL) {
    176     (*imaginary)(0) = sqrt_D / (2.0 * a);
    177     (*imaginary)(1) = -sqrt_D / (2.0 * a);
    178   }
    179 }
    180 }  // namespace
    181 
    182 bool FindPolynomialRoots(const Vector& polynomial_in,
    183                          Vector* real,
    184                          Vector* imaginary) {
    185   if (polynomial_in.size() == 0) {
    186     LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";
    187     return false;
    188   }
    189 
    190   Vector polynomial = RemoveLeadingZeros(polynomial_in);
    191   const int degree = polynomial.size() - 1;
    192 
    193   VLOG(3) << "Input polynomial: " << polynomial_in.transpose();
    194   if (polynomial.size() != polynomial_in.size()) {
    195     VLOG(3) << "Trimmed polynomial: " << polynomial.transpose();
    196   }
    197 
    198   // Is the polynomial constant?
    199   if (degree == 0) {
    200     LOG(WARNING) << "Trying to extract roots from a constant "
    201                  << "polynomial in FindPolynomialRoots";
    202     // We return true with no roots, not false, as if the polynomial is constant
    203     // it is correct that there are no roots. It is not the case that they were
    204     // there, but that we have failed to extract them.
    205     return true;
    206   }
    207 
    208   // Linear
    209   if (degree == 1) {
    210     FindLinearPolynomialRoots(polynomial, real, imaginary);
    211     return true;
    212   }
    213 
    214   // Quadratic
    215   if (degree == 2) {
    216     FindQuadraticPolynomialRoots(polynomial, real, imaginary);
    217     return true;
    218   }
    219 
    220   // The degree is now known to be at least 3. For cubic or higher
    221   // roots we use the method of companion matrices.
    222 
    223   // Divide by leading term
    224   const double leading_term = polynomial(0);
    225   polynomial /= leading_term;
    226 
    227   // Build and balance the companion matrix to the polynomial.
    228   Matrix companion_matrix(degree, degree);
    229   BuildCompanionMatrix(polynomial, &companion_matrix);
    230   BalanceCompanionMatrix(&companion_matrix);
    231 
    232   // Find its (complex) eigenvalues.
    233   Eigen::EigenSolver<Matrix> solver(companion_matrix, false);
    234   if (solver.info() != Eigen::Success) {
    235     LOG(ERROR) << "Failed to extract eigenvalues from companion matrix.";
    236     return false;
    237   }
    238 
    239   // Output roots
    240   if (real != NULL) {
    241     *real = solver.eigenvalues().real();
    242   } else {
    243     LOG(WARNING) << "NULL pointer passed as real argument to "
    244                  << "FindPolynomialRoots. Real parts of the roots will not "
    245                  << "be returned.";
    246   }
    247   if (imaginary != NULL) {
    248     *imaginary = solver.eigenvalues().imag();
    249   }
    250   return true;
    251 }
    252 
    253 Vector DifferentiatePolynomial(const Vector& polynomial) {
    254   const int degree = polynomial.rows() - 1;
    255   CHECK_GE(degree, 0);
    256 
    257   // Degree zero polynomials are constants, and their derivative does
    258   // not result in a smaller degree polynomial, just a degree zero
    259   // polynomial with value zero.
    260   if (degree == 0) {
    261     return Eigen::VectorXd::Zero(1);
    262   }
    263 
    264   Vector derivative(degree);
    265   for (int i = 0; i < degree; ++i) {
    266     derivative(i) = (degree - i) * polynomial(i);
    267   }
    268 
    269   return derivative;
    270 }
    271 
    272 void MinimizePolynomial(const Vector& polynomial,
    273                         const double x_min,
    274                         const double x_max,
    275                         double* optimal_x,
    276                         double* optimal_value) {
    277   // Find the minimum of the polynomial at the two ends.
    278   //
    279   // We start by inspecting the middle of the interval. Technically
    280   // this is not needed, but we do this to make this code as close to
    281   // the minFunc package as possible.
    282   *optimal_x = (x_min + x_max) / 2.0;
    283   *optimal_value = EvaluatePolynomial(polynomial, *optimal_x);
    284 
    285   const double x_min_value = EvaluatePolynomial(polynomial, x_min);
    286   if (x_min_value < *optimal_value) {
    287     *optimal_value = x_min_value;
    288     *optimal_x = x_min;
    289   }
    290 
    291   const double x_max_value = EvaluatePolynomial(polynomial, x_max);
    292   if (x_max_value < *optimal_value) {
    293     *optimal_value = x_max_value;
    294     *optimal_x = x_max;
    295   }
    296 
    297   // If the polynomial is linear or constant, we are done.
    298   if (polynomial.rows() <= 2) {
    299     return;
    300   }
    301 
    302   const Vector derivative = DifferentiatePolynomial(polynomial);
    303   Vector roots_real;
    304   if (!FindPolynomialRoots(derivative, &roots_real, NULL)) {
    305     LOG(WARNING) << "Unable to find the critical points of "
    306                  << "the interpolating polynomial.";
    307     return;
    308   }
    309 
    310   // This is a bit of an overkill, as some of the roots may actually
    311   // have a complex part, but its simpler to just check these values.
    312   for (int i = 0; i < roots_real.rows(); ++i) {
    313     const double root = roots_real(i);
    314     if ((root < x_min) || (root > x_max)) {
    315       continue;
    316     }
    317 
    318     const double value = EvaluatePolynomial(polynomial, root);
    319     if (value < *optimal_value) {
    320       *optimal_value = value;
    321       *optimal_x = root;
    322     }
    323   }
    324 }
    325 
    326 string FunctionSample::ToDebugString() const {
    327   return StringPrintf("[x: %.8e, value: %.8e, gradient: %.8e, "
    328                       "value_is_valid: %d, gradient_is_valid: %d]",
    329                       x, value, gradient, value_is_valid, gradient_is_valid);
    330 }
    331 
    332 Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) {
    333   const int num_samples = samples.size();
    334   int num_constraints = 0;
    335   for (int i = 0; i < num_samples; ++i) {
    336     if (samples[i].value_is_valid) {
    337       ++num_constraints;
    338     }
    339     if (samples[i].gradient_is_valid) {
    340       ++num_constraints;
    341     }
    342   }
    343 
    344   const int degree = num_constraints - 1;
    345 
    346   Matrix lhs = Matrix::Zero(num_constraints, num_constraints);
    347   Vector rhs = Vector::Zero(num_constraints);
    348 
    349   int row = 0;
    350   for (int i = 0; i < num_samples; ++i) {
    351     const FunctionSample& sample = samples[i];
    352     if (sample.value_is_valid) {
    353       for (int j = 0; j <= degree; ++j) {
    354         lhs(row, j) = pow(sample.x, degree - j);
    355       }
    356       rhs(row) = sample.value;
    357       ++row;
    358     }
    359 
    360     if (sample.gradient_is_valid) {
    361       for (int j = 0; j < degree; ++j) {
    362         lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1);
    363       }
    364       rhs(row) = sample.gradient;
    365       ++row;
    366     }
    367   }
    368 
    369   return lhs.fullPivLu().solve(rhs);
    370 }
    371 
    372 void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples,
    373                                      double x_min,
    374                                      double x_max,
    375                                      double* optimal_x,
    376                                      double* optimal_value) {
    377   const Vector polynomial = FindInterpolatingPolynomial(samples);
    378   MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value);
    379   for (int i = 0; i < samples.size(); ++i) {
    380     const FunctionSample& sample = samples[i];
    381     if ((sample.x < x_min) || (sample.x > x_max)) {
    382       continue;
    383     }
    384 
    385     const double value = EvaluatePolynomial(polynomial, sample.x);
    386     if (value < *optimal_value) {
    387       *optimal_x = sample.x;
    388       *optimal_value = value;
    389     }
    390   }
    391 }
    392 
    393 }  // namespace internal
    394 }  // namespace ceres
    395