1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // The original file was copied from sqlite, and was in the public domain. 6 7 /* 8 * This code implements the MD5 message-digest algorithm. 9 * The algorithm is due to Ron Rivest. This code was 10 * written by Colin Plumb in 1993, no copyright is claimed. 11 * This code is in the public domain; do with it what you wish. 12 * 13 * Equivalent code is available from RSA Data Security, Inc. 14 * This code has been tested against that, and is equivalent, 15 * except that you don't need to include two pages of legalese 16 * with every copy. 17 * 18 * To compute the message digest of a chunk of bytes, declare an 19 * MD5Context structure, pass it to MD5Init, call MD5Update as 20 * needed on buffers full of bytes, and then call MD5Final, which 21 * will fill a supplied 16-byte array with the digest. 22 */ 23 24 #include "base/md5.h" 25 26 #include "base/basictypes.h" 27 28 namespace { 29 30 struct Context { 31 uint32 buf[4]; 32 uint32 bits[2]; 33 unsigned char in[64]; 34 }; 35 36 /* 37 * Note: this code is harmless on little-endian machines. 38 */ 39 void byteReverse(unsigned char *buf, unsigned longs) { 40 uint32 t; 41 do { 42 t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 | 43 ((unsigned)buf[1]<<8 | buf[0]); 44 *(uint32 *)buf = t; 45 buf += 4; 46 } while (--longs); 47 } 48 49 /* The four core functions - F1 is optimized somewhat */ 50 51 /* #define F1(x, y, z) (x & y | ~x & z) */ 52 #define F1(x, y, z) (z ^ (x & (y ^ z))) 53 #define F2(x, y, z) F1(z, x, y) 54 #define F3(x, y, z) (x ^ y ^ z) 55 #define F4(x, y, z) (y ^ (x | ~z)) 56 57 /* This is the central step in the MD5 algorithm. */ 58 #define MD5STEP(f, w, x, y, z, data, s) \ 59 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) 60 61 /* 62 * The core of the MD5 algorithm, this alters an existing MD5 hash to 63 * reflect the addition of 16 longwords of new data. MD5Update blocks 64 * the data and converts bytes into longwords for this routine. 65 */ 66 void MD5Transform(uint32 buf[4], const uint32 in[16]) { 67 register uint32 a, b, c, d; 68 69 a = buf[0]; 70 b = buf[1]; 71 c = buf[2]; 72 d = buf[3]; 73 74 MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7); 75 MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); 76 MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); 77 MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); 78 MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7); 79 MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); 80 MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); 81 MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); 82 MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7); 83 MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); 84 MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); 85 MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); 86 MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7); 87 MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); 88 MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); 89 MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); 90 91 MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5); 92 MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9); 93 MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); 94 MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); 95 MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5); 96 MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9); 97 MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); 98 MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); 99 MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5); 100 MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9); 101 MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); 102 MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); 103 MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5); 104 MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9); 105 MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); 106 MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); 107 108 MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4); 109 MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); 110 MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); 111 MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); 112 MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4); 113 MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); 114 MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); 115 MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); 116 MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4); 117 MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); 118 MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); 119 MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); 120 MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4); 121 MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); 122 MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); 123 MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); 124 125 MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6); 126 MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); 127 MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); 128 MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); 129 MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6); 130 MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); 131 MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); 132 MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); 133 MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6); 134 MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); 135 MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); 136 MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); 137 MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6); 138 MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); 139 MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); 140 MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); 141 142 buf[0] += a; 143 buf[1] += b; 144 buf[2] += c; 145 buf[3] += d; 146 } 147 148 } // namespace 149 150 namespace base { 151 152 /* 153 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious 154 * initialization constants. 155 */ 156 void MD5Init(MD5Context* context) { 157 struct Context *ctx = (struct Context *)context; 158 ctx->buf[0] = 0x67452301; 159 ctx->buf[1] = 0xefcdab89; 160 ctx->buf[2] = 0x98badcfe; 161 ctx->buf[3] = 0x10325476; 162 ctx->bits[0] = 0; 163 ctx->bits[1] = 0; 164 } 165 166 /* 167 * Update context to reflect the concatenation of another buffer full 168 * of bytes. 169 */ 170 void MD5Update(MD5Context* context, const StringPiece& data) { 171 const unsigned char* inbuf = (const unsigned char*)data.data(); 172 size_t len = data.size(); 173 struct Context *ctx = (struct Context *)context; 174 const unsigned char* buf = (const unsigned char*)inbuf; 175 uint32 t; 176 177 /* Update bitcount */ 178 179 t = ctx->bits[0]; 180 if ((ctx->bits[0] = t + ((uint32)len << 3)) < t) 181 ctx->bits[1]++; /* Carry from low to high */ 182 ctx->bits[1] += static_cast<uint32>(len >> 29); 183 184 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ 185 186 /* Handle any leading odd-sized chunks */ 187 188 if (t) { 189 unsigned char *p = (unsigned char *)ctx->in + t; 190 191 t = 64-t; 192 if (len < t) { 193 memcpy(p, buf, len); 194 return; 195 } 196 memcpy(p, buf, t); 197 byteReverse(ctx->in, 16); 198 MD5Transform(ctx->buf, (uint32 *)ctx->in); 199 buf += t; 200 len -= t; 201 } 202 203 /* Process data in 64-byte chunks */ 204 205 while (len >= 64) { 206 memcpy(ctx->in, buf, 64); 207 byteReverse(ctx->in, 16); 208 MD5Transform(ctx->buf, (uint32 *)ctx->in); 209 buf += 64; 210 len -= 64; 211 } 212 213 /* Handle any remaining bytes of data. */ 214 215 memcpy(ctx->in, buf, len); 216 } 217 218 /* 219 * Final wrapup - pad to 64-byte boundary with the bit pattern 220 * 1 0* (64-bit count of bits processed, MSB-first) 221 */ 222 void MD5Final(MD5Digest* digest, MD5Context* context) { 223 struct Context *ctx = (struct Context *)context; 224 unsigned count; 225 unsigned char *p; 226 227 /* Compute number of bytes mod 64 */ 228 count = (ctx->bits[0] >> 3) & 0x3F; 229 230 /* Set the first char of padding to 0x80. This is safe since there is 231 always at least one byte free */ 232 p = ctx->in + count; 233 *p++ = 0x80; 234 235 /* Bytes of padding needed to make 64 bytes */ 236 count = 64 - 1 - count; 237 238 /* Pad out to 56 mod 64 */ 239 if (count < 8) { 240 /* Two lots of padding: Pad the first block to 64 bytes */ 241 memset(p, 0, count); 242 byteReverse(ctx->in, 16); 243 MD5Transform(ctx->buf, (uint32 *)ctx->in); 244 245 /* Now fill the next block with 56 bytes */ 246 memset(ctx->in, 0, 56); 247 } else { 248 /* Pad block to 56 bytes */ 249 memset(p, 0, count-8); 250 } 251 byteReverse(ctx->in, 14); 252 253 /* Append length in bits and transform */ 254 memcpy(&ctx->in[14 * sizeof(ctx->bits[0])], 255 &ctx->bits[0], 256 sizeof(ctx->bits[0])); 257 memcpy(&ctx->in[15 * sizeof(ctx->bits[1])], 258 &ctx->bits[1], 259 sizeof(ctx->bits[1])); 260 261 MD5Transform(ctx->buf, (uint32 *)ctx->in); 262 byteReverse((unsigned char *)ctx->buf, 4); 263 memcpy(digest->a, ctx->buf, 16); 264 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ 265 } 266 267 void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) { 268 /* MD5Final mutates the MD5Context*. Make a copy for generating the 269 intermediate value. */ 270 MD5Context context_copy; 271 memcpy(&context_copy, context, sizeof(context_copy)); 272 MD5Final(digest, &context_copy); 273 } 274 275 std::string MD5DigestToBase16(const MD5Digest& digest) { 276 static char const zEncode[] = "0123456789abcdef"; 277 278 std::string ret; 279 ret.resize(32); 280 281 int j = 0; 282 for (int i = 0; i < 16; i ++) { 283 int a = digest.a[i]; 284 ret[j++] = zEncode[(a>>4)&0xf]; 285 ret[j++] = zEncode[a & 0xf]; 286 } 287 return ret; 288 } 289 290 void MD5Sum(const void* data, size_t length, MD5Digest* digest) { 291 MD5Context ctx; 292 MD5Init(&ctx); 293 MD5Update(&ctx, 294 StringPiece(reinterpret_cast<const char*>(data), length)); 295 MD5Final(digest, &ctx); 296 } 297 298 std::string MD5String(const StringPiece& str) { 299 MD5Digest digest; 300 MD5Sum(str.data(), str.length(), &digest); 301 return MD5DigestToBase16(digest); 302 } 303 304 } // namespace base 305