Home | History | Annotate | Download | only in time
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/time/time.h"
      6 
      7 #include <limits>
      8 #include <ostream>
      9 
     10 #include "base/float_util.h"
     11 #include "base/lazy_instance.h"
     12 #include "base/logging.h"
     13 #include "base/third_party/nspr/prtime.h"
     14 
     15 namespace base {
     16 
     17 // TimeDelta ------------------------------------------------------------------
     18 
     19 // static
     20 TimeDelta TimeDelta::Max() {
     21   return TimeDelta(std::numeric_limits<int64>::max());
     22 }
     23 
     24 int TimeDelta::InDays() const {
     25   if (is_max()) {
     26     // Preserve max to prevent overflow.
     27     return std::numeric_limits<int>::max();
     28   }
     29   return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
     30 }
     31 
     32 int TimeDelta::InHours() const {
     33   if (is_max()) {
     34     // Preserve max to prevent overflow.
     35     return std::numeric_limits<int>::max();
     36   }
     37   return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
     38 }
     39 
     40 int TimeDelta::InMinutes() const {
     41   if (is_max()) {
     42     // Preserve max to prevent overflow.
     43     return std::numeric_limits<int>::max();
     44   }
     45   return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
     46 }
     47 
     48 double TimeDelta::InSecondsF() const {
     49   if (is_max()) {
     50     // Preserve max to prevent overflow.
     51     return std::numeric_limits<double>::infinity();
     52   }
     53   return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
     54 }
     55 
     56 int64 TimeDelta::InSeconds() const {
     57   if (is_max()) {
     58     // Preserve max to prevent overflow.
     59     return std::numeric_limits<int64>::max();
     60   }
     61   return delta_ / Time::kMicrosecondsPerSecond;
     62 }
     63 
     64 double TimeDelta::InMillisecondsF() const {
     65   if (is_max()) {
     66     // Preserve max to prevent overflow.
     67     return std::numeric_limits<double>::infinity();
     68   }
     69   return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
     70 }
     71 
     72 int64 TimeDelta::InMilliseconds() const {
     73   if (is_max()) {
     74     // Preserve max to prevent overflow.
     75     return std::numeric_limits<int64>::max();
     76   }
     77   return delta_ / Time::kMicrosecondsPerMillisecond;
     78 }
     79 
     80 int64 TimeDelta::InMillisecondsRoundedUp() const {
     81   if (is_max()) {
     82     // Preserve max to prevent overflow.
     83     return std::numeric_limits<int64>::max();
     84   }
     85   return (delta_ + Time::kMicrosecondsPerMillisecond - 1) /
     86       Time::kMicrosecondsPerMillisecond;
     87 }
     88 
     89 int64 TimeDelta::InMicroseconds() const {
     90   if (is_max()) {
     91     // Preserve max to prevent overflow.
     92     return std::numeric_limits<int64>::max();
     93   }
     94   return delta_;
     95 }
     96 
     97 // Time -----------------------------------------------------------------------
     98 
     99 // static
    100 Time Time::Max() {
    101   return Time(std::numeric_limits<int64>::max());
    102 }
    103 
    104 // static
    105 Time Time::FromTimeT(time_t tt) {
    106   if (tt == 0)
    107     return Time();  // Preserve 0 so we can tell it doesn't exist.
    108   if (tt == std::numeric_limits<time_t>::max())
    109     return Max();
    110   return Time((tt * kMicrosecondsPerSecond) + kTimeTToMicrosecondsOffset);
    111 }
    112 
    113 time_t Time::ToTimeT() const {
    114   if (is_null())
    115     return 0;  // Preserve 0 so we can tell it doesn't exist.
    116   if (is_max()) {
    117     // Preserve max without offset to prevent overflow.
    118     return std::numeric_limits<time_t>::max();
    119   }
    120   if (std::numeric_limits<int64>::max() - kTimeTToMicrosecondsOffset <= us_) {
    121     DLOG(WARNING) << "Overflow when converting base::Time with internal " <<
    122                      "value " << us_ << " to time_t.";
    123     return std::numeric_limits<time_t>::max();
    124   }
    125   return (us_ - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond;
    126 }
    127 
    128 // static
    129 Time Time::FromDoubleT(double dt) {
    130   if (dt == 0 || IsNaN(dt))
    131     return Time();  // Preserve 0 so we can tell it doesn't exist.
    132   if (dt == std::numeric_limits<double>::infinity())
    133     return Max();
    134   return Time(static_cast<int64>((dt *
    135                                   static_cast<double>(kMicrosecondsPerSecond)) +
    136                                  kTimeTToMicrosecondsOffset));
    137 }
    138 
    139 double Time::ToDoubleT() const {
    140   if (is_null())
    141     return 0;  // Preserve 0 so we can tell it doesn't exist.
    142   if (is_max()) {
    143     // Preserve max without offset to prevent overflow.
    144     return std::numeric_limits<double>::infinity();
    145   }
    146   return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
    147           static_cast<double>(kMicrosecondsPerSecond));
    148 }
    149 
    150 #if defined(OS_POSIX)
    151 // static
    152 Time Time::FromTimeSpec(const timespec& ts) {
    153   return FromDoubleT(ts.tv_sec +
    154                      static_cast<double>(ts.tv_nsec) /
    155                          base::Time::kNanosecondsPerSecond);
    156 }
    157 #endif
    158 
    159 // static
    160 Time Time::FromJsTime(double ms_since_epoch) {
    161   // The epoch is a valid time, so this constructor doesn't interpret
    162   // 0 as the null time.
    163   if (ms_since_epoch == std::numeric_limits<double>::infinity())
    164     return Max();
    165   return Time(static_cast<int64>(ms_since_epoch * kMicrosecondsPerMillisecond) +
    166               kTimeTToMicrosecondsOffset);
    167 }
    168 
    169 double Time::ToJsTime() const {
    170   if (is_null()) {
    171     // Preserve 0 so the invalid result doesn't depend on the platform.
    172     return 0;
    173   }
    174   if (is_max()) {
    175     // Preserve max without offset to prevent overflow.
    176     return std::numeric_limits<double>::infinity();
    177   }
    178   return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
    179           kMicrosecondsPerMillisecond);
    180 }
    181 
    182 int64 Time::ToJavaTime() const {
    183   if (is_null()) {
    184     // Preserve 0 so the invalid result doesn't depend on the platform.
    185     return 0;
    186   }
    187   if (is_max()) {
    188     // Preserve max without offset to prevent overflow.
    189     return std::numeric_limits<int64>::max();
    190   }
    191   return ((us_ - kTimeTToMicrosecondsOffset) /
    192           kMicrosecondsPerMillisecond);
    193 }
    194 
    195 // static
    196 Time Time::UnixEpoch() {
    197   Time time;
    198   time.us_ = kTimeTToMicrosecondsOffset;
    199   return time;
    200 }
    201 
    202 Time Time::LocalMidnight() const {
    203   Exploded exploded;
    204   LocalExplode(&exploded);
    205   exploded.hour = 0;
    206   exploded.minute = 0;
    207   exploded.second = 0;
    208   exploded.millisecond = 0;
    209   return FromLocalExploded(exploded);
    210 }
    211 
    212 // static
    213 bool Time::FromStringInternal(const char* time_string,
    214                               bool is_local,
    215                               Time* parsed_time) {
    216   DCHECK((time_string != NULL) && (parsed_time != NULL));
    217 
    218   if (time_string[0] == '\0')
    219     return false;
    220 
    221   PRTime result_time = 0;
    222   PRStatus result = PR_ParseTimeString(time_string,
    223                                        is_local ? PR_FALSE : PR_TRUE,
    224                                        &result_time);
    225   if (PR_SUCCESS != result)
    226     return false;
    227 
    228   result_time += kTimeTToMicrosecondsOffset;
    229   *parsed_time = Time(result_time);
    230   return true;
    231 }
    232 
    233 // Local helper class to hold the conversion from Time to TickTime at the
    234 // time of the Unix epoch.
    235 class UnixEpochSingleton {
    236  public:
    237   UnixEpochSingleton()
    238       : unix_epoch_(TimeTicks::Now() - (Time::Now() - Time::UnixEpoch())) {}
    239 
    240   TimeTicks unix_epoch() const { return unix_epoch_; }
    241 
    242  private:
    243   const TimeTicks unix_epoch_;
    244 
    245   DISALLOW_COPY_AND_ASSIGN(UnixEpochSingleton);
    246 };
    247 
    248 static LazyInstance<UnixEpochSingleton>::Leaky
    249     leaky_unix_epoch_singleton_instance = LAZY_INSTANCE_INITIALIZER;
    250 
    251 // Static
    252 TimeTicks TimeTicks::UnixEpoch() {
    253   return leaky_unix_epoch_singleton_instance.Get().unix_epoch();
    254 }
    255 
    256 // Time::Exploded -------------------------------------------------------------
    257 
    258 inline bool is_in_range(int value, int lo, int hi) {
    259   return lo <= value && value <= hi;
    260 }
    261 
    262 bool Time::Exploded::HasValidValues() const {
    263   return is_in_range(month, 1, 12) &&
    264          is_in_range(day_of_week, 0, 6) &&
    265          is_in_range(day_of_month, 1, 31) &&
    266          is_in_range(hour, 0, 23) &&
    267          is_in_range(minute, 0, 59) &&
    268          is_in_range(second, 0, 60) &&
    269          is_in_range(millisecond, 0, 999);
    270 }
    271 
    272 }  // namespace base
    273