1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #define _USE_MATH_DEFINES 6 #include <algorithm> 7 #include <cmath> 8 #include <limits> 9 10 #include "skia/ext/image_operations.h" 11 12 // TODO(pkasting): skia/ext should not depend on base/! 13 #include "base/containers/stack_container.h" 14 #include "base/debug/trace_event.h" 15 #include "base/logging.h" 16 #include "base/metrics/histogram.h" 17 #include "base/time/time.h" 18 #include "build/build_config.h" 19 #include "skia/ext/convolver.h" 20 #include "third_party/skia/include/core/SkColorPriv.h" 21 #include "third_party/skia/include/core/SkFontHost.h" 22 #include "third_party/skia/include/core/SkRect.h" 23 24 namespace skia { 25 26 namespace { 27 28 // Returns the ceiling/floor as an integer. 29 inline int CeilInt(float val) { 30 return static_cast<int>(ceil(val)); 31 } 32 inline int FloorInt(float val) { 33 return static_cast<int>(floor(val)); 34 } 35 36 // Filter function computation ------------------------------------------------- 37 38 // Evaluates the box filter, which goes from -0.5 to +0.5. 39 float EvalBox(float x) { 40 return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f; 41 } 42 43 // Evaluates the Lanczos filter of the given filter size window for the given 44 // position. 45 // 46 // |filter_size| is the width of the filter (the "window"), outside of which 47 // the value of the function is 0. Inside of the window, the value is the 48 // normalized sinc function: 49 // lanczos(x) = sinc(x) * sinc(x / filter_size); 50 // where 51 // sinc(x) = sin(pi*x) / (pi*x); 52 float EvalLanczos(int filter_size, float x) { 53 if (x <= -filter_size || x >= filter_size) 54 return 0.0f; // Outside of the window. 55 if (x > -std::numeric_limits<float>::epsilon() && 56 x < std::numeric_limits<float>::epsilon()) 57 return 1.0f; // Special case the discontinuity at the origin. 58 float xpi = x * static_cast<float>(M_PI); 59 return (sin(xpi) / xpi) * // sinc(x) 60 sin(xpi / filter_size) / (xpi / filter_size); // sinc(x/filter_size) 61 } 62 63 // Evaluates the Hamming filter of the given filter size window for the given 64 // position. 65 // 66 // The filter covers [-filter_size, +filter_size]. Outside of this window 67 // the value of the function is 0. Inside of the window, the value is sinus 68 // cardinal multiplied by a recentered Hamming function. The traditional 69 // Hamming formula for a window of size N and n ranging in [0, N-1] is: 70 // hamming(n) = 0.54 - 0.46 * cos(2 * pi * n / (N-1))) 71 // In our case we want the function centered for x == 0 and at its minimum 72 // on both ends of the window (x == +/- filter_size), hence the adjusted 73 // formula: 74 // hamming(x) = (0.54 - 75 // 0.46 * cos(2 * pi * (x - filter_size)/ (2 * filter_size))) 76 // = 0.54 - 0.46 * cos(pi * x / filter_size - pi) 77 // = 0.54 + 0.46 * cos(pi * x / filter_size) 78 float EvalHamming(int filter_size, float x) { 79 if (x <= -filter_size || x >= filter_size) 80 return 0.0f; // Outside of the window. 81 if (x > -std::numeric_limits<float>::epsilon() && 82 x < std::numeric_limits<float>::epsilon()) 83 return 1.0f; // Special case the sinc discontinuity at the origin. 84 const float xpi = x * static_cast<float>(M_PI); 85 86 return ((sin(xpi) / xpi) * // sinc(x) 87 (0.54f + 0.46f * cos(xpi / filter_size))); // hamming(x) 88 } 89 90 // ResizeFilter ---------------------------------------------------------------- 91 92 // Encapsulates computation and storage of the filters required for one complete 93 // resize operation. 94 class ResizeFilter { 95 public: 96 ResizeFilter(ImageOperations::ResizeMethod method, 97 int src_full_width, int src_full_height, 98 int dest_width, int dest_height, 99 const SkIRect& dest_subset); 100 101 // Returns the filled filter values. 102 const ConvolutionFilter1D& x_filter() { return x_filter_; } 103 const ConvolutionFilter1D& y_filter() { return y_filter_; } 104 105 private: 106 // Returns the number of pixels that the filer spans, in filter space (the 107 // destination image). 108 float GetFilterSupport(float scale) { 109 switch (method_) { 110 case ImageOperations::RESIZE_BOX: 111 // The box filter just scales with the image scaling. 112 return 0.5f; // Only want one side of the filter = /2. 113 case ImageOperations::RESIZE_HAMMING1: 114 // The Hamming filter takes as much space in the source image in 115 // each direction as the size of the window = 1 for Hamming1. 116 return 1.0f; 117 case ImageOperations::RESIZE_LANCZOS2: 118 // The Lanczos filter takes as much space in the source image in 119 // each direction as the size of the window = 2 for Lanczos2. 120 return 2.0f; 121 case ImageOperations::RESIZE_LANCZOS3: 122 // The Lanczos filter takes as much space in the source image in 123 // each direction as the size of the window = 3 for Lanczos3. 124 return 3.0f; 125 default: 126 NOTREACHED(); 127 return 1.0f; 128 } 129 } 130 131 // Computes one set of filters either horizontally or vertically. The caller 132 // will specify the "min" and "max" rather than the bottom/top and 133 // right/bottom so that the same code can be re-used in each dimension. 134 // 135 // |src_depend_lo| and |src_depend_size| gives the range for the source 136 // depend rectangle (horizontally or vertically at the caller's discretion 137 // -- see above for what this means). 138 // 139 // Likewise, the range of destination values to compute and the scale factor 140 // for the transform is also specified. 141 void ComputeFilters(int src_size, 142 int dest_subset_lo, int dest_subset_size, 143 float scale, 144 ConvolutionFilter1D* output); 145 146 // Computes the filter value given the coordinate in filter space. 147 inline float ComputeFilter(float pos) { 148 switch (method_) { 149 case ImageOperations::RESIZE_BOX: 150 return EvalBox(pos); 151 case ImageOperations::RESIZE_HAMMING1: 152 return EvalHamming(1, pos); 153 case ImageOperations::RESIZE_LANCZOS2: 154 return EvalLanczos(2, pos); 155 case ImageOperations::RESIZE_LANCZOS3: 156 return EvalLanczos(3, pos); 157 default: 158 NOTREACHED(); 159 return 0; 160 } 161 } 162 163 ImageOperations::ResizeMethod method_; 164 165 // Size of the filter support on one side only in the destination space. 166 // See GetFilterSupport. 167 float x_filter_support_; 168 float y_filter_support_; 169 170 // Subset of scaled destination bitmap to compute. 171 SkIRect out_bounds_; 172 173 ConvolutionFilter1D x_filter_; 174 ConvolutionFilter1D y_filter_; 175 176 DISALLOW_COPY_AND_ASSIGN(ResizeFilter); 177 }; 178 179 ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method, 180 int src_full_width, int src_full_height, 181 int dest_width, int dest_height, 182 const SkIRect& dest_subset) 183 : method_(method), 184 out_bounds_(dest_subset) { 185 // method_ will only ever refer to an "algorithm method". 186 SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) && 187 (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD)); 188 189 float scale_x = static_cast<float>(dest_width) / 190 static_cast<float>(src_full_width); 191 float scale_y = static_cast<float>(dest_height) / 192 static_cast<float>(src_full_height); 193 194 ComputeFilters(src_full_width, dest_subset.fLeft, dest_subset.width(), 195 scale_x, &x_filter_); 196 ComputeFilters(src_full_height, dest_subset.fTop, dest_subset.height(), 197 scale_y, &y_filter_); 198 } 199 200 // TODO(egouriou): Take advantage of periods in the convolution. 201 // Practical resizing filters are periodic outside of the border area. 202 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the 203 // source become p pixels in the destination) will have a period of p. 204 // A nice consequence is a period of 1 when downscaling by an integral 205 // factor. Downscaling from typical display resolutions is also bound 206 // to produce interesting periods as those are chosen to have multiple 207 // small factors. 208 // Small periods reduce computational load and improve cache usage if 209 // the coefficients can be shared. For periods of 1 we can consider 210 // loading the factors only once outside the borders. 211 void ResizeFilter::ComputeFilters(int src_size, 212 int dest_subset_lo, int dest_subset_size, 213 float scale, 214 ConvolutionFilter1D* output) { 215 int dest_subset_hi = dest_subset_lo + dest_subset_size; // [lo, hi) 216 217 // When we're doing a magnification, the scale will be larger than one. This 218 // means the destination pixels are much smaller than the source pixels, and 219 // that the range covered by the filter won't necessarily cover any source 220 // pixel boundaries. Therefore, we use these clamped values (max of 1) for 221 // some computations. 222 float clamped_scale = std::min(1.0f, scale); 223 224 // This is how many source pixels from the center we need to count 225 // to support the filtering function. 226 float src_support = GetFilterSupport(clamped_scale) / clamped_scale; 227 228 // Speed up the divisions below by turning them into multiplies. 229 float inv_scale = 1.0f / scale; 230 231 base::StackVector<float, 64> filter_values; 232 base::StackVector<int16, 64> fixed_filter_values; 233 234 // Loop over all pixels in the output range. We will generate one set of 235 // filter values for each one. Those values will tell us how to blend the 236 // source pixels to compute the destination pixel. 237 for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi; 238 dest_subset_i++) { 239 // Reset the arrays. We don't declare them inside so they can re-use the 240 // same malloc-ed buffer. 241 filter_values->clear(); 242 fixed_filter_values->clear(); 243 244 // This is the pixel in the source directly under the pixel in the dest. 245 // Note that we base computations on the "center" of the pixels. To see 246 // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x 247 // downscale should "cover" the pixels around the pixel with *its center* 248 // at coordinates (2.5, 2.5) in the source, not those around (0, 0). 249 // Hence we need to scale coordinates (0.5, 0.5), not (0, 0). 250 float src_pixel = (static_cast<float>(dest_subset_i) + 0.5f) * inv_scale; 251 252 // Compute the (inclusive) range of source pixels the filter covers. 253 int src_begin = std::max(0, FloorInt(src_pixel - src_support)); 254 int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support)); 255 256 // Compute the unnormalized filter value at each location of the source 257 // it covers. 258 float filter_sum = 0.0f; // Sub of the filter values for normalizing. 259 for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end; 260 cur_filter_pixel++) { 261 // Distance from the center of the filter, this is the filter coordinate 262 // in source space. We also need to consider the center of the pixel 263 // when comparing distance against 'src_pixel'. In the 5x downscale 264 // example used above the distance from the center of the filter to 265 // the pixel with coordinates (2, 2) should be 0, because its center 266 // is at (2.5, 2.5). 267 float src_filter_dist = 268 ((static_cast<float>(cur_filter_pixel) + 0.5f) - src_pixel); 269 270 // Since the filter really exists in dest space, map it there. 271 float dest_filter_dist = src_filter_dist * clamped_scale; 272 273 // Compute the filter value at that location. 274 float filter_value = ComputeFilter(dest_filter_dist); 275 filter_values->push_back(filter_value); 276 277 filter_sum += filter_value; 278 } 279 DCHECK(!filter_values->empty()) << "We should always get a filter!"; 280 281 // The filter must be normalized so that we don't affect the brightness of 282 // the image. Convert to normalized fixed point. 283 int16 fixed_sum = 0; 284 for (size_t i = 0; i < filter_values->size(); i++) { 285 int16 cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum); 286 fixed_sum += cur_fixed; 287 fixed_filter_values->push_back(cur_fixed); 288 } 289 290 // The conversion to fixed point will leave some rounding errors, which 291 // we add back in to avoid affecting the brightness of the image. We 292 // arbitrarily add this to the center of the filter array (this won't always 293 // be the center of the filter function since it could get clipped on the 294 // edges, but it doesn't matter enough to worry about that case). 295 int16 leftovers = output->FloatToFixed(1.0f) - fixed_sum; 296 fixed_filter_values[fixed_filter_values->size() / 2] += leftovers; 297 298 // Now it's ready to go. 299 output->AddFilter(src_begin, &fixed_filter_values[0], 300 static_cast<int>(fixed_filter_values->size())); 301 } 302 303 output->PaddingForSIMD(); 304 } 305 306 ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod( 307 ImageOperations::ResizeMethod method) { 308 // Convert any "Quality Method" into an "Algorithm Method" 309 if (method >= ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD && 310 method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD) { 311 return method; 312 } 313 // The call to ImageOperationsGtv::Resize() above took care of 314 // GPU-acceleration in the cases where it is possible. So now we just 315 // pick the appropriate software method for each resize quality. 316 switch (method) { 317 // Users of RESIZE_GOOD are willing to trade a lot of quality to 318 // get speed, allowing the use of linear resampling to get hardware 319 // acceleration (SRB). Hence any of our "good" software filters 320 // will be acceptable, and we use the fastest one, Hamming-1. 321 case ImageOperations::RESIZE_GOOD: 322 // Users of RESIZE_BETTER are willing to trade some quality in order 323 // to improve performance, but are guaranteed not to devolve to a linear 324 // resampling. In visual tests we see that Hamming-1 is not as good as 325 // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is 326 // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed 327 // an acceptable trade-off between quality and speed. 328 case ImageOperations::RESIZE_BETTER: 329 return ImageOperations::RESIZE_HAMMING1; 330 default: 331 return ImageOperations::RESIZE_LANCZOS3; 332 } 333 } 334 335 } // namespace 336 337 // Resize ---------------------------------------------------------------------- 338 339 // static 340 SkBitmap ImageOperations::Resize(const SkBitmap& source, 341 ResizeMethod method, 342 int dest_width, int dest_height, 343 const SkIRect& dest_subset, 344 SkBitmap::Allocator* allocator) { 345 if (method == ImageOperations::RESIZE_SUBPIXEL) { 346 return ResizeSubpixel(source, dest_width, dest_height, 347 dest_subset, allocator); 348 } else { 349 return ResizeBasic(source, method, dest_width, dest_height, dest_subset, 350 allocator); 351 } 352 } 353 354 // static 355 SkBitmap ImageOperations::ResizeSubpixel(const SkBitmap& source, 356 int dest_width, int dest_height, 357 const SkIRect& dest_subset, 358 SkBitmap::Allocator* allocator) { 359 TRACE_EVENT2("skia", "ImageOperations::ResizeSubpixel", 360 "src_pixels", source.width()*source.height(), 361 "dst_pixels", dest_width*dest_height); 362 // Currently only works on Linux/BSD because these are the only platforms 363 // where SkFontHost::GetSubpixelOrder is defined. 364 #if defined(OS_LINUX) && !defined(GTV) 365 // Understand the display. 366 const SkFontHost::LCDOrder order = SkFontHost::GetSubpixelOrder(); 367 const SkFontHost::LCDOrientation orientation = 368 SkFontHost::GetSubpixelOrientation(); 369 370 // Decide on which dimension, if any, to deploy subpixel rendering. 371 int w = 1; 372 int h = 1; 373 switch (orientation) { 374 case SkFontHost::kHorizontal_LCDOrientation: 375 w = dest_width < source.width() ? 3 : 1; 376 break; 377 case SkFontHost::kVertical_LCDOrientation: 378 h = dest_height < source.height() ? 3 : 1; 379 break; 380 } 381 382 // Resize the image. 383 const int width = dest_width * w; 384 const int height = dest_height * h; 385 SkIRect subset = { dest_subset.fLeft, dest_subset.fTop, 386 dest_subset.fLeft + dest_subset.width() * w, 387 dest_subset.fTop + dest_subset.height() * h }; 388 SkBitmap img = ResizeBasic(source, ImageOperations::RESIZE_LANCZOS3, width, 389 height, subset, allocator); 390 const int row_words = img.rowBytes() / 4; 391 if (w == 1 && h == 1) 392 return img; 393 394 // Render into subpixels. 395 SkBitmap result; 396 result.setInfo(SkImageInfo::MakeN32(dest_subset.width(), dest_subset.height(), 397 img.alphaType())); 398 result.allocPixels(allocator, NULL); 399 if (!result.readyToDraw()) 400 return img; 401 402 SkAutoLockPixels locker(img); 403 if (!img.readyToDraw()) 404 return img; 405 406 uint32* src_row = img.getAddr32(0, 0); 407 uint32* dst_row = result.getAddr32(0, 0); 408 for (int y = 0; y < dest_subset.height(); y++) { 409 uint32* src = src_row; 410 uint32* dst = dst_row; 411 for (int x = 0; x < dest_subset.width(); x++, src += w, dst++) { 412 uint8 r = 0, g = 0, b = 0, a = 0; 413 switch (order) { 414 case SkFontHost::kRGB_LCDOrder: 415 switch (orientation) { 416 case SkFontHost::kHorizontal_LCDOrientation: 417 r = SkGetPackedR32(src[0]); 418 g = SkGetPackedG32(src[1]); 419 b = SkGetPackedB32(src[2]); 420 a = SkGetPackedA32(src[1]); 421 break; 422 case SkFontHost::kVertical_LCDOrientation: 423 r = SkGetPackedR32(src[0 * row_words]); 424 g = SkGetPackedG32(src[1 * row_words]); 425 b = SkGetPackedB32(src[2 * row_words]); 426 a = SkGetPackedA32(src[1 * row_words]); 427 break; 428 } 429 break; 430 case SkFontHost::kBGR_LCDOrder: 431 switch (orientation) { 432 case SkFontHost::kHorizontal_LCDOrientation: 433 b = SkGetPackedB32(src[0]); 434 g = SkGetPackedG32(src[1]); 435 r = SkGetPackedR32(src[2]); 436 a = SkGetPackedA32(src[1]); 437 break; 438 case SkFontHost::kVertical_LCDOrientation: 439 b = SkGetPackedB32(src[0 * row_words]); 440 g = SkGetPackedG32(src[1 * row_words]); 441 r = SkGetPackedR32(src[2 * row_words]); 442 a = SkGetPackedA32(src[1 * row_words]); 443 break; 444 } 445 break; 446 case SkFontHost::kNONE_LCDOrder: 447 NOTREACHED(); 448 } 449 // Premultiplied alpha is very fragile. 450 a = a > r ? a : r; 451 a = a > g ? a : g; 452 a = a > b ? a : b; 453 *dst = SkPackARGB32(a, r, g, b); 454 } 455 src_row += h * row_words; 456 dst_row += result.rowBytes() / 4; 457 } 458 return result; 459 #else 460 return SkBitmap(); 461 #endif // OS_POSIX && !OS_MACOSX && !defined(OS_ANDROID) 462 } 463 464 // static 465 SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source, 466 ResizeMethod method, 467 int dest_width, int dest_height, 468 const SkIRect& dest_subset, 469 SkBitmap::Allocator* allocator) { 470 TRACE_EVENT2("skia", "ImageOperations::ResizeBasic", 471 "src_pixels", source.width()*source.height(), 472 "dst_pixels", dest_width*dest_height); 473 // Ensure that the ResizeMethod enumeration is sound. 474 SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) && 475 (method <= RESIZE_LAST_QUALITY_METHOD)) || 476 ((RESIZE_FIRST_ALGORITHM_METHOD <= method) && 477 (method <= RESIZE_LAST_ALGORITHM_METHOD))); 478 479 // Time how long this takes to see if it's a problem for users. 480 base::TimeTicks resize_start = base::TimeTicks::Now(); 481 482 SkIRect dest = { 0, 0, dest_width, dest_height }; 483 DCHECK(dest.contains(dest_subset)) << 484 "The supplied subset does not fall within the destination image."; 485 486 // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just 487 // return empty. 488 if (source.width() < 1 || source.height() < 1 || 489 dest_width < 1 || dest_height < 1) 490 return SkBitmap(); 491 492 method = ResizeMethodToAlgorithmMethod(method); 493 // Check that we deal with an "algorithm methods" from this point onward. 494 SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) && 495 (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD)); 496 497 SkAutoLockPixels locker(source); 498 if (!source.readyToDraw() || source.config() != SkBitmap::kARGB_8888_Config) 499 return SkBitmap(); 500 501 ResizeFilter filter(method, source.width(), source.height(), 502 dest_width, dest_height, dest_subset); 503 504 // Get a source bitmap encompassing this touched area. We construct the 505 // offsets and row strides such that it looks like a new bitmap, while 506 // referring to the old data. 507 const uint8* source_subset = 508 reinterpret_cast<const uint8*>(source.getPixels()); 509 510 // Convolve into the result. 511 SkBitmap result; 512 result.setInfo(SkImageInfo::MakeN32(dest_subset.width(), dest_subset.height(), source.alphaType())); 513 result.allocPixels(allocator, NULL); 514 if (!result.readyToDraw()) 515 return SkBitmap(); 516 517 BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()), 518 !source.isOpaque(), filter.x_filter(), filter.y_filter(), 519 static_cast<int>(result.rowBytes()), 520 static_cast<unsigned char*>(result.getPixels()), 521 true); 522 523 base::TimeDelta delta = base::TimeTicks::Now() - resize_start; 524 UMA_HISTOGRAM_TIMES("Image.ResampleMS", delta); 525 526 return result; 527 } 528 529 // static 530 SkBitmap ImageOperations::Resize(const SkBitmap& source, 531 ResizeMethod method, 532 int dest_width, int dest_height, 533 SkBitmap::Allocator* allocator) { 534 SkIRect dest_subset = { 0, 0, dest_width, dest_height }; 535 return Resize(source, method, dest_width, dest_height, dest_subset, 536 allocator); 537 } 538 539 } // namespace skia 540