Home | History | Annotate | Download | only in dtoa
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "config.h"
     29 
     30 #include <math.h>
     31 
     32 #include "double.h"
     33 #include "fixed-dtoa.h"
     34 
     35 namespace WTF {
     36 
     37 namespace double_conversion {
     38 
     39     // Represents a 128bit type. This class should be replaced by a native type on
     40     // platforms that support 128bit integers.
     41     class UInt128 {
     42     public:
     43         UInt128() : high_bits_(0), low_bits_(0) { }
     44         UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
     45 
     46         void Multiply(uint32_t multiplicand) {
     47             uint64_t accumulator;
     48 
     49             accumulator = (low_bits_ & kMask32) * multiplicand;
     50             uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
     51             accumulator >>= 32;
     52             accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
     53             low_bits_ = (accumulator << 32) + part;
     54             accumulator >>= 32;
     55             accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
     56             part = static_cast<uint32_t>(accumulator & kMask32);
     57             accumulator >>= 32;
     58             accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
     59             high_bits_ = (accumulator << 32) + part;
     60             ASSERT((accumulator >> 32) == 0);
     61         }
     62 
     63         void Shift(int shift_amount) {
     64             ASSERT(-64 <= shift_amount && shift_amount <= 64);
     65             if (shift_amount == 0) {
     66                 return;
     67             } else if (shift_amount == -64) {
     68                 high_bits_ = low_bits_;
     69                 low_bits_ = 0;
     70             } else if (shift_amount == 64) {
     71                 low_bits_ = high_bits_;
     72                 high_bits_ = 0;
     73             } else if (shift_amount <= 0) {
     74                 high_bits_ <<= -shift_amount;
     75                 high_bits_ += low_bits_ >> (64 + shift_amount);
     76                 low_bits_ <<= -shift_amount;
     77             } else {
     78                 low_bits_ >>= shift_amount;
     79                 low_bits_ += high_bits_ << (64 - shift_amount);
     80                 high_bits_ >>= shift_amount;
     81             }
     82         }
     83 
     84         // Modifies *this to *this MOD (2^power).
     85         // Returns *this DIV (2^power).
     86         int DivModPowerOf2(int power) {
     87             if (power >= 64) {
     88                 int result = static_cast<int>(high_bits_ >> (power - 64));
     89                 high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
     90                 return result;
     91             } else {
     92                 uint64_t part_low = low_bits_ >> power;
     93                 uint64_t part_high = high_bits_ << (64 - power);
     94                 int result = static_cast<int>(part_low + part_high);
     95                 high_bits_ = 0;
     96                 low_bits_ -= part_low << power;
     97                 return result;
     98             }
     99         }
    100 
    101         bool IsZero() const {
    102             return high_bits_ == 0 && low_bits_ == 0;
    103         }
    104 
    105         int BitAt(int position) {
    106             if (position >= 64) {
    107                 return static_cast<int>(high_bits_ >> (position - 64)) & 1;
    108             } else {
    109                 return static_cast<int>(low_bits_ >> position) & 1;
    110             }
    111         }
    112 
    113     private:
    114         static const uint64_t kMask32 = 0xFFFFFFFF;
    115         // Value == (high_bits_ << 64) + low_bits_
    116         uint64_t high_bits_;
    117         uint64_t low_bits_;
    118     };
    119 
    120 
    121     static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
    122 
    123 
    124     static void FillDigits32FixedLength(uint32_t number, int requested_length,
    125                                         Vector<char> buffer, int* length) {
    126         for (int i = requested_length - 1; i >= 0; --i) {
    127             buffer[(*length) + i] = '0' + number % 10;
    128             number /= 10;
    129         }
    130         *length += requested_length;
    131     }
    132 
    133 
    134     static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
    135         int number_length = 0;
    136         // We fill the digits in reverse order and exchange them afterwards.
    137         while (number != 0) {
    138             int digit = number % 10;
    139             number /= 10;
    140             buffer[(*length) + number_length] = '0' + digit;
    141             number_length++;
    142         }
    143         // Exchange the digits.
    144         int i = *length;
    145         int j = *length + number_length - 1;
    146         while (i < j) {
    147             char tmp = buffer[i];
    148             buffer[i] = buffer[j];
    149             buffer[j] = tmp;
    150             i++;
    151             j--;
    152         }
    153         *length += number_length;
    154     }
    155 
    156 
    157     static void FillDigits64FixedLength(uint64_t number, int,
    158                                         Vector<char> buffer, int* length) {
    159         const uint32_t kTen7 = 10000000;
    160         // For efficiency cut the number into 3 uint32_t parts, and print those.
    161         uint32_t part2 = static_cast<uint32_t>(number % kTen7);
    162         number /= kTen7;
    163         uint32_t part1 = static_cast<uint32_t>(number % kTen7);
    164         uint32_t part0 = static_cast<uint32_t>(number / kTen7);
    165 
    166         FillDigits32FixedLength(part0, 3, buffer, length);
    167         FillDigits32FixedLength(part1, 7, buffer, length);
    168         FillDigits32FixedLength(part2, 7, buffer, length);
    169     }
    170 
    171 
    172     static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
    173         const uint32_t kTen7 = 10000000;
    174         // For efficiency cut the number into 3 uint32_t parts, and print those.
    175         uint32_t part2 = static_cast<uint32_t>(number % kTen7);
    176         number /= kTen7;
    177         uint32_t part1 = static_cast<uint32_t>(number % kTen7);
    178         uint32_t part0 = static_cast<uint32_t>(number / kTen7);
    179 
    180         if (part0 != 0) {
    181             FillDigits32(part0, buffer, length);
    182             FillDigits32FixedLength(part1, 7, buffer, length);
    183             FillDigits32FixedLength(part2, 7, buffer, length);
    184         } else if (part1 != 0) {
    185             FillDigits32(part1, buffer, length);
    186             FillDigits32FixedLength(part2, 7, buffer, length);
    187         } else {
    188             FillDigits32(part2, buffer, length);
    189         }
    190     }
    191 
    192 
    193     static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
    194         // An empty buffer represents 0.
    195         if (*length == 0) {
    196             buffer[0] = '1';
    197             *decimal_point = 1;
    198             *length = 1;
    199             return;
    200         }
    201         // Round the last digit until we either have a digit that was not '9' or until
    202         // we reached the first digit.
    203         buffer[(*length) - 1]++;
    204         for (int i = (*length) - 1; i > 0; --i) {
    205             if (buffer[i] != '0' + 10) {
    206                 return;
    207             }
    208             buffer[i] = '0';
    209             buffer[i - 1]++;
    210         }
    211         // If the first digit is now '0' + 10, we would need to set it to '0' and add
    212         // a '1' in front. However we reach the first digit only if all following
    213         // digits had been '9' before rounding up. Now all trailing digits are '0' and
    214         // we simply switch the first digit to '1' and update the decimal-point
    215         // (indicating that the point is now one digit to the right).
    216         if (buffer[0] == '0' + 10) {
    217             buffer[0] = '1';
    218             (*decimal_point)++;
    219         }
    220     }
    221 
    222 
    223     // The given fractionals number represents a fixed-point number with binary
    224     // point at bit (-exponent).
    225     // Preconditions:
    226     //   -128 <= exponent <= 0.
    227     //   0 <= fractionals * 2^exponent < 1
    228     //   The buffer holds the result.
    229     // The function will round its result. During the rounding-process digits not
    230     // generated by this function might be updated, and the decimal-point variable
    231     // might be updated. If this function generates the digits 99 and the buffer
    232     // already contained "199" (thus yielding a buffer of "19999") then a
    233     // rounding-up will change the contents of the buffer to "20000".
    234     static void FillFractionals(uint64_t fractionals, int exponent,
    235                                 int fractional_count, Vector<char> buffer,
    236                                 int* length, int* decimal_point) {
    237         ASSERT(-128 <= exponent && exponent <= 0);
    238         // 'fractionals' is a fixed-point number, with binary point at bit
    239         // (-exponent). Inside the function the non-converted remainder of fractionals
    240         // is a fixed-point number, with binary point at bit 'point'.
    241         if (-exponent <= 64) {
    242             // One 64 bit number is sufficient.
    243             ASSERT(fractionals >> 56 == 0);
    244             int point = -exponent;
    245             for (int i = 0; i < fractional_count; ++i) {
    246                 if (fractionals == 0) break;
    247                 // Instead of multiplying by 10 we multiply by 5 and adjust the point
    248                 // location. This way the fractionals variable will not overflow.
    249                 // Invariant at the beginning of the loop: fractionals < 2^point.
    250                 // Initially we have: point <= 64 and fractionals < 2^56
    251                 // After each iteration the point is decremented by one.
    252                 // Note that 5^3 = 125 < 128 = 2^7.
    253                 // Therefore three iterations of this loop will not overflow fractionals
    254                 // (even without the subtraction at the end of the loop body). At this
    255                 // time point will satisfy point <= 61 and therefore fractionals < 2^point
    256                 // and any further multiplication of fractionals by 5 will not overflow.
    257                 fractionals *= 5;
    258                 point--;
    259                 int digit = static_cast<int>(fractionals >> point);
    260                 buffer[*length] = '0' + digit;
    261                 (*length)++;
    262                 fractionals -= static_cast<uint64_t>(digit) << point;
    263             }
    264             // If the first bit after the point is set we have to round up.
    265             if (((fractionals >> (point - 1)) & 1) == 1) {
    266                 RoundUp(buffer, length, decimal_point);
    267             }
    268         } else {  // We need 128 bits.
    269             ASSERT(64 < -exponent && -exponent <= 128);
    270             UInt128 fractionals128 = UInt128(fractionals, 0);
    271             fractionals128.Shift(-exponent - 64);
    272             int point = 128;
    273             for (int i = 0; i < fractional_count; ++i) {
    274                 if (fractionals128.IsZero()) break;
    275                 // As before: instead of multiplying by 10 we multiply by 5 and adjust the
    276                 // point location.
    277                 // This multiplication will not overflow for the same reasons as before.
    278                 fractionals128.Multiply(5);
    279                 point--;
    280                 int digit = fractionals128.DivModPowerOf2(point);
    281                 buffer[*length] = '0' + digit;
    282                 (*length)++;
    283             }
    284             if (fractionals128.BitAt(point - 1) == 1) {
    285                 RoundUp(buffer, length, decimal_point);
    286             }
    287         }
    288     }
    289 
    290 
    291     // Removes leading and trailing zeros.
    292     // If leading zeros are removed then the decimal point position is adjusted.
    293     static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
    294         while (*length > 0 && buffer[(*length) - 1] == '0') {
    295             (*length)--;
    296         }
    297         int first_non_zero = 0;
    298         while (first_non_zero < *length && buffer[first_non_zero] == '0') {
    299             first_non_zero++;
    300         }
    301         if (first_non_zero != 0) {
    302             for (int i = first_non_zero; i < *length; ++i) {
    303                 buffer[i - first_non_zero] = buffer[i];
    304             }
    305             *length -= first_non_zero;
    306             *decimal_point -= first_non_zero;
    307         }
    308     }
    309 
    310 
    311     bool FastFixedDtoa(double v,
    312                        int fractional_count,
    313                        Vector<char> buffer,
    314                        int* length,
    315                        int* decimal_point) {
    316         const uint32_t kMaxUInt32 = 0xFFFFFFFF;
    317         uint64_t significand = Double(v).Significand();
    318         int exponent = Double(v).Exponent();
    319         // v = significand * 2^exponent (with significand a 53bit integer).
    320         // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
    321         // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
    322         // If necessary this limit could probably be increased, but we don't need
    323         // more.
    324         if (exponent > 20) return false;
    325         if (fractional_count > 20) return false;
    326         *length = 0;
    327         // At most kDoubleSignificandSize bits of the significand are non-zero.
    328         // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
    329         // bits:  0..11*..0xxx..53*..xx
    330         if (exponent + kDoubleSignificandSize > 64) {
    331             // The exponent must be > 11.
    332             //
    333             // We know that v = significand * 2^exponent.
    334             // And the exponent > 11.
    335             // We simplify the task by dividing v by 10^17.
    336             // The quotient delivers the first digits, and the remainder fits into a 64
    337             // bit number.
    338             // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
    339             const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5);  // 5^17
    340             uint64_t divisor = kFive17;
    341             int divisor_power = 17;
    342             uint64_t dividend = significand;
    343             uint32_t quotient;
    344             uint64_t remainder;
    345             // Let v = f * 2^e with f == significand and e == exponent.
    346             // Then need q (quotient) and r (remainder) as follows:
    347             //   v            = q * 10^17       + r
    348             //   f * 2^e      = q * 10^17       + r
    349             //   f * 2^e      = q * 5^17 * 2^17 + r
    350             // If e > 17 then
    351             //   f * 2^(e-17) = q * 5^17        + r/2^17
    352             // else
    353             //   f  = q * 5^17 * 2^(17-e) + r/2^e
    354             if (exponent > divisor_power) {
    355                 // We only allow exponents of up to 20 and therefore (17 - e) <= 3
    356                 dividend <<= exponent - divisor_power;
    357                 quotient = static_cast<uint32_t>(dividend / divisor);
    358                 remainder = (dividend % divisor) << divisor_power;
    359             } else {
    360                 divisor <<= divisor_power - exponent;
    361                 quotient = static_cast<uint32_t>(dividend / divisor);
    362                 remainder = (dividend % divisor) << exponent;
    363             }
    364             FillDigits32(quotient, buffer, length);
    365             FillDigits64FixedLength(remainder, divisor_power, buffer, length);
    366             *decimal_point = *length;
    367         } else if (exponent >= 0) {
    368             // 0 <= exponent <= 11
    369             significand <<= exponent;
    370             FillDigits64(significand, buffer, length);
    371             *decimal_point = *length;
    372         } else if (exponent > -kDoubleSignificandSize) {
    373             // We have to cut the number.
    374             uint64_t integrals = significand >> -exponent;
    375             uint64_t fractionals = significand - (integrals << -exponent);
    376             if (integrals > kMaxUInt32) {
    377                 FillDigits64(integrals, buffer, length);
    378             } else {
    379                 FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
    380             }
    381             *decimal_point = *length;
    382             FillFractionals(fractionals, exponent, fractional_count,
    383                             buffer, length, decimal_point);
    384         } else if (exponent < -128) {
    385             // This configuration (with at most 20 digits) means that all digits must be
    386             // 0.
    387             ASSERT(fractional_count <= 20);
    388             buffer[0] = '\0';
    389             *length = 0;
    390             *decimal_point = -fractional_count;
    391         } else {
    392             *decimal_point = 0;
    393             FillFractionals(significand, exponent, fractional_count,
    394                             buffer, length, decimal_point);
    395         }
    396         TrimZeros(buffer, length, decimal_point);
    397         buffer[*length] = '\0';
    398         if ((*length) == 0) {
    399             // The string is empty and the decimal_point thus has no importance. Mimick
    400             // Gay's dtoa and and set it to -fractional_count.
    401             *decimal_point = -fractional_count;
    402         }
    403         return true;
    404     }
    405 
    406 }  // namespace double_conversion
    407 
    408 } // namespace WTF
    409