Home | History | Annotate | Download | only in base
      1 // Borrowed from chromium.
      2 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      3 // Use of this source code is governed by a BSD-style license that can be
      4 // found in the LICENSE file.
      5 
      6 // Scopers help you manage ownership of a pointer, helping you easily manage the
      7 // a pointer within a scope, and automatically destroying the pointer at the
      8 // end of a scope.  There are two main classes you will use, which correspond
      9 // to the operators new/delete and new[]/delete[].
     10 //
     11 // Example usage (scoped_ptr<T>):
     12 //   {
     13 //     scoped_ptr<Foo> foo(new Foo("wee"));
     14 //   }  // foo goes out of scope, releasing the pointer with it.
     15 //
     16 //   {
     17 //     scoped_ptr<Foo> foo;          // No pointer managed.
     18 //     foo.reset(new Foo("wee"));    // Now a pointer is managed.
     19 //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
     20 //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
     21 //     foo->Method();                // Foo::Method() called.
     22 //     foo.get()->Method();          // Foo::Method() called.
     23 //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
     24 //                                   // manages a pointer.
     25 //     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
     26 //     foo.reset();                  // Foo("wee4") destroyed, foo no longer
     27 //                                   // manages a pointer.
     28 //   }  // foo wasn't managing a pointer, so nothing was destroyed.
     29 //
     30 // Example usage (scoped_ptr<T[]>):
     31 //   {
     32 //     scoped_ptr<Foo[]> foo(new Foo[100]);
     33 //     foo.get()->Method();  // Foo::Method on the 0th element.
     34 //     foo[10].Method();     // Foo::Method on the 10th element.
     35 //   }
     36 //
     37 // These scopers also implement part of the functionality of C++11 unique_ptr
     38 // in that they are "movable but not copyable."  You can use the scopers in
     39 // the parameter and return types of functions to signify ownership transfer
     40 // in to and out of a function.  When calling a function that has a scoper
     41 // as the argument type, it must be called with the result of an analogous
     42 // scoper's Pass() function or another function that generates a temporary;
     43 // passing by copy will NOT work.  Here is an example using scoped_ptr:
     44 //
     45 //   void TakesOwnership(scoped_ptr<Foo> arg) {
     46 //     // Do something with arg
     47 //   }
     48 //   scoped_ptr<Foo> CreateFoo() {
     49 //     // No need for calling Pass() because we are constructing a temporary
     50 //     // for the return value.
     51 //     return scoped_ptr<Foo>(new Foo("new"));
     52 //   }
     53 //   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
     54 //     return arg.Pass();
     55 //   }
     56 //
     57 //   {
     58 //     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
     59 //     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
     60 //     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
     61 //     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
     62 //         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
     63 //   }
     64 //
     65 // Notice that if you do not call Pass() when returning from PassThru(), or
     66 // when invoking TakesOwnership(), the code will not compile because scopers
     67 // are not copyable; they only implement move semantics which require calling
     68 // the Pass() function to signify a destructive transfer of state. CreateFoo()
     69 // is different though because we are constructing a temporary on the return
     70 // line and thus can avoid needing to call Pass().
     71 //
     72 // Pass() properly handles upcast in initialization, i.e. you can use a
     73 // scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
     74 //
     75 //   scoped_ptr<Foo> foo(new Foo());
     76 //   scoped_ptr<FooParent> parent(foo.Pass());
     77 //
     78 // PassAs<>() should be used to upcast return value in return statement:
     79 //
     80 //   scoped_ptr<Foo> CreateFoo() {
     81 //     scoped_ptr<FooChild> result(new FooChild());
     82 //     return result.PassAs<Foo>();
     83 //   }
     84 //
     85 // Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
     86 // scoped_ptr<T[]>. This is because casting array pointers may not be safe.
     87 
     88 #ifndef TALK_BASE_SCOPED_PTR_H__
     89 #define TALK_BASE_SCOPED_PTR_H__
     90 
     91 #include <stddef.h>  // for ptrdiff_t
     92 #include <stdlib.h>  // for free() decl
     93 
     94 #include <algorithm>  // For std::swap().
     95 
     96 #include "talk/base/common.h"  // for ASSERT
     97 #include "talk/base/compile_assert.h"  // for COMPILE_ASSERT
     98 #include "talk/base/move.h"    // for TALK_MOVE_ONLY_TYPE_FOR_CPP_03
     99 #include "talk/base/template_util.h"    // for is_convertible, is_array
    100 
    101 #ifdef _WIN32
    102 namespace std { using ::ptrdiff_t; };
    103 #endif // _WIN32
    104 
    105 namespace talk_base {
    106 
    107 // Function object which deletes its parameter, which must be a pointer.
    108 // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
    109 // invokes 'delete'. The default deleter for scoped_ptr<T>.
    110 template <class T>
    111 struct DefaultDeleter {
    112   DefaultDeleter() {}
    113   template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
    114     // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
    115     // if U* is implicitly convertible to T* and U is not an array type.
    116     //
    117     // Correct implementation should use SFINAE to disable this
    118     // constructor. However, since there are no other 1-argument constructors,
    119     // using a COMPILE_ASSERT() based on is_convertible<> and requiring
    120     // complete types is simpler and will cause compile failures for equivalent
    121     // misuses.
    122     //
    123     // Note, the is_convertible<U*, T*> check also ensures that U is not an
    124     // array. T is guaranteed to be a non-array, so any U* where U is an array
    125     // cannot convert to T*.
    126     enum { T_must_be_complete = sizeof(T) };
    127     enum { U_must_be_complete = sizeof(U) };
    128     COMPILE_ASSERT((talk_base::is_convertible<U*, T*>::value),
    129                    U_ptr_must_implicitly_convert_to_T_ptr);
    130   }
    131   inline void operator()(T* ptr) const {
    132     enum { type_must_be_complete = sizeof(T) };
    133     delete ptr;
    134   }
    135 };
    136 
    137 // Specialization of DefaultDeleter for array types.
    138 template <class T>
    139 struct DefaultDeleter<T[]> {
    140   inline void operator()(T* ptr) const {
    141     enum { type_must_be_complete = sizeof(T) };
    142     delete[] ptr;
    143   }
    144 
    145  private:
    146   // Disable this operator for any U != T because it is undefined to execute
    147   // an array delete when the static type of the array mismatches the dynamic
    148   // type.
    149   //
    150   // References:
    151   //   C++98 [expr.delete]p3
    152   //   http://cplusplus.github.com/LWG/lwg-defects.html#938
    153   template <typename U> void operator()(U* array) const;
    154 };
    155 
    156 template <class T, int n>
    157 struct DefaultDeleter<T[n]> {
    158   // Never allow someone to declare something like scoped_ptr<int[10]>.
    159   COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
    160 };
    161 
    162 // Function object which invokes 'free' on its parameter, which must be
    163 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
    164 //
    165 // scoped_ptr<int, talk_base::FreeDeleter> foo_ptr(
    166 //     static_cast<int*>(malloc(sizeof(int))));
    167 struct FreeDeleter {
    168   inline void operator()(void* ptr) const {
    169     free(ptr);
    170   }
    171 };
    172 
    173 namespace internal {
    174 
    175 // Minimal implementation of the core logic of scoped_ptr, suitable for
    176 // reuse in both scoped_ptr and its specializations.
    177 template <class T, class D>
    178 class scoped_ptr_impl {
    179  public:
    180   explicit scoped_ptr_impl(T* p) : data_(p) { }
    181 
    182   // Initializer for deleters that have data parameters.
    183   scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
    184 
    185   // Templated constructor that destructively takes the value from another
    186   // scoped_ptr_impl.
    187   template <typename U, typename V>
    188   scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
    189       : data_(other->release(), other->get_deleter()) {
    190     // We do not support move-only deleters.  We could modify our move
    191     // emulation to have talk_base::subtle::move() and
    192     // talk_base::subtle::forward()
    193     // functions that are imperfect emulations of their C++11 equivalents,
    194     // but until there's a requirement, just assume deleters are copyable.
    195   }
    196 
    197   template <typename U, typename V>
    198   void TakeState(scoped_ptr_impl<U, V>* other) {
    199     // See comment in templated constructor above regarding lack of support
    200     // for move-only deleters.
    201     reset(other->release());
    202     get_deleter() = other->get_deleter();
    203   }
    204 
    205   ~scoped_ptr_impl() {
    206     if (data_.ptr != NULL) {
    207       // Not using get_deleter() saves one function call in non-optimized
    208       // builds.
    209       static_cast<D&>(data_)(data_.ptr);
    210     }
    211   }
    212 
    213   void reset(T* p) {
    214     // This is a self-reset, which is no longer allowed: http://crbug.com/162971
    215     if (p != NULL && p == data_.ptr)
    216       abort();
    217 
    218     // Note that running data_.ptr = p can lead to undefined behavior if
    219     // get_deleter()(get()) deletes this. In order to pevent this, reset()
    220     // should update the stored pointer before deleting its old value.
    221     //
    222     // However, changing reset() to use that behavior may cause current code to
    223     // break in unexpected ways. If the destruction of the owned object
    224     // dereferences the scoped_ptr when it is destroyed by a call to reset(),
    225     // then it will incorrectly dispatch calls to |p| rather than the original
    226     // value of |data_.ptr|.
    227     //
    228     // During the transition period, set the stored pointer to NULL while
    229     // deleting the object. Eventually, this safety check will be removed to
    230     // prevent the scenario initially described from occuring and
    231     // http://crbug.com/176091 can be closed.
    232     T* old = data_.ptr;
    233     data_.ptr = NULL;
    234     if (old != NULL)
    235       static_cast<D&>(data_)(old);
    236     data_.ptr = p;
    237   }
    238 
    239   T* get() const { return data_.ptr; }
    240 
    241   D& get_deleter() { return data_; }
    242   const D& get_deleter() const { return data_; }
    243 
    244   void swap(scoped_ptr_impl& p2) {
    245     // Standard swap idiom: 'using std::swap' ensures that std::swap is
    246     // present in the overload set, but we call swap unqualified so that
    247     // any more-specific overloads can be used, if available.
    248     using std::swap;
    249     swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
    250     swap(data_.ptr, p2.data_.ptr);
    251   }
    252 
    253   T* release() {
    254     T* old_ptr = data_.ptr;
    255     data_.ptr = NULL;
    256     return old_ptr;
    257   }
    258 
    259   T** accept() {
    260     reset(NULL);
    261     return &(data_.ptr);
    262   }
    263 
    264   T** use() {
    265     return &(data_.ptr);
    266   }
    267 
    268  private:
    269   // Needed to allow type-converting constructor.
    270   template <typename U, typename V> friend class scoped_ptr_impl;
    271 
    272   // Use the empty base class optimization to allow us to have a D
    273   // member, while avoiding any space overhead for it when D is an
    274   // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
    275   // discussion of this technique.
    276   struct Data : public D {
    277     explicit Data(T* ptr_in) : ptr(ptr_in) {}
    278     Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
    279     T* ptr;
    280   };
    281 
    282   Data data_;
    283 
    284   DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
    285 };
    286 
    287 }  // namespace internal
    288 
    289 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
    290 // automatically deletes the pointer it holds (if any).
    291 // That is, scoped_ptr<T> owns the T object that it points to.
    292 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
    293 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
    294 // dereference it, you get the thread safety guarantees of T.
    295 //
    296 // The size of scoped_ptr is small. On most compilers, when using the
    297 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
    298 // increase the size proportional to whatever state they need to have. See
    299 // comments inside scoped_ptr_impl<> for details.
    300 //
    301 // Current implementation targets having a strict subset of  C++11's
    302 // unique_ptr<> features. Known deficiencies include not supporting move-only
    303 // deleteres, function pointers as deleters, and deleters with reference
    304 // types.
    305 template <class T, class D = talk_base::DefaultDeleter<T> >
    306 class scoped_ptr {
    307   TALK_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
    308 
    309  public:
    310   // The element and deleter types.
    311   typedef T element_type;
    312   typedef D deleter_type;
    313 
    314   // Constructor.  Defaults to initializing with NULL.
    315   scoped_ptr() : impl_(NULL) { }
    316 
    317   // Constructor.  Takes ownership of p.
    318   explicit scoped_ptr(element_type* p) : impl_(p) { }
    319 
    320   // Constructor.  Allows initialization of a stateful deleter.
    321   scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
    322 
    323   // Constructor.  Allows construction from a scoped_ptr rvalue for a
    324   // convertible type and deleter.
    325   //
    326   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
    327   // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
    328   // has different post-conditions if D is a reference type. Since this
    329   // implementation does not support deleters with reference type,
    330   // we do not need a separate move constructor allowing us to avoid one
    331   // use of SFINAE. You only need to care about this if you modify the
    332   // implementation of scoped_ptr.
    333   template <typename U, typename V>
    334   scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
    335     COMPILE_ASSERT(!talk_base::is_array<U>::value, U_cannot_be_an_array);
    336   }
    337 
    338   // Constructor.  Move constructor for C++03 move emulation of this type.
    339   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
    340 
    341   // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
    342   // type and deleter.
    343   //
    344   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
    345   // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
    346   // form has different requirements on for move-only Deleters. Since this
    347   // implementation does not support move-only Deleters, we do not need a
    348   // separate move assignment operator allowing us to avoid one use of SFINAE.
    349   // You only need to care about this if you modify the implementation of
    350   // scoped_ptr.
    351   template <typename U, typename V>
    352   scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
    353     COMPILE_ASSERT(!talk_base::is_array<U>::value, U_cannot_be_an_array);
    354     impl_.TakeState(&rhs.impl_);
    355     return *this;
    356   }
    357 
    358   // Reset.  Deletes the currently owned object, if any.
    359   // Then takes ownership of a new object, if given.
    360   void reset(element_type* p = NULL) { impl_.reset(p); }
    361 
    362   // Accessors to get the owned object.
    363   // operator* and operator-> will assert() if there is no current object.
    364   element_type& operator*() const {
    365     ASSERT(impl_.get() != NULL);
    366     return *impl_.get();
    367   }
    368   element_type* operator->() const  {
    369     ASSERT(impl_.get() != NULL);
    370     return impl_.get();
    371   }
    372   element_type* get() const { return impl_.get(); }
    373 
    374   // Access to the deleter.
    375   deleter_type& get_deleter() { return impl_.get_deleter(); }
    376   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
    377 
    378   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
    379   // implicitly convertible to a real bool (which is dangerous).
    380   //
    381   // Note that this trick is only safe when the == and != operators
    382   // are declared explicitly, as otherwise "scoped_ptr1 ==
    383   // scoped_ptr2" will compile but do the wrong thing (i.e., convert
    384   // to Testable and then do the comparison).
    385  private:
    386   typedef talk_base::internal::scoped_ptr_impl<element_type, deleter_type>
    387       scoped_ptr::*Testable;
    388 
    389  public:
    390   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
    391 
    392   // Comparison operators.
    393   // These return whether two scoped_ptr refer to the same object, not just to
    394   // two different but equal objects.
    395   bool operator==(const element_type* p) const { return impl_.get() == p; }
    396   bool operator!=(const element_type* p) const { return impl_.get() != p; }
    397 
    398   // Swap two scoped pointers.
    399   void swap(scoped_ptr& p2) {
    400     impl_.swap(p2.impl_);
    401   }
    402 
    403   // Release a pointer.
    404   // The return value is the current pointer held by this object.
    405   // If this object holds a NULL pointer, the return value is NULL.
    406   // After this operation, this object will hold a NULL pointer,
    407   // and will not own the object any more.
    408   element_type* release() WARN_UNUSED_RESULT {
    409     return impl_.release();
    410   }
    411 
    412   // Delete the currently held pointer and return a pointer
    413   // to allow overwriting of the current pointer address.
    414   element_type** accept() WARN_UNUSED_RESULT {
    415     return impl_.accept();
    416   }
    417 
    418   // Return a pointer to the current pointer address.
    419   element_type** use() WARN_UNUSED_RESULT {
    420     return impl_.use();
    421   }
    422 
    423   // C++98 doesn't support functions templates with default parameters which
    424   // makes it hard to write a PassAs() that understands converting the deleter
    425   // while preserving simple calling semantics.
    426   //
    427   // Until there is a use case for PassAs() with custom deleters, just ignore
    428   // the custom deleter.
    429   template <typename PassAsType>
    430   scoped_ptr<PassAsType> PassAs() {
    431     return scoped_ptr<PassAsType>(Pass());
    432   }
    433 
    434  private:
    435   // Needed to reach into |impl_| in the constructor.
    436   template <typename U, typename V> friend class scoped_ptr;
    437   talk_base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
    438 
    439   // Forbidden for API compatibility with std::unique_ptr.
    440   explicit scoped_ptr(int disallow_construction_from_null);
    441 
    442   // Forbid comparison of scoped_ptr types.  If U != T, it totally
    443   // doesn't make sense, and if U == T, it still doesn't make sense
    444   // because you should never have the same object owned by two different
    445   // scoped_ptrs.
    446   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
    447   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
    448 };
    449 
    450 template <class T, class D>
    451 class scoped_ptr<T[], D> {
    452   TALK_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
    453 
    454  public:
    455   // The element and deleter types.
    456   typedef T element_type;
    457   typedef D deleter_type;
    458 
    459   // Constructor.  Defaults to initializing with NULL.
    460   scoped_ptr() : impl_(NULL) { }
    461 
    462   // Constructor. Stores the given array. Note that the argument's type
    463   // must exactly match T*. In particular:
    464   // - it cannot be a pointer to a type derived from T, because it is
    465   //   inherently unsafe in the general case to access an array through a
    466   //   pointer whose dynamic type does not match its static type (eg., if
    467   //   T and the derived types had different sizes access would be
    468   //   incorrectly calculated). Deletion is also always undefined
    469   //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
    470   // - it cannot be NULL, because NULL is an integral expression, not a
    471   //   pointer to T. Use the no-argument version instead of explicitly
    472   //   passing NULL.
    473   // - it cannot be const-qualified differently from T per unique_ptr spec
    474   //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
    475   //   to work around this may use implicit_cast<const T*>().
    476   //   However, because of the first bullet in this comment, users MUST
    477   //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
    478   explicit scoped_ptr(element_type* array) : impl_(array) { }
    479 
    480   // Constructor.  Move constructor for C++03 move emulation of this type.
    481   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
    482 
    483   // operator=.  Move operator= for C++03 move emulation of this type.
    484   scoped_ptr& operator=(RValue rhs) {
    485     impl_.TakeState(&rhs.object->impl_);
    486     return *this;
    487   }
    488 
    489   // Reset.  Deletes the currently owned array, if any.
    490   // Then takes ownership of a new object, if given.
    491   void reset(element_type* array = NULL) { impl_.reset(array); }
    492 
    493   // Accessors to get the owned array.
    494   element_type& operator[](size_t i) const {
    495     ASSERT(impl_.get() != NULL);
    496     return impl_.get()[i];
    497   }
    498   element_type* get() const { return impl_.get(); }
    499 
    500   // Access to the deleter.
    501   deleter_type& get_deleter() { return impl_.get_deleter(); }
    502   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
    503 
    504   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
    505   // implicitly convertible to a real bool (which is dangerous).
    506  private:
    507   typedef talk_base::internal::scoped_ptr_impl<element_type, deleter_type>
    508       scoped_ptr::*Testable;
    509 
    510  public:
    511   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
    512 
    513   // Comparison operators.
    514   // These return whether two scoped_ptr refer to the same object, not just to
    515   // two different but equal objects.
    516   bool operator==(element_type* array) const { return impl_.get() == array; }
    517   bool operator!=(element_type* array) const { return impl_.get() != array; }
    518 
    519   // Swap two scoped pointers.
    520   void swap(scoped_ptr& p2) {
    521     impl_.swap(p2.impl_);
    522   }
    523 
    524   // Release a pointer.
    525   // The return value is the current pointer held by this object.
    526   // If this object holds a NULL pointer, the return value is NULL.
    527   // After this operation, this object will hold a NULL pointer,
    528   // and will not own the object any more.
    529   element_type* release() WARN_UNUSED_RESULT {
    530     return impl_.release();
    531   }
    532 
    533   // Delete the currently held pointer and return a pointer
    534   // to allow overwriting of the current pointer address.
    535   element_type** accept() WARN_UNUSED_RESULT {
    536     return impl_.accept();
    537   }
    538 
    539   // Return a pointer to the current pointer address.
    540   element_type** use() WARN_UNUSED_RESULT {
    541     return impl_.use();
    542   }
    543 
    544  private:
    545   // Force element_type to be a complete type.
    546   enum { type_must_be_complete = sizeof(element_type) };
    547 
    548   // Actually hold the data.
    549   talk_base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
    550 
    551   // Disable initialization from any type other than element_type*, by
    552   // providing a constructor that matches such an initialization, but is
    553   // private and has no definition. This is disabled because it is not safe to
    554   // call delete[] on an array whose static type does not match its dynamic
    555   // type.
    556   template <typename U> explicit scoped_ptr(U* array);
    557   explicit scoped_ptr(int disallow_construction_from_null);
    558 
    559   // Disable reset() from any type other than element_type*, for the same
    560   // reasons as the constructor above.
    561   template <typename U> void reset(U* array);
    562   void reset(int disallow_reset_from_null);
    563 
    564   // Forbid comparison of scoped_ptr types.  If U != T, it totally
    565   // doesn't make sense, and if U == T, it still doesn't make sense
    566   // because you should never have the same object owned by two different
    567   // scoped_ptrs.
    568   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
    569   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
    570 };
    571 
    572 }  // namespace talk_base
    573 
    574 // Free functions
    575 template <class T, class D>
    576 void swap(talk_base::scoped_ptr<T, D>& p1, talk_base::scoped_ptr<T, D>& p2) {
    577   p1.swap(p2);
    578 }
    579 
    580 template <class T, class D>
    581 bool operator==(T* p1, const talk_base::scoped_ptr<T, D>& p2) {
    582   return p1 == p2.get();
    583 }
    584 
    585 template <class T, class D>
    586 bool operator!=(T* p1, const talk_base::scoped_ptr<T, D>& p2) {
    587   return p1 != p2.get();
    588 }
    589 
    590 #endif  // #ifndef TALK_BASE_SCOPED_PTR_H__
    591