Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "SkEdge.h"
     11 #include "SkFDot6.h"
     12 #include "SkMath.h"
     13 
     14 /*
     15     In setLine, setQuadratic, setCubic, the first thing we do is to convert
     16     the points into FDot6. This is modulated by the shift parameter, which
     17     will either be 0, or something like 2 for antialiasing.
     18 
     19     In the float case, we want to turn the float into .6 by saying pt * 64,
     20     or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
     21 
     22     In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
     23     or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
     24 */
     25 
     26 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
     27     // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
     28     // away data in value, so just perform a modify up-shift
     29     return value << (16 - 6 - 1);
     30 }
     31 
     32 /////////////////////////////////////////////////////////////////////////
     33 
     34 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
     35                     int shift) {
     36     SkFDot6 x0, y0, x1, y1;
     37 
     38     {
     39         float scale = float(1 << (shift + 6));
     40         x0 = int(p0.fX * scale);
     41         y0 = int(p0.fY * scale);
     42         x1 = int(p1.fX * scale);
     43         y1 = int(p1.fY * scale);
     44     }
     45 
     46     int winding = 1;
     47 
     48     if (y0 > y1) {
     49         SkTSwap(x0, x1);
     50         SkTSwap(y0, y1);
     51         winding = -1;
     52     }
     53 
     54     int top = SkFDot6Round(y0);
     55     int bot = SkFDot6Round(y1);
     56 
     57     // are we a zero-height line?
     58     if (top == bot) {
     59         return 0;
     60     }
     61     // are we completely above or below the clip?
     62     if (NULL != clip && (top >= clip->fBottom || bot <= clip->fTop)) {
     63         return 0;
     64     }
     65 
     66     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
     67     const int dy  = SkEdge_Compute_DY(top, y0);
     68 
     69     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
     70     fDX         = slope;
     71     fFirstY     = top;
     72     fLastY      = bot - 1;
     73     fCurveCount = 0;
     74     fWinding    = SkToS8(winding);
     75     fCurveShift = 0;
     76 
     77     if (clip) {
     78         this->chopLineWithClip(*clip);
     79     }
     80     return 1;
     81 }
     82 
     83 // called from a curve subclass
     84 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
     85 {
     86     SkASSERT(fWinding == 1 || fWinding == -1);
     87     SkASSERT(fCurveCount != 0);
     88 //    SkASSERT(fCurveShift != 0);
     89 
     90     y0 >>= 10;
     91     y1 >>= 10;
     92 
     93     SkASSERT(y0 <= y1);
     94 
     95     int top = SkFDot6Round(y0);
     96     int bot = SkFDot6Round(y1);
     97 
     98 //  SkASSERT(top >= fFirstY);
     99 
    100     // are we a zero-height line?
    101     if (top == bot)
    102         return 0;
    103 
    104     x0 >>= 10;
    105     x1 >>= 10;
    106 
    107     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
    108     const int dy  = SkEdge_Compute_DY(top, y0);
    109 
    110     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
    111     fDX         = slope;
    112     fFirstY     = top;
    113     fLastY      = bot - 1;
    114 
    115     return 1;
    116 }
    117 
    118 void SkEdge::chopLineWithClip(const SkIRect& clip)
    119 {
    120     int top = fFirstY;
    121 
    122     SkASSERT(top < clip.fBottom);
    123 
    124     // clip the line to the top
    125     if (top < clip.fTop)
    126     {
    127         SkASSERT(fLastY >= clip.fTop);
    128         fX += fDX * (clip.fTop - top);
    129         fFirstY = clip.fTop;
    130     }
    131 }
    132 
    133 ///////////////////////////////////////////////////////////////////////////////
    134 
    135 /*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
    136     Note that this limits the number of lines we use to approximate a curve.
    137     If we need to increase this, we need to store fCurveCount in something
    138     larger than int8_t.
    139 */
    140 #define MAX_COEFF_SHIFT     6
    141 
    142 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
    143 {
    144     dx = SkAbs32(dx);
    145     dy = SkAbs32(dy);
    146     // return max + min/2
    147     if (dx > dy)
    148         dx += dy >> 1;
    149     else
    150         dx = dy + (dx >> 1);
    151     return dx;
    152 }
    153 
    154 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy)
    155 {
    156     // cheap calc of distance from center of p0-p2 to the center of the curve
    157     SkFDot6 dist = cheap_distance(dx, dy);
    158 
    159     // shift down dist (it is currently in dot6)
    160     // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...)
    161     // this is chosen by heuristic: make it as big as possible (to minimize segments)
    162     // ... but small enough so that our curves still look smooth
    163     dist = (dist + (1 << 4)) >> 5;
    164 
    165     // each subdivision (shift value) cuts this dist (error) by 1/4
    166     return (32 - SkCLZ(dist)) >> 1;
    167 }
    168 
    169 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
    170 {
    171     SkFDot6 x0, y0, x1, y1, x2, y2;
    172 
    173     {
    174         float scale = float(1 << (shift + 6));
    175         x0 = int(pts[0].fX * scale);
    176         y0 = int(pts[0].fY * scale);
    177         x1 = int(pts[1].fX * scale);
    178         y1 = int(pts[1].fY * scale);
    179         x2 = int(pts[2].fX * scale);
    180         y2 = int(pts[2].fY * scale);
    181     }
    182 
    183     int winding = 1;
    184     if (y0 > y2)
    185     {
    186         SkTSwap(x0, x2);
    187         SkTSwap(y0, y2);
    188         winding = -1;
    189     }
    190     SkASSERT(y0 <= y1 && y1 <= y2);
    191 
    192     int top = SkFDot6Round(y0);
    193     int bot = SkFDot6Round(y2);
    194 
    195     // are we a zero-height quad (line)?
    196     if (top == bot)
    197         return 0;
    198 
    199     // compute number of steps needed (1 << shift)
    200     {
    201         SkFDot6 dx = ((x1 << 1) - x0 - x2) >> 2;
    202         SkFDot6 dy = ((y1 << 1) - y0 - y2) >> 2;
    203         shift = diff_to_shift(dx, dy);
    204         SkASSERT(shift >= 0);
    205     }
    206     // need at least 1 subdivision for our bias trick
    207     if (shift == 0) {
    208         shift = 1;
    209     } else if (shift > MAX_COEFF_SHIFT) {
    210         shift = MAX_COEFF_SHIFT;
    211     }
    212 
    213     fWinding    = SkToS8(winding);
    214     //fCubicDShift only set for cubics
    215     fCurveCount = SkToS8(1 << shift);
    216 
    217     /*
    218      *  We want to reformulate into polynomial form, to make it clear how we
    219      *  should forward-difference.
    220      *
    221      *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
    222      *
    223      *  A = p0 - 2p1 + p2
    224      *  B = 2(p1 - p0)
    225      *  C = p0
    226      *
    227      *  Our caller must have constrained our inputs (p0..p2) to all fit into
    228      *  16.16. However, as seen above, we sometimes compute values that can be
    229      *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
    230      *  A and B at 1/2 of their actual value, and just apply a 2x scale during
    231      *  application in updateQuadratic(). Hence we store (shift - 1) in
    232      *  fCurveShift.
    233      */
    234 
    235     fCurveShift = SkToU8(shift - 1);
    236 
    237     SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value
    238     SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value
    239 
    240     fQx     = SkFDot6ToFixed(x0);
    241     fQDx    = B + (A >> shift);     // biased by shift
    242     fQDDx   = A >> (shift - 1);     // biased by shift
    243 
    244     A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value
    245     B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value
    246 
    247     fQy     = SkFDot6ToFixed(y0);
    248     fQDy    = B + (A >> shift);     // biased by shift
    249     fQDDy   = A >> (shift - 1);     // biased by shift
    250 
    251     fQLastX = SkFDot6ToFixed(x2);
    252     fQLastY = SkFDot6ToFixed(y2);
    253 
    254     return this->updateQuadratic();
    255 }
    256 
    257 int SkQuadraticEdge::updateQuadratic()
    258 {
    259     int     success;
    260     int     count = fCurveCount;
    261     SkFixed oldx = fQx;
    262     SkFixed oldy = fQy;
    263     SkFixed dx = fQDx;
    264     SkFixed dy = fQDy;
    265     SkFixed newx, newy;
    266     int     shift = fCurveShift;
    267 
    268     SkASSERT(count > 0);
    269 
    270     do {
    271         if (--count > 0)
    272         {
    273             newx    = oldx + (dx >> shift);
    274             dx    += fQDDx;
    275             newy    = oldy + (dy >> shift);
    276             dy    += fQDDy;
    277         }
    278         else    // last segment
    279         {
    280             newx    = fQLastX;
    281             newy    = fQLastY;
    282         }
    283         success = this->updateLine(oldx, oldy, newx, newy);
    284         oldx = newx;
    285         oldy = newy;
    286     } while (count > 0 && !success);
    287 
    288     fQx         = newx;
    289     fQy         = newy;
    290     fQDx        = dx;
    291     fQDy        = dy;
    292     fCurveCount = SkToS8(count);
    293     return success;
    294 }
    295 
    296 /////////////////////////////////////////////////////////////////////////
    297 
    298 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
    299     SkASSERT((x << upShift >> upShift) == x);
    300     return x << upShift;
    301 }
    302 
    303 /*  f(1/3) = (8a + 12b + 6c + d) / 27
    304     f(2/3) = (a + 6b + 12c + 8d) / 27
    305 
    306     f(1/3)-b = (8a - 15b + 6c + d) / 27
    307     f(2/3)-c = (a + 6b - 15c + 8d) / 27
    308 
    309     use 16/512 to approximate 1/27
    310 */
    311 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
    312 {
    313     SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9;
    314     SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9;
    315 
    316     return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
    317 }
    318 
    319 int SkCubicEdge::setCubic(const SkPoint pts[4], const SkIRect* clip, int shift)
    320 {
    321     SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
    322 
    323     {
    324         float scale = float(1 << (shift + 6));
    325         x0 = int(pts[0].fX * scale);
    326         y0 = int(pts[0].fY * scale);
    327         x1 = int(pts[1].fX * scale);
    328         y1 = int(pts[1].fY * scale);
    329         x2 = int(pts[2].fX * scale);
    330         y2 = int(pts[2].fY * scale);
    331         x3 = int(pts[3].fX * scale);
    332         y3 = int(pts[3].fY * scale);
    333     }
    334 
    335     int winding = 1;
    336     if (y0 > y3)
    337     {
    338         SkTSwap(x0, x3);
    339         SkTSwap(x1, x2);
    340         SkTSwap(y0, y3);
    341         SkTSwap(y1, y2);
    342         winding = -1;
    343     }
    344 
    345     int top = SkFDot6Round(y0);
    346     int bot = SkFDot6Round(y3);
    347 
    348     // are we a zero-height cubic (line)?
    349     if (top == bot)
    350         return 0;
    351 
    352     // are we completely above or below the clip?
    353     if (clip && (top >= clip->fBottom || bot <= clip->fTop))
    354         return 0;
    355 
    356     // compute number of steps needed (1 << shift)
    357     {
    358         // Can't use (center of curve - center of baseline), since center-of-curve
    359         // need not be the max delta from the baseline (it could even be coincident)
    360         // so we try just looking at the two off-curve points
    361         SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
    362         SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
    363         // add 1 (by observation)
    364         shift = diff_to_shift(dx, dy) + 1;
    365     }
    366     // need at least 1 subdivision for our bias trick
    367     SkASSERT(shift > 0);
    368     if (shift > MAX_COEFF_SHIFT) {
    369         shift = MAX_COEFF_SHIFT;
    370     }
    371 
    372     /*  Since our in coming data is initially shifted down by 10 (or 8 in
    373         antialias). That means the most we can shift up is 8. However, we
    374         compute coefficients with a 3*, so the safest upshift is really 6
    375     */
    376     int upShift = 6;    // largest safe value
    377     int downShift = shift + upShift - 10;
    378     if (downShift < 0) {
    379         downShift = 0;
    380         upShift = 10 - shift;
    381     }
    382 
    383     fWinding    = SkToS8(winding);
    384     fCurveCount = SkToS8(-1 << shift);
    385     fCurveShift = SkToU8(shift);
    386     fCubicDShift = SkToU8(downShift);
    387 
    388     SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
    389     SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
    390     SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
    391 
    392     fCx     = SkFDot6ToFixed(x0);
    393     fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
    394     fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
    395     fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift
    396 
    397     B = SkFDot6UpShift(3 * (y1 - y0), upShift);
    398     C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
    399     D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
    400 
    401     fCy     = SkFDot6ToFixed(y0);
    402     fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
    403     fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
    404     fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift
    405 
    406     fCLastX = SkFDot6ToFixed(x3);
    407     fCLastY = SkFDot6ToFixed(y3);
    408 
    409     if (clip)
    410     {
    411         do {
    412             if (!this->updateCubic()) {
    413                 return 0;
    414             }
    415         } while (!this->intersectsClip(*clip));
    416         this->chopLineWithClip(*clip);
    417         return 1;
    418     }
    419     return this->updateCubic();
    420 }
    421 
    422 int SkCubicEdge::updateCubic()
    423 {
    424     int     success;
    425     int     count = fCurveCount;
    426     SkFixed oldx = fCx;
    427     SkFixed oldy = fCy;
    428     SkFixed newx, newy;
    429     const int ddshift = fCurveShift;
    430     const int dshift = fCubicDShift;
    431 
    432     SkASSERT(count < 0);
    433 
    434     do {
    435         if (++count < 0)
    436         {
    437             newx    = oldx + (fCDx >> dshift);
    438             fCDx    += fCDDx >> ddshift;
    439             fCDDx   += fCDDDx;
    440 
    441             newy    = oldy + (fCDy >> dshift);
    442             fCDy    += fCDDy >> ddshift;
    443             fCDDy   += fCDDDy;
    444         }
    445         else    // last segment
    446         {
    447         //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
    448             newx    = fCLastX;
    449             newy    = fCLastY;
    450         }
    451 
    452         // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
    453         // doesn't always achieve that, so we have to explicitly pin it here.
    454         if (newy < oldy) {
    455             newy = oldy;
    456         }
    457 
    458         success = this->updateLine(oldx, oldy, newx, newy);
    459         oldx = newx;
    460         oldy = newy;
    461     } while (count < 0 && !success);
    462 
    463     fCx         = newx;
    464     fCy         = newy;
    465     fCurveCount = SkToS8(count);
    466     return success;
    467 }
    468