Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkIntersections.h"
      9 #include "SkPathOpsCubic.h"
     10 #include "SkPathOpsLine.h"
     11 #include "SkPathOpsPoint.h"
     12 #include "SkPathOpsQuad.h"
     13 #include "SkPathOpsRect.h"
     14 #include "SkReduceOrder.h"
     15 #include "SkTSort.h"
     16 
     17 #if ONE_OFF_DEBUG
     18 static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}};
     19 static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}};
     20 #endif
     21 
     22 #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1
     23 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0
     24 #define SWAP_TOP_DEBUG 0
     25 
     26 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision
     27 
     28 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) {
     29     SkDCubic part = cubic.subDivide(tStart, tEnd);
     30     SkDQuad quad = part.toQuad();
     31     // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
     32     // extremely shallow quadratic?
     33     int order = reducer->reduce(quad);
     34 #if DEBUG_QUAD_PART
     35     SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
     36             " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
     37             cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
     38             cubic[3].fX, cubic[3].fY, tStart, tEnd);
     39     SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n"
     40              "  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
     41             part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY,
     42             part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
     43             quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
     44 #if DEBUG_QUAD_PART_SHOW_SIMPLE
     45     SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY);
     46     if (order > 1) {
     47         SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
     48     }
     49     if (order > 2) {
     50         SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
     51     }
     52     SkDebugf(")\n");
     53     SkASSERT(order < 4 && order > 0);
     54 #endif
     55 #endif
     56     return order;
     57 }
     58 
     59 static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2,
     60         int order2, SkIntersections& i) {
     61     if (order1 == 3 && order2 == 3) {
     62         i.intersect(simple1, simple2);
     63     } else if (order1 <= 2 && order2 <= 2) {
     64         i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
     65     } else if (order1 == 3 && order2 <= 2) {
     66         i.intersect(simple1, (const SkDLine&) simple2);
     67     } else {
     68         SkASSERT(order1 <= 2 && order2 == 3);
     69         i.intersect(simple2, (const SkDLine&) simple1);
     70         i.swapPts();
     71     }
     72 }
     73 
     74 // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
     75 // chase intersections near quadratic ends, requiring odd hacks to find them.
     76 static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
     77         double t2s, double t2e, double precisionScale, SkIntersections& i) {
     78     i.upDepth();
     79     SkDCubic c1 = cubic1.subDivide(t1s, t1e);
     80     SkDCubic c2 = cubic2.subDivide(t2s, t2e);
     81     SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
     82     // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
     83     c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
     84     SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
     85     c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
     86     double t1Start = t1s;
     87     int ts1Count = ts1.count();
     88     for (int i1 = 0; i1 <= ts1Count; ++i1) {
     89         const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
     90         const double t1 = t1s + (t1e - t1s) * tEnd1;
     91         SkReduceOrder s1;
     92         int o1 = quadPart(cubic1, t1Start, t1, &s1);
     93         double t2Start = t2s;
     94         int ts2Count = ts2.count();
     95         for (int i2 = 0; i2 <= ts2Count; ++i2) {
     96             const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
     97             const double t2 = t2s + (t2e - t2s) * tEnd2;
     98             if (&cubic1 == &cubic2 && t1Start >= t2Start) {
     99                 t2Start = t2;
    100                 continue;
    101             }
    102             SkReduceOrder s2;
    103             int o2 = quadPart(cubic2, t2Start, t2, &s2);
    104         #if ONE_OFF_DEBUG
    105             char tab[] = "                  ";
    106             if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
    107                     && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
    108                 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
    109                         __FUNCTION__, t1Start, t1, t2Start, t2);
    110                 SkIntersections xlocals;
    111                 xlocals.allowNear(false);
    112                 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
    113                 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
    114             }
    115         #endif
    116             SkIntersections locals;
    117             locals.allowNear(false);
    118             intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
    119             int tCount = locals.used();
    120             for (int tIdx = 0; tIdx < tCount; ++tIdx) {
    121                 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
    122                 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
    123     // if the computed t is not sufficiently precise, iterate
    124                 SkDPoint p1 = cubic1.ptAtT(to1);
    125                 SkDPoint p2 = cubic2.ptAtT(to2);
    126                 if (p1.approximatelyEqual(p2)) {
    127     // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller
    128 //                    SkASSERT(!locals.isCoincident(tIdx));
    129                     if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
    130                         if (i.swapped()) {  //  FIXME: insert should respect swap
    131                             i.insert(to2, to1, p1);
    132                         } else {
    133                             i.insert(to1, to2, p1);
    134                         }
    135                     }
    136                 } else {
    137 /*for random cubics, 16 below catches 99.997% of the intersections. To test for the remaining 0.003%
    138   look for nearly coincident curves. and check each 1/16th section.
    139 */
    140                     double offset = precisionScale / 16;  // FIXME: const is arbitrary: test, refine
    141                     double c1Bottom = tIdx == 0 ? 0 :
    142                             (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
    143                     double c1Min = SkTMax(c1Bottom, to1 - offset);
    144                     double c1Top = tIdx == tCount - 1 ? 1 :
    145                             (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
    146                     double c1Max = SkTMin(c1Top, to1 + offset);
    147                     double c2Min = SkTMax(0., to2 - offset);
    148                     double c2Max = SkTMin(1., to2 + offset);
    149                 #if ONE_OFF_DEBUG
    150                     SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
    151                             __FUNCTION__,
    152                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
    153                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
    154                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
    155                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
    156                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
    157                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
    158                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
    159                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
    160                     SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
    161                             " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
    162                             i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
    163                             to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
    164                     SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
    165                             " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
    166                             c1Max, c2Min, c2Max);
    167                 #endif
    168                     intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    169                 #if ONE_OFF_DEBUG
    170                     SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
    171                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
    172                 #endif
    173                     if (tCount > 1) {
    174                         c1Min = SkTMax(0., to1 - offset);
    175                         c1Max = SkTMin(1., to1 + offset);
    176                         double c2Bottom = tIdx == 0 ? to2 :
    177                                 (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
    178                         double c2Top = tIdx == tCount - 1 ? to2 :
    179                                 (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
    180                         if (c2Bottom > c2Top) {
    181                             SkTSwap(c2Bottom, c2Top);
    182                         }
    183                         if (c2Bottom == to2) {
    184                             c2Bottom = 0;
    185                         }
    186                         if (c2Top == to2) {
    187                             c2Top = 1;
    188                         }
    189                         c2Min = SkTMax(c2Bottom, to2 - offset);
    190                         c2Max = SkTMin(c2Top, to2 + offset);
    191                     #if ONE_OFF_DEBUG
    192                         SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
    193                             __FUNCTION__,
    194                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
    195                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
    196                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
    197                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
    198                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
    199                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
    200                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
    201                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
    202                         SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
    203                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
    204                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
    205                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
    206                         SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
    207                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
    208                                 c1Max, c2Min, c2Max);
    209                     #endif
    210                         intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    211                 #if ONE_OFF_DEBUG
    212                     SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
    213                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
    214                 #endif
    215                         c1Min = SkTMax(c1Bottom, to1 - offset);
    216                         c1Max = SkTMin(c1Top, to1 + offset);
    217                     #if ONE_OFF_DEBUG
    218                         SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
    219                         __FUNCTION__,
    220                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
    221                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
    222                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
    223                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
    224                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
    225                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
    226                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
    227                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
    228                         SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
    229                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
    230                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
    231                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
    232                         SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
    233                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
    234                                 c1Max, c2Min, c2Max);
    235                     #endif
    236                         intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    237                 #if ONE_OFF_DEBUG
    238                     SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
    239                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
    240                 #endif
    241                     }
    242           //          intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    243                     // FIXME: if no intersection is found, either quadratics intersected where
    244                     // cubics did not, or the intersection was missed. In the former case, expect
    245                     // the quadratics to be nearly parallel at the point of intersection, and check
    246                     // for that.
    247                 }
    248             }
    249             t2Start = t2;
    250         }
    251         t1Start = t1;
    252     }
    253     i.downDepth();
    254 }
    255 
    256     // if two ends intersect, check middle for coincidence
    257 bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) {
    258     if (fUsed < 2) {
    259         return false;
    260     }
    261     int last = fUsed - 1;
    262     double tRange1 = fT[0][last] - fT[0][0];
    263     double tRange2 = fT[1][last] - fT[1][0];
    264     for (int index = 1; index < 5; ++index) {
    265         double testT1 = fT[0][0] + tRange1 * index / 5;
    266         double testT2 = fT[1][0] + tRange2 * index / 5;
    267         SkDPoint testPt1 = c1.ptAtT(testT1);
    268         SkDPoint testPt2 = c2.ptAtT(testT2);
    269         if (!testPt1.approximatelyEqual(testPt2)) {
    270             return false;
    271         }
    272     }
    273     if (fUsed > 2) {
    274         fPt[1] = fPt[last];
    275         fT[0][1] = fT[0][last];
    276         fT[1][1] = fT[1][last];
    277         fUsed = 2;
    278     }
    279     fIsCoincident[0] = fIsCoincident[1] = 0x03;
    280     return true;
    281 }
    282 
    283 #define LINE_FRACTION 0.1
    284 
    285 // intersect the end of the cubic with the other. Try lines from the end to control and opposite
    286 // end to determine range of t on opposite cubic.
    287 bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) {
    288     int t1Index = start ? 0 : 3;
    289     double testT = (double) !start;
    290     bool swap = swapped();
    291     // quad/quad at this point checks to see if exact matches have already been found
    292     // cubic/cubic can't reject so easily since cubics can intersect same point more than once
    293     SkDLine tmpLine;
    294     tmpLine[0] = tmpLine[1] = cubic2[t1Index];
    295     tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
    296     tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
    297     SkIntersections impTs;
    298     impTs.allowNear(false);
    299     impTs.intersectRay(cubic1, tmpLine);
    300     for (int index = 0; index < impTs.used(); ++index) {
    301         SkDPoint realPt = impTs.pt(index);
    302         if (!tmpLine[0].approximatelyEqual(realPt)) {
    303             continue;
    304         }
    305         if (swap) {
    306             cubicInsert(testT, impTs[0][index], tmpLine[0], cubic2, cubic1);
    307         } else {
    308             cubicInsert(impTs[0][index], testT, tmpLine[0], cubic1, cubic2);
    309         }
    310         return true;
    311     }
    312     return false;
    313 }
    314 
    315 
    316 void SkIntersections::cubicInsert(double one, double two, const SkDPoint& pt,
    317         const SkDCubic& cubic1, const SkDCubic& cubic2) {
    318     for (int index = 0; index < fUsed; ++index) {
    319         if (fT[0][index] == one) {
    320             double oldTwo = fT[1][index];
    321             if (oldTwo == two) {
    322                 return;
    323             }
    324             SkDPoint mid = cubic2.ptAtT((oldTwo + two) / 2);
    325             if (mid.approximatelyEqual(fPt[index])) {
    326                 return;
    327             }
    328         }
    329         if (fT[1][index] == two) {
    330             SkDPoint mid = cubic1.ptAtT((fT[0][index] + two) / 2);
    331             if (mid.approximatelyEqual(fPt[index])) {
    332                 return;
    333             }
    334         }
    335     }
    336     insert(one, two, pt);
    337 }
    338 
    339 void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
    340                          const SkDRect& bounds2) {
    341     SkDLine line;
    342     int t1Index = start ? 0 : 3;
    343     double testT = (double) !start;
    344    // don't bother if the two cubics are connnected
    345     static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this
    346     static const int kMaxLineCubicIntersections = 3;
    347     SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals;
    348     line[0] = cubic1[t1Index];
    349     // this variant looks for intersections with the end point and lines parallel to other points
    350     for (int index = 0; index < kPointsInCubic; ++index) {
    351         if (index == t1Index) {
    352             continue;
    353         }
    354         SkDVector dxy1 = cubic1[index] - line[0];
    355         dxy1 /= SkDCubic::gPrecisionUnit;
    356         line[1] = line[0] + dxy1;
    357         SkDRect lineBounds;
    358         lineBounds.setBounds(line);
    359         if (!bounds2.intersects(&lineBounds)) {
    360             continue;
    361         }
    362         SkIntersections local;
    363         if (!local.intersect(cubic2, line)) {
    364             continue;
    365         }
    366         for (int idx2 = 0; idx2 < local.used(); ++idx2) {
    367             double foundT = local[0][idx2];
    368             if (approximately_less_than_zero(foundT)
    369                     || approximately_greater_than_one(foundT)) {
    370                 continue;
    371             }
    372             if (local.pt(idx2).approximatelyEqual(line[0])) {
    373                 if (swapped()) {  // FIXME: insert should respect swap
    374                     insert(foundT, testT, line[0]);
    375                 } else {
    376                     insert(testT, foundT, line[0]);
    377                 }
    378             } else {
    379                 tVals.push_back(foundT);
    380             }
    381         }
    382     }
    383     if (tVals.count() == 0) {
    384         return;
    385     }
    386     SkTQSort<double>(tVals.begin(), tVals.end() - 1);
    387     double tMin1 = start ? 0 : 1 - LINE_FRACTION;
    388     double tMax1 = start ? LINE_FRACTION : 1;
    389     int tIdx = 0;
    390     do {
    391         int tLast = tIdx;
    392         while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
    393             ++tLast;
    394         }
    395         double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
    396         double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
    397         int lastUsed = used();
    398         if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
    399             ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
    400         }
    401         if (lastUsed == used()) {
    402             tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
    403             tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
    404             if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
    405                 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
    406             }
    407         }
    408         tIdx = tLast + 1;
    409     } while (tIdx < tVals.count());
    410     return;
    411 }
    412 
    413 const double CLOSE_ENOUGH = 0.001;
    414 
    415 static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
    416     if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
    417         return false;
    418     }
    419     pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
    420     return true;
    421 }
    422 
    423 static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
    424     int last = i.used() - 1;
    425     if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
    426         return false;
    427     }
    428     pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
    429     return true;
    430 }
    431 
    432 static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) {
    433 // the idea here is to see at minimum do a quick reject by rotating all points
    434 // to either side of the line formed by connecting the endpoints
    435 // if the opposite curves points are on the line or on the other side, the
    436 // curves at most intersect at the endpoints
    437     for (int oddMan = 0; oddMan < 4; ++oddMan) {
    438         const SkDPoint* endPt[3];
    439         for (int opp = 1; opp < 4; ++opp) {
    440             int end = oddMan ^ opp;  // choose a value not equal to oddMan
    441             endPt[opp - 1] = &c1[end];
    442         }
    443         for (int triTest = 0; triTest < 3; ++triTest) {
    444             double origX = endPt[triTest]->fX;
    445             double origY = endPt[triTest]->fY;
    446             int oppTest = triTest + 1;
    447             if (3 == oppTest) {
    448                 oppTest = 0;
    449             }
    450             double adj = endPt[oppTest]->fX - origX;
    451             double opp = endPt[oppTest]->fY - origY;
    452             if (adj == 0 && opp == 0) {  // if the other point equals the test point, ignore it
    453                 continue;
    454             }
    455             double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp;
    456             if (approximately_zero(sign)) {
    457                 goto tryNextHalfPlane;
    458             }
    459             for (int n = 0; n < 4; ++n) {
    460                 double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp;
    461                 if (test * sign > 0 && !precisely_zero(test)) {
    462                     goto tryNextHalfPlane;
    463                 }
    464             }
    465         }
    466         return true;
    467 tryNextHalfPlane:
    468         ;
    469     }
    470     return false;
    471 }
    472 
    473 int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
    474     if (fMax == 0) {
    475         fMax = 9;
    476     }
    477     bool selfIntersect = &c1 == &c2;
    478     if (selfIntersect) {
    479         if (c1[0].approximatelyEqual(c1[3])) {
    480             insert(0, 1, c1[0]);
    481             return fUsed;
    482         }
    483     } else {
    484         // OPTIMIZATION: set exact end bits here to avoid cubic exact end later
    485         for (int i1 = 0; i1 < 4; i1 += 3) {
    486             for (int i2 = 0; i2 < 4; i2 += 3) {
    487                 if (c1[i1].approximatelyEqual(c2[i2])) {
    488                     insert(i1 >> 1, i2 >> 1, c1[i1]);
    489                 }
    490             }
    491         }
    492     }
    493     SkASSERT(fUsed < 4);
    494     if (!selfIntersect) {
    495         if (only_end_pts_in_common(c1, c2)) {
    496             return fUsed;
    497         }
    498         if (only_end_pts_in_common(c2, c1)) {
    499             return fUsed;
    500         }
    501     }
    502     // quad/quad does linear test here -- cubic does not
    503     // cubics which are really lines should have been detected in reduce step earlier
    504     int exactEndBits = 0;
    505     if (selfIntersect) {
    506         if (fUsed) {
    507             return fUsed;
    508         }
    509     } else {
    510         exactEndBits |= cubicExactEnd(c1, false, c2) << 0;
    511         exactEndBits |= cubicExactEnd(c1, true, c2) << 1;
    512         swap();
    513         exactEndBits |= cubicExactEnd(c2, false, c1) << 2;
    514         exactEndBits |= cubicExactEnd(c2, true, c1) << 3;
    515         swap();
    516     }
    517     if (cubicCheckCoincidence(c1, c2)) {
    518         SkASSERT(!selfIntersect);
    519         return fUsed;
    520     }
    521     // FIXME: pass in cached bounds from caller
    522     SkDRect c2Bounds;
    523     c2Bounds.setBounds(c2);
    524     if (!(exactEndBits & 4)) {
    525         cubicNearEnd(c1, false, c2, c2Bounds);
    526     }
    527     if (!(exactEndBits & 8)) {
    528         if (selfIntersect && fUsed) {
    529             return fUsed;
    530         }
    531         cubicNearEnd(c1, true, c2, c2Bounds);
    532         if (selfIntersect && fUsed && ((approximately_less_than_zero(fT[0][0])
    533                     && approximately_less_than_zero(fT[1][0]))
    534                     || (approximately_greater_than_one(fT[0][0])
    535                     && approximately_greater_than_one(fT[1][0])))) {
    536             SkASSERT(fUsed == 1);
    537             fUsed = 0;
    538             return fUsed;
    539         }
    540     }
    541     if (!selfIntersect) {
    542         SkDRect c1Bounds;
    543         c1Bounds.setBounds(c1);  // OPTIMIZE use setRawBounds ?
    544         swap();
    545         if (!(exactEndBits & 1)) {
    546             cubicNearEnd(c2, false, c1, c1Bounds);
    547         }
    548         if (!(exactEndBits & 2)) {
    549             cubicNearEnd(c2, true, c1, c1Bounds);
    550         }
    551         swap();
    552     }
    553     if (cubicCheckCoincidence(c1, c2)) {
    554         SkASSERT(!selfIntersect);
    555         return fUsed;
    556     }
    557     SkIntersections i;
    558     i.fAllowNear = false;
    559     i.fMax = 9;
    560     ::intersect(c1, 0, 1, c2, 0, 1, 1, i);
    561     int compCount = i.used();
    562     if (compCount) {
    563         int exactCount = used();
    564         if (exactCount == 0) {
    565             *this = i;
    566         } else {
    567             // at least one is exact or near, and at least one was computed. Eliminate duplicates
    568             for (int exIdx = 0; exIdx < exactCount; ++exIdx) {
    569                 for (int cpIdx = 0; cpIdx < compCount; ) {
    570                     if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) {
    571                         i.removeOne(cpIdx);
    572                         --compCount;
    573                         continue;
    574                     }
    575                     double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2;
    576                     SkDPoint pt = c1.ptAtT(tAvg);
    577                     if (!pt.approximatelyEqual(fPt[exIdx])) {
    578                         ++cpIdx;
    579                         continue;
    580                     }
    581                     tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2;
    582                     pt = c2.ptAtT(tAvg);
    583                     if (!pt.approximatelyEqual(fPt[exIdx])) {
    584                         ++cpIdx;
    585                         continue;
    586                     }
    587                     i.removeOne(cpIdx);
    588                     --compCount;
    589                 }
    590             }
    591             // if mid t evaluates to nearly the same point, skip the t
    592             for (int cpIdx = 0; cpIdx < compCount - 1; ) {
    593                 double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2;
    594                 SkDPoint pt = c1.ptAtT(tAvg);
    595                 if (!pt.approximatelyEqual(fPt[cpIdx])) {
    596                     ++cpIdx;
    597                     continue;
    598                 }
    599                 tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2;
    600                 pt = c2.ptAtT(tAvg);
    601                 if (!pt.approximatelyEqual(fPt[cpIdx])) {
    602                     ++cpIdx;
    603                     continue;
    604                 }
    605                 i.removeOne(cpIdx);
    606                 --compCount;
    607             }
    608             // in addition to adding below missing function, think about how to say
    609             append(i);
    610         }
    611     }
    612     // If an end point and a second point very close to the end is returned, the second
    613     // point may have been detected because the approximate quads
    614     // intersected at the end and close to it. Verify that the second point is valid.
    615     if (fUsed <= 1) {
    616         return fUsed;
    617     }
    618     SkDPoint pt[2];
    619     if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
    620             && pt[0].approximatelyEqual(pt[1])) {
    621         removeOne(1);
    622     }
    623     if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
    624             && pt[0].approximatelyEqual(pt[1])) {
    625         removeOne(used() - 2);
    626     }
    627     // vet the pairs of t values to see if the mid value is also on the curve. If so, mark
    628     // the span as coincident
    629     if (fUsed >= 2 && !coincidentUsed()) {
    630         int last = fUsed - 1;
    631         int match = 0;
    632         for (int index = 0; index < last; ++index) {
    633             double mid1 = (fT[0][index] + fT[0][index + 1]) / 2;
    634             double mid2 = (fT[1][index] + fT[1][index + 1]) / 2;
    635             pt[0] = c1.ptAtT(mid1);
    636             pt[1] = c2.ptAtT(mid2);
    637             if (pt[0].approximatelyEqual(pt[1])) {
    638                 match |= 1 << index;
    639             }
    640         }
    641         if (match) {
    642 #if DEBUG_CONCIDENT
    643             if (((match + 1) & match) != 0) {
    644                 SkDebugf("%s coincident hole\n", __FUNCTION__);
    645             }
    646 #endif
    647             // for now, assume that everything from start to finish is coincident
    648             if (fUsed > 2) {
    649                   fPt[1] = fPt[last];
    650                   fT[0][1] = fT[0][last];
    651                   fT[1][1] = fT[1][last];
    652                   fIsCoincident[0] = 0x03;
    653                   fIsCoincident[1] = 0x03;
    654                   fUsed = 2;
    655             }
    656         }
    657     }
    658     return fUsed;
    659 }
    660 
    661 // Up promote the quad to a cubic.
    662 // OPTIMIZATION If this is a common use case, optimize by duplicating
    663 // the intersect 3 loop to avoid the promotion  / demotion code
    664 int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
    665     fMax = 6;
    666     SkDCubic up = quad.toCubic();
    667     (void) intersect(cubic, up);
    668     return used();
    669 }
    670 
    671 /* http://www.ag.jku.at/compass/compasssample.pdf
    672 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
    673 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth (at) math.uio.no
    674 SINTEF Applied Mathematics http://www.sintef.no )
    675 describes a method to find the self intersection of a cubic by taking the gradient of the implicit
    676 form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
    677 
    678 int SkIntersections::intersect(const SkDCubic& c) {
    679     fMax = 1;
    680     // check to see if x or y end points are the extrema. Are other quick rejects possible?
    681     if (c.endsAreExtremaInXOrY()) {
    682         return false;
    683     }
    684     // OPTIMIZATION: could quick reject if neither end point tangent ray intersected the line
    685     // segment formed by the opposite end point to the control point
    686     (void) intersect(c, c);
    687     if (used() > 0) {
    688         if (approximately_equal_double(fT[0][0], fT[1][0])) {
    689             fUsed = 0;
    690         } else {
    691             SkASSERT(used() == 1);
    692             if (fT[0][0] > fT[1][0]) {
    693                 swapPts();
    694             }
    695         }
    696     }
    697     return used();
    698 }
    699