Home | History | Annotate | Download | only in src
      1 /*
      2 ** 2010 February 1
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 *************************************************************************
     12 **
     13 ** This file contains the implementation of a write-ahead log (WAL) used in
     14 ** "journal_mode=WAL" mode.
     15 **
     16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
     17 **
     18 ** A WAL file consists of a header followed by zero or more "frames".
     19 ** Each frame records the revised content of a single page from the
     20 ** database file.  All changes to the database are recorded by writing
     21 ** frames into the WAL.  Transactions commit when a frame is written that
     22 ** contains a commit marker.  A single WAL can and usually does record
     23 ** multiple transactions.  Periodically, the content of the WAL is
     24 ** transferred back into the database file in an operation called a
     25 ** "checkpoint".
     26 **
     27 ** A single WAL file can be used multiple times.  In other words, the
     28 ** WAL can fill up with frames and then be checkpointed and then new
     29 ** frames can overwrite the old ones.  A WAL always grows from beginning
     30 ** toward the end.  Checksums and counters attached to each frame are
     31 ** used to determine which frames within the WAL are valid and which
     32 ** are leftovers from prior checkpoints.
     33 **
     34 ** The WAL header is 32 bytes in size and consists of the following eight
     35 ** big-endian 32-bit unsigned integer values:
     36 **
     37 **     0: Magic number.  0x377f0682 or 0x377f0683
     38 **     4: File format version.  Currently 3007000
     39 **     8: Database page size.  Example: 1024
     40 **    12: Checkpoint sequence number
     41 **    16: Salt-1, random integer incremented with each checkpoint
     42 **    20: Salt-2, a different random integer changing with each ckpt
     43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
     44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
     45 **
     46 ** Immediately following the wal-header are zero or more frames. Each
     47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
     48 ** of page data. The frame-header is six big-endian 32-bit unsigned
     49 ** integer values, as follows:
     50 **
     51 **     0: Page number.
     52 **     4: For commit records, the size of the database image in pages
     53 **        after the commit. For all other records, zero.
     54 **     8: Salt-1 (copied from the header)
     55 **    12: Salt-2 (copied from the header)
     56 **    16: Checksum-1.
     57 **    20: Checksum-2.
     58 **
     59 ** A frame is considered valid if and only if the following conditions are
     60 ** true:
     61 **
     62 **    (1) The salt-1 and salt-2 values in the frame-header match
     63 **        salt values in the wal-header
     64 **
     65 **    (2) The checksum values in the final 8 bytes of the frame-header
     66 **        exactly match the checksum computed consecutively on the
     67 **        WAL header and the first 8 bytes and the content of all frames
     68 **        up to and including the current frame.
     69 **
     70 ** The checksum is computed using 32-bit big-endian integers if the
     71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
     72 ** is computed using little-endian if the magic number is 0x377f0682.
     73 ** The checksum values are always stored in the frame header in a
     74 ** big-endian format regardless of which byte order is used to compute
     75 ** the checksum.  The checksum is computed by interpreting the input as
     76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
     77 ** algorithm used for the checksum is as follows:
     78 **
     79 **   for i from 0 to n-1 step 2:
     80 **     s0 += x[i] + s1;
     81 **     s1 += x[i+1] + s0;
     82 **   endfor
     83 **
     84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
     85 ** in reverse order (the largest fibonacci weight occurs on the first element
     86 ** of the sequence being summed.)  The s1 value spans all 32-bit
     87 ** terms of the sequence whereas s0 omits the final term.
     88 **
     89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
     90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
     91 ** The VFS.xSync operations serve as write barriers - all writes launched
     92 ** before the xSync must complete before any write that launches after the
     93 ** xSync begins.
     94 **
     95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
     96 ** value is randomized.  This prevents old and new frames in the WAL from
     97 ** being considered valid at the same time and being checkpointing together
     98 ** following a crash.
     99 **
    100 ** READER ALGORITHM
    101 **
    102 ** To read a page from the database (call it page number P), a reader
    103 ** first checks the WAL to see if it contains page P.  If so, then the
    104 ** last valid instance of page P that is a followed by a commit frame
    105 ** or is a commit frame itself becomes the value read.  If the WAL
    106 ** contains no copies of page P that are valid and which are a commit
    107 ** frame or are followed by a commit frame, then page P is read from
    108 ** the database file.
    109 **
    110 ** To start a read transaction, the reader records the index of the last
    111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
    112 ** for all subsequent read operations.  New transactions can be appended
    113 ** to the WAL, but as long as the reader uses its original mxFrame value
    114 ** and ignores the newly appended content, it will see a consistent snapshot
    115 ** of the database from a single point in time.  This technique allows
    116 ** multiple concurrent readers to view different versions of the database
    117 ** content simultaneously.
    118 **
    119 ** The reader algorithm in the previous paragraphs works correctly, but
    120 ** because frames for page P can appear anywhere within the WAL, the
    121 ** reader has to scan the entire WAL looking for page P frames.  If the
    122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
    123 ** and read performance suffers.  To overcome this problem, a separate
    124 ** data structure called the wal-index is maintained to expedite the
    125 ** search for frames of a particular page.
    126 **
    127 ** WAL-INDEX FORMAT
    128 **
    129 ** Conceptually, the wal-index is shared memory, though VFS implementations
    130 ** might choose to implement the wal-index using a mmapped file.  Because
    131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
    132 ** on a network filesystem.  All users of the database must be able to
    133 ** share memory.
    134 **
    135 ** The wal-index is transient.  After a crash, the wal-index can (and should
    136 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
    137 ** to either truncate or zero the header of the wal-index when the last
    138 ** connection to it closes.  Because the wal-index is transient, it can
    139 ** use an architecture-specific format; it does not have to be cross-platform.
    140 ** Hence, unlike the database and WAL file formats which store all values
    141 ** as big endian, the wal-index can store multi-byte values in the native
    142 ** byte order of the host computer.
    143 **
    144 ** The purpose of the wal-index is to answer this question quickly:  Given
    145 ** a page number P, return the index of the last frame for page P in the WAL,
    146 ** or return NULL if there are no frames for page P in the WAL.
    147 **
    148 ** The wal-index consists of a header region, followed by an one or
    149 ** more index blocks.
    150 **
    151 ** The wal-index header contains the total number of frames within the WAL
    152 ** in the the mxFrame field.
    153 **
    154 ** Each index block except for the first contains information on
    155 ** HASHTABLE_NPAGE frames. The first index block contains information on
    156 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
    157 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
    158 ** first index block are the same size as all other index blocks in the
    159 ** wal-index.
    160 **
    161 ** Each index block contains two sections, a page-mapping that contains the
    162 ** database page number associated with each wal frame, and a hash-table
    163 ** that allows readers to query an index block for a specific page number.
    164 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
    165 ** for the first index block) 32-bit page numbers. The first entry in the
    166 ** first index-block contains the database page number corresponding to the
    167 ** first frame in the WAL file. The first entry in the second index block
    168 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
    169 ** the log, and so on.
    170 **
    171 ** The last index block in a wal-index usually contains less than the full
    172 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
    173 ** depending on the contents of the WAL file. This does not change the
    174 ** allocated size of the page-mapping array - the page-mapping array merely
    175 ** contains unused entries.
    176 **
    177 ** Even without using the hash table, the last frame for page P
    178 ** can be found by scanning the page-mapping sections of each index block
    179 ** starting with the last index block and moving toward the first, and
    180 ** within each index block, starting at the end and moving toward the
    181 ** beginning.  The first entry that equals P corresponds to the frame
    182 ** holding the content for that page.
    183 **
    184 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
    185 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
    186 ** hash table for each page number in the mapping section, so the hash
    187 ** table is never more than half full.  The expected number of collisions
    188 ** prior to finding a match is 1.  Each entry of the hash table is an
    189 ** 1-based index of an entry in the mapping section of the same
    190 ** index block.   Let K be the 1-based index of the largest entry in
    191 ** the mapping section.  (For index blocks other than the last, K will
    192 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
    193 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
    194 ** contain a value of 0.
    195 **
    196 ** To look for page P in the hash table, first compute a hash iKey on
    197 ** P as follows:
    198 **
    199 **      iKey = (P * 383) % HASHTABLE_NSLOT
    200 **
    201 ** Then start scanning entries of the hash table, starting with iKey
    202 ** (wrapping around to the beginning when the end of the hash table is
    203 ** reached) until an unused hash slot is found. Let the first unused slot
    204 ** be at index iUnused.  (iUnused might be less than iKey if there was
    205 ** wrap-around.) Because the hash table is never more than half full,
    206 ** the search is guaranteed to eventually hit an unused entry.  Let
    207 ** iMax be the value between iKey and iUnused, closest to iUnused,
    208 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
    209 ** no hash slot such that aHash[i]==p) then page P is not in the
    210 ** current index block.  Otherwise the iMax-th mapping entry of the
    211 ** current index block corresponds to the last entry that references
    212 ** page P.
    213 **
    214 ** A hash search begins with the last index block and moves toward the
    215 ** first index block, looking for entries corresponding to page P.  On
    216 ** average, only two or three slots in each index block need to be
    217 ** examined in order to either find the last entry for page P, or to
    218 ** establish that no such entry exists in the block.  Each index block
    219 ** holds over 4000 entries.  So two or three index blocks are sufficient
    220 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
    221 ** comparisons (on average) suffice to either locate a frame in the
    222 ** WAL or to establish that the frame does not exist in the WAL.  This
    223 ** is much faster than scanning the entire 10MB WAL.
    224 **
    225 ** Note that entries are added in order of increasing K.  Hence, one
    226 ** reader might be using some value K0 and a second reader that started
    227 ** at a later time (after additional transactions were added to the WAL
    228 ** and to the wal-index) might be using a different value K1, where K1>K0.
    229 ** Both readers can use the same hash table and mapping section to get
    230 ** the correct result.  There may be entries in the hash table with
    231 ** K>K0 but to the first reader, those entries will appear to be unused
    232 ** slots in the hash table and so the first reader will get an answer as
    233 ** if no values greater than K0 had ever been inserted into the hash table
    234 ** in the first place - which is what reader one wants.  Meanwhile, the
    235 ** second reader using K1 will see additional values that were inserted
    236 ** later, which is exactly what reader two wants.
    237 **
    238 ** When a rollback occurs, the value of K is decreased. Hash table entries
    239 ** that correspond to frames greater than the new K value are removed
    240 ** from the hash table at this point.
    241 */
    242 #ifndef SQLITE_OMIT_WAL
    243 
    244 #include "wal.h"
    245 
    246 /*
    247 ** Trace output macros
    248 */
    249 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
    250 int sqlite3WalTrace = 0;
    251 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
    252 #else
    253 # define WALTRACE(X)
    254 #endif
    255 
    256 /*
    257 ** The maximum (and only) versions of the wal and wal-index formats
    258 ** that may be interpreted by this version of SQLite.
    259 **
    260 ** If a client begins recovering a WAL file and finds that (a) the checksum
    261 ** values in the wal-header are correct and (b) the version field is not
    262 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
    263 **
    264 ** Similarly, if a client successfully reads a wal-index header (i.e. the
    265 ** checksum test is successful) and finds that the version field is not
    266 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
    267 ** returns SQLITE_CANTOPEN.
    268 */
    269 #define WAL_MAX_VERSION      3007000
    270 #define WALINDEX_MAX_VERSION 3007000
    271 
    272 /*
    273 ** Indices of various locking bytes.   WAL_NREADER is the number
    274 ** of available reader locks and should be at least 3.
    275 */
    276 #define WAL_WRITE_LOCK         0
    277 #define WAL_ALL_BUT_WRITE      1
    278 #define WAL_CKPT_LOCK          1
    279 #define WAL_RECOVER_LOCK       2
    280 #define WAL_READ_LOCK(I)       (3+(I))
    281 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
    282 
    283 
    284 /* Object declarations */
    285 typedef struct WalIndexHdr WalIndexHdr;
    286 typedef struct WalIterator WalIterator;
    287 typedef struct WalCkptInfo WalCkptInfo;
    288 
    289 
    290 /*
    291 ** The following object holds a copy of the wal-index header content.
    292 **
    293 ** The actual header in the wal-index consists of two copies of this
    294 ** object.
    295 **
    296 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
    297 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
    298 ** added in 3.7.1 when support for 64K pages was added.
    299 */
    300 struct WalIndexHdr {
    301   u32 iVersion;                   /* Wal-index version */
    302   u32 unused;                     /* Unused (padding) field */
    303   u32 iChange;                    /* Counter incremented each transaction */
    304   u8 isInit;                      /* 1 when initialized */
    305   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
    306   u16 szPage;                     /* Database page size in bytes. 1==64K */
    307   u32 mxFrame;                    /* Index of last valid frame in the WAL */
    308   u32 nPage;                      /* Size of database in pages */
    309   u32 aFrameCksum[2];             /* Checksum of last frame in log */
    310   u32 aSalt[2];                   /* Two salt values copied from WAL header */
    311   u32 aCksum[2];                  /* Checksum over all prior fields */
    312 };
    313 
    314 /*
    315 ** A copy of the following object occurs in the wal-index immediately
    316 ** following the second copy of the WalIndexHdr.  This object stores
    317 ** information used by checkpoint.
    318 **
    319 ** nBackfill is the number of frames in the WAL that have been written
    320 ** back into the database. (We call the act of moving content from WAL to
    321 ** database "backfilling".)  The nBackfill number is never greater than
    322 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
    323 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
    324 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
    325 ** mxFrame back to zero when the WAL is reset.
    326 **
    327 ** There is one entry in aReadMark[] for each reader lock.  If a reader
    328 ** holds read-lock K, then the value in aReadMark[K] is no greater than
    329 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
    330 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
    331 ** a special case; its value is never used and it exists as a place-holder
    332 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
    333 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
    334 ** directly from the database.
    335 **
    336 ** The value of aReadMark[K] may only be changed by a thread that
    337 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
    338 ** aReadMark[K] cannot changed while there is a reader is using that mark
    339 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
    340 **
    341 ** The checkpointer may only transfer frames from WAL to database where
    342 ** the frame numbers are less than or equal to every aReadMark[] that is
    343 ** in use (that is, every aReadMark[j] for which there is a corresponding
    344 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
    345 ** largest value and will increase an unused aReadMark[] to mxFrame if there
    346 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
    347 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
    348 ** in the WAL has been backfilled into the database) then new readers
    349 ** will choose aReadMark[0] which has value 0 and hence such reader will
    350 ** get all their all content directly from the database file and ignore
    351 ** the WAL.
    352 **
    353 ** Writers normally append new frames to the end of the WAL.  However,
    354 ** if nBackfill equals mxFrame (meaning that all WAL content has been
    355 ** written back into the database) and if no readers are using the WAL
    356 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
    357 ** the writer will first "reset" the WAL back to the beginning and start
    358 ** writing new content beginning at frame 1.
    359 **
    360 ** We assume that 32-bit loads are atomic and so no locks are needed in
    361 ** order to read from any aReadMark[] entries.
    362 */
    363 struct WalCkptInfo {
    364   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
    365   u32 aReadMark[WAL_NREADER];     /* Reader marks */
    366 };
    367 #define READMARK_NOT_USED  0xffffffff
    368 
    369 
    370 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
    371 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
    372 ** only support mandatory file-locks, we do not read or write data
    373 ** from the region of the file on which locks are applied.
    374 */
    375 #define WALINDEX_LOCK_OFFSET   (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
    376 #define WALINDEX_LOCK_RESERVED 16
    377 #define WALINDEX_HDR_SIZE      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
    378 
    379 /* Size of header before each frame in wal */
    380 #define WAL_FRAME_HDRSIZE 24
    381 
    382 /* Size of write ahead log header, including checksum. */
    383 /* #define WAL_HDRSIZE 24 */
    384 #define WAL_HDRSIZE 32
    385 
    386 /* WAL magic value. Either this value, or the same value with the least
    387 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
    388 ** big-endian format in the first 4 bytes of a WAL file.
    389 **
    390 ** If the LSB is set, then the checksums for each frame within the WAL
    391 ** file are calculated by treating all data as an array of 32-bit
    392 ** big-endian words. Otherwise, they are calculated by interpreting
    393 ** all data as 32-bit little-endian words.
    394 */
    395 #define WAL_MAGIC 0x377f0682
    396 
    397 /*
    398 ** Return the offset of frame iFrame in the write-ahead log file,
    399 ** assuming a database page size of szPage bytes. The offset returned
    400 ** is to the start of the write-ahead log frame-header.
    401 */
    402 #define walFrameOffset(iFrame, szPage) (                               \
    403   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
    404 )
    405 
    406 /*
    407 ** An open write-ahead log file is represented by an instance of the
    408 ** following object.
    409 */
    410 struct Wal {
    411   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
    412   sqlite3_file *pDbFd;       /* File handle for the database file */
    413   sqlite3_file *pWalFd;      /* File handle for WAL file */
    414   u32 iCallback;             /* Value to pass to log callback (or 0) */
    415   int nWiData;               /* Size of array apWiData */
    416   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
    417   u32 szPage;                /* Database page size */
    418   i16 readLock;              /* Which read lock is being held.  -1 for none */
    419   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
    420   u8 writeLock;              /* True if in a write transaction */
    421   u8 ckptLock;               /* True if holding a checkpoint lock */
    422   u8 readOnly;               /* True if the WAL file is open read-only */
    423   WalIndexHdr hdr;           /* Wal-index header for current transaction */
    424   const char *zWalName;      /* Name of WAL file */
    425   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
    426 #ifdef SQLITE_DEBUG
    427   u8 lockError;              /* True if a locking error has occurred */
    428 #endif
    429 };
    430 
    431 /*
    432 ** Candidate values for Wal.exclusiveMode.
    433 */
    434 #define WAL_NORMAL_MODE     0
    435 #define WAL_EXCLUSIVE_MODE  1
    436 #define WAL_HEAPMEMORY_MODE 2
    437 
    438 /*
    439 ** Each page of the wal-index mapping contains a hash-table made up of
    440 ** an array of HASHTABLE_NSLOT elements of the following type.
    441 */
    442 typedef u16 ht_slot;
    443 
    444 /*
    445 ** This structure is used to implement an iterator that loops through
    446 ** all frames in the WAL in database page order. Where two or more frames
    447 ** correspond to the same database page, the iterator visits only the
    448 ** frame most recently written to the WAL (in other words, the frame with
    449 ** the largest index).
    450 **
    451 ** The internals of this structure are only accessed by:
    452 **
    453 **   walIteratorInit() - Create a new iterator,
    454 **   walIteratorNext() - Step an iterator,
    455 **   walIteratorFree() - Free an iterator.
    456 **
    457 ** This functionality is used by the checkpoint code (see walCheckpoint()).
    458 */
    459 struct WalIterator {
    460   int iPrior;                     /* Last result returned from the iterator */
    461   int nSegment;                   /* Number of entries in aSegment[] */
    462   struct WalSegment {
    463     int iNext;                    /* Next slot in aIndex[] not yet returned */
    464     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
    465     u32 *aPgno;                   /* Array of page numbers. */
    466     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
    467     int iZero;                    /* Frame number associated with aPgno[0] */
    468   } aSegment[1];                  /* One for every 32KB page in the wal-index */
    469 };
    470 
    471 /*
    472 ** Define the parameters of the hash tables in the wal-index file. There
    473 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
    474 ** wal-index.
    475 **
    476 ** Changing any of these constants will alter the wal-index format and
    477 ** create incompatibilities.
    478 */
    479 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
    480 #define HASHTABLE_HASH_1     383                  /* Should be prime */
    481 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
    482 
    483 /*
    484 ** The block of page numbers associated with the first hash-table in a
    485 ** wal-index is smaller than usual. This is so that there is a complete
    486 ** hash-table on each aligned 32KB page of the wal-index.
    487 */
    488 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
    489 
    490 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
    491 #define WALINDEX_PGSZ   (                                         \
    492     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
    493 )
    494 
    495 /*
    496 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
    497 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
    498 ** numbered from zero.
    499 **
    500 ** If this call is successful, *ppPage is set to point to the wal-index
    501 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
    502 ** then an SQLite error code is returned and *ppPage is set to 0.
    503 */
    504 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
    505   int rc = SQLITE_OK;
    506 
    507   /* Enlarge the pWal->apWiData[] array if required */
    508   if( pWal->nWiData<=iPage ){
    509     int nByte = sizeof(u32*)*(iPage+1);
    510     volatile u32 **apNew;
    511     apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
    512     if( !apNew ){
    513       *ppPage = 0;
    514       return SQLITE_NOMEM;
    515     }
    516     memset((void*)&apNew[pWal->nWiData], 0,
    517            sizeof(u32*)*(iPage+1-pWal->nWiData));
    518     pWal->apWiData = apNew;
    519     pWal->nWiData = iPage+1;
    520   }
    521 
    522   /* Request a pointer to the required page from the VFS */
    523   if( pWal->apWiData[iPage]==0 ){
    524     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
    525       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
    526       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
    527     }else{
    528       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
    529           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
    530       );
    531     }
    532   }
    533 
    534   *ppPage = pWal->apWiData[iPage];
    535   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
    536   return rc;
    537 }
    538 
    539 /*
    540 ** Return a pointer to the WalCkptInfo structure in the wal-index.
    541 */
    542 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
    543   assert( pWal->nWiData>0 && pWal->apWiData[0] );
    544   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
    545 }
    546 
    547 /*
    548 ** Return a pointer to the WalIndexHdr structure in the wal-index.
    549 */
    550 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
    551   assert( pWal->nWiData>0 && pWal->apWiData[0] );
    552   return (volatile WalIndexHdr*)pWal->apWiData[0];
    553 }
    554 
    555 /*
    556 ** The argument to this macro must be of type u32. On a little-endian
    557 ** architecture, it returns the u32 value that results from interpreting
    558 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
    559 ** returns the value that would be produced by intepreting the 4 bytes
    560 ** of the input value as a little-endian integer.
    561 */
    562 #define BYTESWAP32(x) ( \
    563     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
    564   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
    565 )
    566 
    567 /*
    568 ** Generate or extend an 8 byte checksum based on the data in
    569 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
    570 ** initial values of 0 and 0 if aIn==NULL).
    571 **
    572 ** The checksum is written back into aOut[] before returning.
    573 **
    574 ** nByte must be a positive multiple of 8.
    575 */
    576 static void walChecksumBytes(
    577   int nativeCksum, /* True for native byte-order, false for non-native */
    578   u8 *a,           /* Content to be checksummed */
    579   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
    580   const u32 *aIn,  /* Initial checksum value input */
    581   u32 *aOut        /* OUT: Final checksum value output */
    582 ){
    583   u32 s1, s2;
    584   u32 *aData = (u32 *)a;
    585   u32 *aEnd = (u32 *)&a[nByte];
    586 
    587   if( aIn ){
    588     s1 = aIn[0];
    589     s2 = aIn[1];
    590   }else{
    591     s1 = s2 = 0;
    592   }
    593 
    594   assert( nByte>=8 );
    595   assert( (nByte&0x00000007)==0 );
    596 
    597   if( nativeCksum ){
    598     do {
    599       s1 += *aData++ + s2;
    600       s2 += *aData++ + s1;
    601     }while( aData<aEnd );
    602   }else{
    603     do {
    604       s1 += BYTESWAP32(aData[0]) + s2;
    605       s2 += BYTESWAP32(aData[1]) + s1;
    606       aData += 2;
    607     }while( aData<aEnd );
    608   }
    609 
    610   aOut[0] = s1;
    611   aOut[1] = s2;
    612 }
    613 
    614 static void walShmBarrier(Wal *pWal){
    615   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
    616     sqlite3OsShmBarrier(pWal->pDbFd);
    617   }
    618 }
    619 
    620 /*
    621 ** Write the header information in pWal->hdr into the wal-index.
    622 **
    623 ** The checksum on pWal->hdr is updated before it is written.
    624 */
    625 static void walIndexWriteHdr(Wal *pWal){
    626   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
    627   const int nCksum = offsetof(WalIndexHdr, aCksum);
    628 
    629   assert( pWal->writeLock );
    630   pWal->hdr.isInit = 1;
    631   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
    632   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
    633   memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
    634   walShmBarrier(pWal);
    635   memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
    636 }
    637 
    638 /*
    639 ** This function encodes a single frame header and writes it to a buffer
    640 ** supplied by the caller. A frame-header is made up of a series of
    641 ** 4-byte big-endian integers, as follows:
    642 **
    643 **     0: Page number.
    644 **     4: For commit records, the size of the database image in pages
    645 **        after the commit. For all other records, zero.
    646 **     8: Salt-1 (copied from the wal-header)
    647 **    12: Salt-2 (copied from the wal-header)
    648 **    16: Checksum-1.
    649 **    20: Checksum-2.
    650 */
    651 static void walEncodeFrame(
    652   Wal *pWal,                      /* The write-ahead log */
    653   u32 iPage,                      /* Database page number for frame */
    654   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
    655   u8 *aData,                      /* Pointer to page data */
    656   u8 *aFrame                      /* OUT: Write encoded frame here */
    657 ){
    658   int nativeCksum;                /* True for native byte-order checksums */
    659   u32 *aCksum = pWal->hdr.aFrameCksum;
    660   assert( WAL_FRAME_HDRSIZE==24 );
    661   sqlite3Put4byte(&aFrame[0], iPage);
    662   sqlite3Put4byte(&aFrame[4], nTruncate);
    663   memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
    664 
    665   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
    666   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
    667   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
    668 
    669   sqlite3Put4byte(&aFrame[16], aCksum[0]);
    670   sqlite3Put4byte(&aFrame[20], aCksum[1]);
    671 }
    672 
    673 /*
    674 ** Check to see if the frame with header in aFrame[] and content
    675 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
    676 ** *pnTruncate and return true.  Return if the frame is not valid.
    677 */
    678 static int walDecodeFrame(
    679   Wal *pWal,                      /* The write-ahead log */
    680   u32 *piPage,                    /* OUT: Database page number for frame */
    681   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
    682   u8 *aData,                      /* Pointer to page data (for checksum) */
    683   u8 *aFrame                      /* Frame data */
    684 ){
    685   int nativeCksum;                /* True for native byte-order checksums */
    686   u32 *aCksum = pWal->hdr.aFrameCksum;
    687   u32 pgno;                       /* Page number of the frame */
    688   assert( WAL_FRAME_HDRSIZE==24 );
    689 
    690   /* A frame is only valid if the salt values in the frame-header
    691   ** match the salt values in the wal-header.
    692   */
    693   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
    694     return 0;
    695   }
    696 
    697   /* A frame is only valid if the page number is creater than zero.
    698   */
    699   pgno = sqlite3Get4byte(&aFrame[0]);
    700   if( pgno==0 ){
    701     return 0;
    702   }
    703 
    704   /* A frame is only valid if a checksum of the WAL header,
    705   ** all prior frams, the first 16 bytes of this frame-header,
    706   ** and the frame-data matches the checksum in the last 8
    707   ** bytes of this frame-header.
    708   */
    709   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
    710   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
    711   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
    712   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
    713    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
    714   ){
    715     /* Checksum failed. */
    716     return 0;
    717   }
    718 
    719   /* If we reach this point, the frame is valid.  Return the page number
    720   ** and the new database size.
    721   */
    722   *piPage = pgno;
    723   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
    724   return 1;
    725 }
    726 
    727 
    728 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
    729 /*
    730 ** Names of locks.  This routine is used to provide debugging output and is not
    731 ** a part of an ordinary build.
    732 */
    733 static const char *walLockName(int lockIdx){
    734   if( lockIdx==WAL_WRITE_LOCK ){
    735     return "WRITE-LOCK";
    736   }else if( lockIdx==WAL_CKPT_LOCK ){
    737     return "CKPT-LOCK";
    738   }else if( lockIdx==WAL_RECOVER_LOCK ){
    739     return "RECOVER-LOCK";
    740   }else{
    741     static char zName[15];
    742     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
    743                      lockIdx-WAL_READ_LOCK(0));
    744     return zName;
    745   }
    746 }
    747 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
    748 
    749 
    750 /*
    751 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
    752 ** A lock cannot be moved directly between shared and exclusive - it must go
    753 ** through the unlocked state first.
    754 **
    755 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
    756 */
    757 static int walLockShared(Wal *pWal, int lockIdx){
    758   int rc;
    759   if( pWal->exclusiveMode ) return SQLITE_OK;
    760   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
    761                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
    762   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
    763             walLockName(lockIdx), rc ? "failed" : "ok"));
    764   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
    765   return rc;
    766 }
    767 static void walUnlockShared(Wal *pWal, int lockIdx){
    768   if( pWal->exclusiveMode ) return;
    769   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
    770                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
    771   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
    772 }
    773 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
    774   int rc;
    775   if( pWal->exclusiveMode ) return SQLITE_OK;
    776   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
    777                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
    778   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
    779             walLockName(lockIdx), n, rc ? "failed" : "ok"));
    780   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
    781   return rc;
    782 }
    783 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
    784   if( pWal->exclusiveMode ) return;
    785   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
    786                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
    787   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
    788              walLockName(lockIdx), n));
    789 }
    790 
    791 /*
    792 ** Compute a hash on a page number.  The resulting hash value must land
    793 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
    794 ** the hash to the next value in the event of a collision.
    795 */
    796 static int walHash(u32 iPage){
    797   assert( iPage>0 );
    798   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
    799   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
    800 }
    801 static int walNextHash(int iPriorHash){
    802   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
    803 }
    804 
    805 /*
    806 ** Return pointers to the hash table and page number array stored on
    807 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
    808 ** numbered starting from 0.
    809 **
    810 ** Set output variable *paHash to point to the start of the hash table
    811 ** in the wal-index file. Set *piZero to one less than the frame
    812 ** number of the first frame indexed by this hash table. If a
    813 ** slot in the hash table is set to N, it refers to frame number
    814 ** (*piZero+N) in the log.
    815 **
    816 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
    817 ** first frame indexed by the hash table, frame (*piZero+1).
    818 */
    819 static int walHashGet(
    820   Wal *pWal,                      /* WAL handle */
    821   int iHash,                      /* Find the iHash'th table */
    822   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
    823   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
    824   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
    825 ){
    826   int rc;                         /* Return code */
    827   volatile u32 *aPgno;
    828 
    829   rc = walIndexPage(pWal, iHash, &aPgno);
    830   assert( rc==SQLITE_OK || iHash>0 );
    831 
    832   if( rc==SQLITE_OK ){
    833     u32 iZero;
    834     volatile ht_slot *aHash;
    835 
    836     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
    837     if( iHash==0 ){
    838       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
    839       iZero = 0;
    840     }else{
    841       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
    842     }
    843 
    844     *paPgno = &aPgno[-1];
    845     *paHash = aHash;
    846     *piZero = iZero;
    847   }
    848   return rc;
    849 }
    850 
    851 /*
    852 ** Return the number of the wal-index page that contains the hash-table
    853 ** and page-number array that contain entries corresponding to WAL frame
    854 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
    855 ** are numbered starting from 0.
    856 */
    857 static int walFramePage(u32 iFrame){
    858   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
    859   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
    860        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
    861        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
    862        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
    863        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
    864   );
    865   return iHash;
    866 }
    867 
    868 /*
    869 ** Return the page number associated with frame iFrame in this WAL.
    870 */
    871 static u32 walFramePgno(Wal *pWal, u32 iFrame){
    872   int iHash = walFramePage(iFrame);
    873   if( iHash==0 ){
    874     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
    875   }
    876   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
    877 }
    878 
    879 /*
    880 ** Remove entries from the hash table that point to WAL slots greater
    881 ** than pWal->hdr.mxFrame.
    882 **
    883 ** This function is called whenever pWal->hdr.mxFrame is decreased due
    884 ** to a rollback or savepoint.
    885 **
    886 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
    887 ** updated.  Any later hash tables will be automatically cleared when
    888 ** pWal->hdr.mxFrame advances to the point where those hash tables are
    889 ** actually needed.
    890 */
    891 static void walCleanupHash(Wal *pWal){
    892   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
    893   volatile u32 *aPgno = 0;        /* Page number array for hash table */
    894   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
    895   int iLimit = 0;                 /* Zero values greater than this */
    896   int nByte;                      /* Number of bytes to zero in aPgno[] */
    897   int i;                          /* Used to iterate through aHash[] */
    898 
    899   assert( pWal->writeLock );
    900   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
    901   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
    902   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
    903 
    904   if( pWal->hdr.mxFrame==0 ) return;
    905 
    906   /* Obtain pointers to the hash-table and page-number array containing
    907   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
    908   ** that the page said hash-table and array reside on is already mapped.
    909   */
    910   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
    911   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
    912   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
    913 
    914   /* Zero all hash-table entries that correspond to frame numbers greater
    915   ** than pWal->hdr.mxFrame.
    916   */
    917   iLimit = pWal->hdr.mxFrame - iZero;
    918   assert( iLimit>0 );
    919   for(i=0; i<HASHTABLE_NSLOT; i++){
    920     if( aHash[i]>iLimit ){
    921       aHash[i] = 0;
    922     }
    923   }
    924 
    925   /* Zero the entries in the aPgno array that correspond to frames with
    926   ** frame numbers greater than pWal->hdr.mxFrame.
    927   */
    928   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
    929   memset((void *)&aPgno[iLimit+1], 0, nByte);
    930 
    931 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
    932   /* Verify that the every entry in the mapping region is still reachable
    933   ** via the hash table even after the cleanup.
    934   */
    935   if( iLimit ){
    936     int i;           /* Loop counter */
    937     int iKey;        /* Hash key */
    938     for(i=1; i<=iLimit; i++){
    939       for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
    940         if( aHash[iKey]==i ) break;
    941       }
    942       assert( aHash[iKey]==i );
    943     }
    944   }
    945 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
    946 }
    947 
    948 
    949 /*
    950 ** Set an entry in the wal-index that will map database page number
    951 ** pPage into WAL frame iFrame.
    952 */
    953 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
    954   int rc;                         /* Return code */
    955   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
    956   volatile u32 *aPgno = 0;        /* Page number array */
    957   volatile ht_slot *aHash = 0;    /* Hash table */
    958 
    959   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
    960 
    961   /* Assuming the wal-index file was successfully mapped, populate the
    962   ** page number array and hash table entry.
    963   */
    964   if( rc==SQLITE_OK ){
    965     int iKey;                     /* Hash table key */
    966     int idx;                      /* Value to write to hash-table slot */
    967     int nCollide;                 /* Number of hash collisions */
    968 
    969     idx = iFrame - iZero;
    970     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
    971 
    972     /* If this is the first entry to be added to this hash-table, zero the
    973     ** entire hash table and aPgno[] array before proceding.
    974     */
    975     if( idx==1 ){
    976       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
    977       memset((void*)&aPgno[1], 0, nByte);
    978     }
    979 
    980     /* If the entry in aPgno[] is already set, then the previous writer
    981     ** must have exited unexpectedly in the middle of a transaction (after
    982     ** writing one or more dirty pages to the WAL to free up memory).
    983     ** Remove the remnants of that writers uncommitted transaction from
    984     ** the hash-table before writing any new entries.
    985     */
    986     if( aPgno[idx] ){
    987       walCleanupHash(pWal);
    988       assert( !aPgno[idx] );
    989     }
    990 
    991     /* Write the aPgno[] array entry and the hash-table slot. */
    992     nCollide = idx;
    993     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
    994       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
    995     }
    996     aPgno[idx] = iPage;
    997     aHash[iKey] = (ht_slot)idx;
    998 
    999 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
   1000     /* Verify that the number of entries in the hash table exactly equals
   1001     ** the number of entries in the mapping region.
   1002     */
   1003     {
   1004       int i;           /* Loop counter */
   1005       int nEntry = 0;  /* Number of entries in the hash table */
   1006       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
   1007       assert( nEntry==idx );
   1008     }
   1009 
   1010     /* Verify that the every entry in the mapping region is reachable
   1011     ** via the hash table.  This turns out to be a really, really expensive
   1012     ** thing to check, so only do this occasionally - not on every
   1013     ** iteration.
   1014     */
   1015     if( (idx&0x3ff)==0 ){
   1016       int i;           /* Loop counter */
   1017       for(i=1; i<=idx; i++){
   1018         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
   1019           if( aHash[iKey]==i ) break;
   1020         }
   1021         assert( aHash[iKey]==i );
   1022       }
   1023     }
   1024 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
   1025   }
   1026 
   1027 
   1028   return rc;
   1029 }
   1030 
   1031 
   1032 /*
   1033 ** Recover the wal-index by reading the write-ahead log file.
   1034 **
   1035 ** This routine first tries to establish an exclusive lock on the
   1036 ** wal-index to prevent other threads/processes from doing anything
   1037 ** with the WAL or wal-index while recovery is running.  The
   1038 ** WAL_RECOVER_LOCK is also held so that other threads will know
   1039 ** that this thread is running recovery.  If unable to establish
   1040 ** the necessary locks, this routine returns SQLITE_BUSY.
   1041 */
   1042 static int walIndexRecover(Wal *pWal){
   1043   int rc;                         /* Return Code */
   1044   i64 nSize;                      /* Size of log file */
   1045   u32 aFrameCksum[2] = {0, 0};
   1046   int iLock;                      /* Lock offset to lock for checkpoint */
   1047   int nLock;                      /* Number of locks to hold */
   1048 
   1049   /* Obtain an exclusive lock on all byte in the locking range not already
   1050   ** locked by the caller. The caller is guaranteed to have locked the
   1051   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
   1052   ** If successful, the same bytes that are locked here are unlocked before
   1053   ** this function returns.
   1054   */
   1055   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
   1056   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
   1057   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
   1058   assert( pWal->writeLock );
   1059   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
   1060   nLock = SQLITE_SHM_NLOCK - iLock;
   1061   rc = walLockExclusive(pWal, iLock, nLock);
   1062   if( rc ){
   1063     return rc;
   1064   }
   1065   WALTRACE(("WAL%p: recovery begin...\n", pWal));
   1066 
   1067   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
   1068 
   1069   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
   1070   if( rc!=SQLITE_OK ){
   1071     goto recovery_error;
   1072   }
   1073 
   1074   if( nSize>WAL_HDRSIZE ){
   1075     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
   1076     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
   1077     int szFrame;                  /* Number of bytes in buffer aFrame[] */
   1078     u8 *aData;                    /* Pointer to data part of aFrame buffer */
   1079     int iFrame;                   /* Index of last frame read */
   1080     i64 iOffset;                  /* Next offset to read from log file */
   1081     int szPage;                   /* Page size according to the log */
   1082     u32 magic;                    /* Magic value read from WAL header */
   1083     u32 version;                  /* Magic value read from WAL header */
   1084 
   1085     /* Read in the WAL header. */
   1086     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
   1087     if( rc!=SQLITE_OK ){
   1088       goto recovery_error;
   1089     }
   1090 
   1091     /* If the database page size is not a power of two, or is greater than
   1092     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
   1093     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
   1094     ** WAL file.
   1095     */
   1096     magic = sqlite3Get4byte(&aBuf[0]);
   1097     szPage = sqlite3Get4byte(&aBuf[8]);
   1098     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
   1099      || szPage&(szPage-1)
   1100      || szPage>SQLITE_MAX_PAGE_SIZE
   1101      || szPage<512
   1102     ){
   1103       goto finished;
   1104     }
   1105     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
   1106     pWal->szPage = szPage;
   1107     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
   1108     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
   1109 
   1110     /* Verify that the WAL header checksum is correct */
   1111     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
   1112         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
   1113     );
   1114     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
   1115      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
   1116     ){
   1117       goto finished;
   1118     }
   1119 
   1120     /* Verify that the version number on the WAL format is one that
   1121     ** are able to understand */
   1122     version = sqlite3Get4byte(&aBuf[4]);
   1123     if( version!=WAL_MAX_VERSION ){
   1124       rc = SQLITE_CANTOPEN_BKPT;
   1125       goto finished;
   1126     }
   1127 
   1128     /* Malloc a buffer to read frames into. */
   1129     szFrame = szPage + WAL_FRAME_HDRSIZE;
   1130     aFrame = (u8 *)sqlite3_malloc(szFrame);
   1131     if( !aFrame ){
   1132       rc = SQLITE_NOMEM;
   1133       goto recovery_error;
   1134     }
   1135     aData = &aFrame[WAL_FRAME_HDRSIZE];
   1136 
   1137     /* Read all frames from the log file. */
   1138     iFrame = 0;
   1139     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
   1140       u32 pgno;                   /* Database page number for frame */
   1141       u32 nTruncate;              /* dbsize field from frame header */
   1142       int isValid;                /* True if this frame is valid */
   1143 
   1144       /* Read and decode the next log frame. */
   1145       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
   1146       if( rc!=SQLITE_OK ) break;
   1147       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
   1148       if( !isValid ) break;
   1149       rc = walIndexAppend(pWal, ++iFrame, pgno);
   1150       if( rc!=SQLITE_OK ) break;
   1151 
   1152       /* If nTruncate is non-zero, this is a commit record. */
   1153       if( nTruncate ){
   1154         pWal->hdr.mxFrame = iFrame;
   1155         pWal->hdr.nPage = nTruncate;
   1156         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
   1157         testcase( szPage<=32768 );
   1158         testcase( szPage>=65536 );
   1159         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
   1160         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
   1161       }
   1162     }
   1163 
   1164     sqlite3_free(aFrame);
   1165   }
   1166 
   1167 finished:
   1168   if( rc==SQLITE_OK ){
   1169     volatile WalCkptInfo *pInfo;
   1170     int i;
   1171     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
   1172     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
   1173     walIndexWriteHdr(pWal);
   1174 
   1175     /* Reset the checkpoint-header. This is safe because this thread is
   1176     ** currently holding locks that exclude all other readers, writers and
   1177     ** checkpointers.
   1178     */
   1179     pInfo = walCkptInfo(pWal);
   1180     pInfo->nBackfill = 0;
   1181     pInfo->aReadMark[0] = 0;
   1182     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
   1183 
   1184     /* If more than one frame was recovered from the log file, report an
   1185     ** event via sqlite3_log(). This is to help with identifying performance
   1186     ** problems caused by applications routinely shutting down without
   1187     ** checkpointing the log file.
   1188     */
   1189     if( pWal->hdr.nPage ){
   1190       sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
   1191           pWal->hdr.nPage, pWal->zWalName
   1192       );
   1193     }
   1194   }
   1195 
   1196 recovery_error:
   1197   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
   1198   walUnlockExclusive(pWal, iLock, nLock);
   1199   return rc;
   1200 }
   1201 
   1202 /*
   1203 ** Close an open wal-index.
   1204 */
   1205 static void walIndexClose(Wal *pWal, int isDelete){
   1206   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
   1207     int i;
   1208     for(i=0; i<pWal->nWiData; i++){
   1209       sqlite3_free((void *)pWal->apWiData[i]);
   1210       pWal->apWiData[i] = 0;
   1211     }
   1212   }else{
   1213     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
   1214   }
   1215 }
   1216 
   1217 /*
   1218 ** Open a connection to the WAL file zWalName. The database file must
   1219 ** already be opened on connection pDbFd. The buffer that zWalName points
   1220 ** to must remain valid for the lifetime of the returned Wal* handle.
   1221 **
   1222 ** A SHARED lock should be held on the database file when this function
   1223 ** is called. The purpose of this SHARED lock is to prevent any other
   1224 ** client from unlinking the WAL or wal-index file. If another process
   1225 ** were to do this just after this client opened one of these files, the
   1226 ** system would be badly broken.
   1227 **
   1228 ** If the log file is successfully opened, SQLITE_OK is returned and
   1229 ** *ppWal is set to point to a new WAL handle. If an error occurs,
   1230 ** an SQLite error code is returned and *ppWal is left unmodified.
   1231 */
   1232 int sqlite3WalOpen(
   1233   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
   1234   sqlite3_file *pDbFd,            /* The open database file */
   1235   const char *zWalName,           /* Name of the WAL file */
   1236   int bNoShm,                     /* True to run in heap-memory mode */
   1237   Wal **ppWal                     /* OUT: Allocated Wal handle */
   1238 ){
   1239   int rc;                         /* Return Code */
   1240   Wal *pRet;                      /* Object to allocate and return */
   1241   int flags;                      /* Flags passed to OsOpen() */
   1242 
   1243   assert( zWalName && zWalName[0] );
   1244   assert( pDbFd );
   1245 
   1246   /* In the amalgamation, the os_unix.c and os_win.c source files come before
   1247   ** this source file.  Verify that the #defines of the locking byte offsets
   1248   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
   1249   */
   1250 #ifdef WIN_SHM_BASE
   1251   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
   1252 #endif
   1253 #ifdef UNIX_SHM_BASE
   1254   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
   1255 #endif
   1256 
   1257 
   1258   /* Allocate an instance of struct Wal to return. */
   1259   *ppWal = 0;
   1260   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
   1261   if( !pRet ){
   1262     return SQLITE_NOMEM;
   1263   }
   1264 
   1265   pRet->pVfs = pVfs;
   1266   pRet->pWalFd = (sqlite3_file *)&pRet[1];
   1267   pRet->pDbFd = pDbFd;
   1268   pRet->readLock = -1;
   1269   pRet->zWalName = zWalName;
   1270   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
   1271 
   1272   /* Open file handle on the write-ahead log file. */
   1273   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
   1274   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
   1275   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
   1276     pRet->readOnly = 1;
   1277   }
   1278 
   1279   if( rc!=SQLITE_OK ){
   1280     walIndexClose(pRet, 0);
   1281     sqlite3OsClose(pRet->pWalFd);
   1282     sqlite3_free(pRet);
   1283   }else{
   1284     *ppWal = pRet;
   1285     WALTRACE(("WAL%d: opened\n", pRet));
   1286   }
   1287   return rc;
   1288 }
   1289 
   1290 /*
   1291 ** Find the smallest page number out of all pages held in the WAL that
   1292 ** has not been returned by any prior invocation of this method on the
   1293 ** same WalIterator object.   Write into *piFrame the frame index where
   1294 ** that page was last written into the WAL.  Write into *piPage the page
   1295 ** number.
   1296 **
   1297 ** Return 0 on success.  If there are no pages in the WAL with a page
   1298 ** number larger than *piPage, then return 1.
   1299 */
   1300 static int walIteratorNext(
   1301   WalIterator *p,               /* Iterator */
   1302   u32 *piPage,                  /* OUT: The page number of the next page */
   1303   u32 *piFrame                  /* OUT: Wal frame index of next page */
   1304 ){
   1305   u32 iMin;                     /* Result pgno must be greater than iMin */
   1306   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
   1307   int i;                        /* For looping through segments */
   1308 
   1309   iMin = p->iPrior;
   1310   assert( iMin<0xffffffff );
   1311   for(i=p->nSegment-1; i>=0; i--){
   1312     struct WalSegment *pSegment = &p->aSegment[i];
   1313     while( pSegment->iNext<pSegment->nEntry ){
   1314       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
   1315       if( iPg>iMin ){
   1316         if( iPg<iRet ){
   1317           iRet = iPg;
   1318           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
   1319         }
   1320         break;
   1321       }
   1322       pSegment->iNext++;
   1323     }
   1324   }
   1325 
   1326   *piPage = p->iPrior = iRet;
   1327   return (iRet==0xFFFFFFFF);
   1328 }
   1329 
   1330 /*
   1331 ** This function merges two sorted lists into a single sorted list.
   1332 **
   1333 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
   1334 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
   1335 ** is guaranteed for all J<K:
   1336 **
   1337 **        aContent[aLeft[J]] < aContent[aLeft[K]]
   1338 **        aContent[aRight[J]] < aContent[aRight[K]]
   1339 **
   1340 ** This routine overwrites aRight[] with a new (probably longer) sequence
   1341 ** of indices such that the aRight[] contains every index that appears in
   1342 ** either aLeft[] or the old aRight[] and such that the second condition
   1343 ** above is still met.
   1344 **
   1345 ** The aContent[aLeft[X]] values will be unique for all X.  And the
   1346 ** aContent[aRight[X]] values will be unique too.  But there might be
   1347 ** one or more combinations of X and Y such that
   1348 **
   1349 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
   1350 **
   1351 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
   1352 */
   1353 static void walMerge(
   1354   const u32 *aContent,            /* Pages in wal - keys for the sort */
   1355   ht_slot *aLeft,                 /* IN: Left hand input list */
   1356   int nLeft,                      /* IN: Elements in array *paLeft */
   1357   ht_slot **paRight,              /* IN/OUT: Right hand input list */
   1358   int *pnRight,                   /* IN/OUT: Elements in *paRight */
   1359   ht_slot *aTmp                   /* Temporary buffer */
   1360 ){
   1361   int iLeft = 0;                  /* Current index in aLeft */
   1362   int iRight = 0;                 /* Current index in aRight */
   1363   int iOut = 0;                   /* Current index in output buffer */
   1364   int nRight = *pnRight;
   1365   ht_slot *aRight = *paRight;
   1366 
   1367   assert( nLeft>0 && nRight>0 );
   1368   while( iRight<nRight || iLeft<nLeft ){
   1369     ht_slot logpage;
   1370     Pgno dbpage;
   1371 
   1372     if( (iLeft<nLeft)
   1373      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
   1374     ){
   1375       logpage = aLeft[iLeft++];
   1376     }else{
   1377       logpage = aRight[iRight++];
   1378     }
   1379     dbpage = aContent[logpage];
   1380 
   1381     aTmp[iOut++] = logpage;
   1382     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
   1383 
   1384     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
   1385     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
   1386   }
   1387 
   1388   *paRight = aLeft;
   1389   *pnRight = iOut;
   1390   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
   1391 }
   1392 
   1393 /*
   1394 ** Sort the elements in list aList using aContent[] as the sort key.
   1395 ** Remove elements with duplicate keys, preferring to keep the
   1396 ** larger aList[] values.
   1397 **
   1398 ** The aList[] entries are indices into aContent[].  The values in
   1399 ** aList[] are to be sorted so that for all J<K:
   1400 **
   1401 **      aContent[aList[J]] < aContent[aList[K]]
   1402 **
   1403 ** For any X and Y such that
   1404 **
   1405 **      aContent[aList[X]] == aContent[aList[Y]]
   1406 **
   1407 ** Keep the larger of the two values aList[X] and aList[Y] and discard
   1408 ** the smaller.
   1409 */
   1410 static void walMergesort(
   1411   const u32 *aContent,            /* Pages in wal */
   1412   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
   1413   ht_slot *aList,                 /* IN/OUT: List to sort */
   1414   int *pnList                     /* IN/OUT: Number of elements in aList[] */
   1415 ){
   1416   struct Sublist {
   1417     int nList;                    /* Number of elements in aList */
   1418     ht_slot *aList;               /* Pointer to sub-list content */
   1419   };
   1420 
   1421   const int nList = *pnList;      /* Size of input list */
   1422   int nMerge = 0;                 /* Number of elements in list aMerge */
   1423   ht_slot *aMerge = 0;            /* List to be merged */
   1424   int iList;                      /* Index into input list */
   1425   int iSub = 0;                   /* Index into aSub array */
   1426   struct Sublist aSub[13];        /* Array of sub-lists */
   1427 
   1428   memset(aSub, 0, sizeof(aSub));
   1429   assert( nList<=HASHTABLE_NPAGE && nList>0 );
   1430   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
   1431 
   1432   for(iList=0; iList<nList; iList++){
   1433     nMerge = 1;
   1434     aMerge = &aList[iList];
   1435     for(iSub=0; iList & (1<<iSub); iSub++){
   1436       struct Sublist *p = &aSub[iSub];
   1437       assert( p->aList && p->nList<=(1<<iSub) );
   1438       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
   1439       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
   1440     }
   1441     aSub[iSub].aList = aMerge;
   1442     aSub[iSub].nList = nMerge;
   1443   }
   1444 
   1445   for(iSub++; iSub<ArraySize(aSub); iSub++){
   1446     if( nList & (1<<iSub) ){
   1447       struct Sublist *p = &aSub[iSub];
   1448       assert( p->nList<=(1<<iSub) );
   1449       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
   1450       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
   1451     }
   1452   }
   1453   assert( aMerge==aList );
   1454   *pnList = nMerge;
   1455 
   1456 #ifdef SQLITE_DEBUG
   1457   {
   1458     int i;
   1459     for(i=1; i<*pnList; i++){
   1460       assert( aContent[aList[i]] > aContent[aList[i-1]] );
   1461     }
   1462   }
   1463 #endif
   1464 }
   1465 
   1466 /*
   1467 ** Free an iterator allocated by walIteratorInit().
   1468 */
   1469 static void walIteratorFree(WalIterator *p){
   1470   sqlite3ScratchFree(p);
   1471 }
   1472 
   1473 /*
   1474 ** Construct a WalInterator object that can be used to loop over all
   1475 ** pages in the WAL in ascending order. The caller must hold the checkpoint
   1476 ** lock.
   1477 **
   1478 ** On success, make *pp point to the newly allocated WalInterator object
   1479 ** return SQLITE_OK. Otherwise, return an error code. If this routine
   1480 ** returns an error, the value of *pp is undefined.
   1481 **
   1482 ** The calling routine should invoke walIteratorFree() to destroy the
   1483 ** WalIterator object when it has finished with it.
   1484 */
   1485 static int walIteratorInit(Wal *pWal, WalIterator **pp){
   1486   WalIterator *p;                 /* Return value */
   1487   int nSegment;                   /* Number of segments to merge */
   1488   u32 iLast;                      /* Last frame in log */
   1489   int nByte;                      /* Number of bytes to allocate */
   1490   int i;                          /* Iterator variable */
   1491   ht_slot *aTmp;                  /* Temp space used by merge-sort */
   1492   int rc = SQLITE_OK;             /* Return Code */
   1493 
   1494   /* This routine only runs while holding the checkpoint lock. And
   1495   ** it only runs if there is actually content in the log (mxFrame>0).
   1496   */
   1497   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
   1498   iLast = pWal->hdr.mxFrame;
   1499 
   1500   /* Allocate space for the WalIterator object. */
   1501   nSegment = walFramePage(iLast) + 1;
   1502   nByte = sizeof(WalIterator)
   1503         + (nSegment-1)*sizeof(struct WalSegment)
   1504         + iLast*sizeof(ht_slot);
   1505   p = (WalIterator *)sqlite3ScratchMalloc(nByte);
   1506   if( !p ){
   1507     return SQLITE_NOMEM;
   1508   }
   1509   memset(p, 0, nByte);
   1510   p->nSegment = nSegment;
   1511 
   1512   /* Allocate temporary space used by the merge-sort routine. This block
   1513   ** of memory will be freed before this function returns.
   1514   */
   1515   aTmp = (ht_slot *)sqlite3ScratchMalloc(
   1516       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
   1517   );
   1518   if( !aTmp ){
   1519     rc = SQLITE_NOMEM;
   1520   }
   1521 
   1522   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
   1523     volatile ht_slot *aHash;
   1524     u32 iZero;
   1525     volatile u32 *aPgno;
   1526 
   1527     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
   1528     if( rc==SQLITE_OK ){
   1529       int j;                      /* Counter variable */
   1530       int nEntry;                 /* Number of entries in this segment */
   1531       ht_slot *aIndex;            /* Sorted index for this segment */
   1532 
   1533       aPgno++;
   1534       if( (i+1)==nSegment ){
   1535         nEntry = (int)(iLast - iZero);
   1536       }else{
   1537         nEntry = (int)((u32*)aHash - (u32*)aPgno);
   1538       }
   1539       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
   1540       iZero++;
   1541 
   1542       for(j=0; j<nEntry; j++){
   1543         aIndex[j] = (ht_slot)j;
   1544       }
   1545       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
   1546       p->aSegment[i].iZero = iZero;
   1547       p->aSegment[i].nEntry = nEntry;
   1548       p->aSegment[i].aIndex = aIndex;
   1549       p->aSegment[i].aPgno = (u32 *)aPgno;
   1550     }
   1551   }
   1552   sqlite3ScratchFree(aTmp);
   1553 
   1554   if( rc!=SQLITE_OK ){
   1555     walIteratorFree(p);
   1556   }
   1557   *pp = p;
   1558   return rc;
   1559 }
   1560 
   1561 /*
   1562 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
   1563 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
   1564 ** busy-handler function. Invoke it and retry the lock until either the
   1565 ** lock is successfully obtained or the busy-handler returns 0.
   1566 */
   1567 static int walBusyLock(
   1568   Wal *pWal,                      /* WAL connection */
   1569   int (*xBusy)(void*),            /* Function to call when busy */
   1570   void *pBusyArg,                 /* Context argument for xBusyHandler */
   1571   int lockIdx,                    /* Offset of first byte to lock */
   1572   int n                           /* Number of bytes to lock */
   1573 ){
   1574   int rc;
   1575   do {
   1576     rc = walLockExclusive(pWal, lockIdx, n);
   1577   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
   1578   return rc;
   1579 }
   1580 
   1581 /*
   1582 ** The cache of the wal-index header must be valid to call this function.
   1583 ** Return the page-size in bytes used by the database.
   1584 */
   1585 static int walPagesize(Wal *pWal){
   1586   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
   1587 }
   1588 
   1589 /*
   1590 ** Copy as much content as we can from the WAL back into the database file
   1591 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
   1592 **
   1593 ** The amount of information copies from WAL to database might be limited
   1594 ** by active readers.  This routine will never overwrite a database page
   1595 ** that a concurrent reader might be using.
   1596 **
   1597 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
   1598 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
   1599 ** checkpoints are always run by a background thread or background
   1600 ** process, foreground threads will never block on a lengthy fsync call.
   1601 **
   1602 ** Fsync is called on the WAL before writing content out of the WAL and
   1603 ** into the database.  This ensures that if the new content is persistent
   1604 ** in the WAL and can be recovered following a power-loss or hard reset.
   1605 **
   1606 ** Fsync is also called on the database file if (and only if) the entire
   1607 ** WAL content is copied into the database file.  This second fsync makes
   1608 ** it safe to delete the WAL since the new content will persist in the
   1609 ** database file.
   1610 **
   1611 ** This routine uses and updates the nBackfill field of the wal-index header.
   1612 ** This is the only routine tha will increase the value of nBackfill.
   1613 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
   1614 ** its value.)
   1615 **
   1616 ** The caller must be holding sufficient locks to ensure that no other
   1617 ** checkpoint is running (in any other thread or process) at the same
   1618 ** time.
   1619 */
   1620 static int walCheckpoint(
   1621   Wal *pWal,                      /* Wal connection */
   1622   int eMode,                      /* One of PASSIVE, FULL or RESTART */
   1623   int (*xBusyCall)(void*),        /* Function to call when busy */
   1624   void *pBusyArg,                 /* Context argument for xBusyHandler */
   1625   int sync_flags,                 /* Flags for OsSync() (or 0) */
   1626   u8 *zBuf                        /* Temporary buffer to use */
   1627 ){
   1628   int rc;                         /* Return code */
   1629   int szPage;                     /* Database page-size */
   1630   WalIterator *pIter = 0;         /* Wal iterator context */
   1631   u32 iDbpage = 0;                /* Next database page to write */
   1632   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
   1633   u32 mxSafeFrame;                /* Max frame that can be backfilled */
   1634   u32 mxPage;                     /* Max database page to write */
   1635   int i;                          /* Loop counter */
   1636   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
   1637   int (*xBusy)(void*) = 0;        /* Function to call when waiting for locks */
   1638 
   1639   szPage = walPagesize(pWal);
   1640   testcase( szPage<=32768 );
   1641   testcase( szPage>=65536 );
   1642   pInfo = walCkptInfo(pWal);
   1643   if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
   1644 
   1645   /* Allocate the iterator */
   1646   rc = walIteratorInit(pWal, &pIter);
   1647   if( rc!=SQLITE_OK ){
   1648     return rc;
   1649   }
   1650   assert( pIter );
   1651 
   1652   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
   1653 
   1654   /* Compute in mxSafeFrame the index of the last frame of the WAL that is
   1655   ** safe to write into the database.  Frames beyond mxSafeFrame might
   1656   ** overwrite database pages that are in use by active readers and thus
   1657   ** cannot be backfilled from the WAL.
   1658   */
   1659   mxSafeFrame = pWal->hdr.mxFrame;
   1660   mxPage = pWal->hdr.nPage;
   1661   for(i=1; i<WAL_NREADER; i++){
   1662     u32 y = pInfo->aReadMark[i];
   1663     if( mxSafeFrame>y ){
   1664       assert( y<=pWal->hdr.mxFrame );
   1665       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
   1666       if( rc==SQLITE_OK ){
   1667         pInfo->aReadMark[i] = READMARK_NOT_USED;
   1668         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
   1669       }else if( rc==SQLITE_BUSY ){
   1670         mxSafeFrame = y;
   1671         xBusy = 0;
   1672       }else{
   1673         goto walcheckpoint_out;
   1674       }
   1675     }
   1676   }
   1677 
   1678   if( pInfo->nBackfill<mxSafeFrame
   1679    && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
   1680   ){
   1681     i64 nSize;                    /* Current size of database file */
   1682     u32 nBackfill = pInfo->nBackfill;
   1683 
   1684     /* Sync the WAL to disk */
   1685     if( sync_flags ){
   1686       rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
   1687     }
   1688 
   1689     /* If the database file may grow as a result of this checkpoint, hint
   1690     ** about the eventual size of the db file to the VFS layer.
   1691     */
   1692     if( rc==SQLITE_OK ){
   1693       i64 nReq = ((i64)mxPage * szPage);
   1694       rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
   1695       if( rc==SQLITE_OK && nSize<nReq ){
   1696         sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
   1697       }
   1698     }
   1699 
   1700     /* Iterate through the contents of the WAL, copying data to the db file. */
   1701     while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
   1702       i64 iOffset;
   1703       assert( walFramePgno(pWal, iFrame)==iDbpage );
   1704       if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
   1705       iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
   1706       /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
   1707       rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
   1708       if( rc!=SQLITE_OK ) break;
   1709       iOffset = (iDbpage-1)*(i64)szPage;
   1710       testcase( IS_BIG_INT(iOffset) );
   1711       rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
   1712       if( rc!=SQLITE_OK ) break;
   1713     }
   1714 
   1715     /* If work was actually accomplished... */
   1716     if( rc==SQLITE_OK ){
   1717       if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
   1718         i64 szDb = pWal->hdr.nPage*(i64)szPage;
   1719         testcase( IS_BIG_INT(szDb) );
   1720         rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
   1721         if( rc==SQLITE_OK && sync_flags ){
   1722           rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
   1723         }
   1724       }
   1725       if( rc==SQLITE_OK ){
   1726         pInfo->nBackfill = mxSafeFrame;
   1727       }
   1728     }
   1729 
   1730     /* Release the reader lock held while backfilling */
   1731     walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
   1732   }
   1733 
   1734   if( rc==SQLITE_BUSY ){
   1735     /* Reset the return code so as not to report a checkpoint failure
   1736     ** just because there are active readers.  */
   1737     rc = SQLITE_OK;
   1738   }
   1739 
   1740   /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
   1741   ** file has been copied into the database file, then block until all
   1742   ** readers have finished using the wal file. This ensures that the next
   1743   ** process to write to the database restarts the wal file.
   1744   */
   1745   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
   1746     assert( pWal->writeLock );
   1747     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
   1748       rc = SQLITE_BUSY;
   1749     }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
   1750       assert( mxSafeFrame==pWal->hdr.mxFrame );
   1751       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
   1752       if( rc==SQLITE_OK ){
   1753         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
   1754       }
   1755     }
   1756   }
   1757 
   1758  walcheckpoint_out:
   1759   walIteratorFree(pIter);
   1760   return rc;
   1761 }
   1762 
   1763 /*
   1764 ** Close a connection to a log file.
   1765 */
   1766 int sqlite3WalClose(
   1767   Wal *pWal,                      /* Wal to close */
   1768   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
   1769   int nBuf,
   1770   u8 *zBuf                        /* Buffer of at least nBuf bytes */
   1771 ){
   1772   int rc = SQLITE_OK;
   1773   if( pWal ){
   1774     int isDelete = 0;             /* True to unlink wal and wal-index files */
   1775 
   1776     /* If an EXCLUSIVE lock can be obtained on the database file (using the
   1777     ** ordinary, rollback-mode locking methods, this guarantees that the
   1778     ** connection associated with this log file is the only connection to
   1779     ** the database. In this case checkpoint the database and unlink both
   1780     ** the wal and wal-index files.
   1781     **
   1782     ** The EXCLUSIVE lock is not released before returning.
   1783     */
   1784     rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
   1785     if( rc==SQLITE_OK ){
   1786       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
   1787         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
   1788       }
   1789       rc = sqlite3WalCheckpoint(
   1790           pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
   1791       );
   1792       if( rc==SQLITE_OK ){
   1793         isDelete = 1;
   1794       }
   1795     }
   1796 
   1797     walIndexClose(pWal, isDelete);
   1798     sqlite3OsClose(pWal->pWalFd);
   1799     if( isDelete ){
   1800       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
   1801     }
   1802     WALTRACE(("WAL%p: closed\n", pWal));
   1803     sqlite3_free((void *)pWal->apWiData);
   1804     sqlite3_free(pWal);
   1805   }
   1806   return rc;
   1807 }
   1808 
   1809 /*
   1810 ** Try to read the wal-index header.  Return 0 on success and 1 if
   1811 ** there is a problem.
   1812 **
   1813 ** The wal-index is in shared memory.  Another thread or process might
   1814 ** be writing the header at the same time this procedure is trying to
   1815 ** read it, which might result in inconsistency.  A dirty read is detected
   1816 ** by verifying that both copies of the header are the same and also by
   1817 ** a checksum on the header.
   1818 **
   1819 ** If and only if the read is consistent and the header is different from
   1820 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
   1821 ** and *pChanged is set to 1.
   1822 **
   1823 ** If the checksum cannot be verified return non-zero. If the header
   1824 ** is read successfully and the checksum verified, return zero.
   1825 */
   1826 static int walIndexTryHdr(Wal *pWal, int *pChanged){
   1827   u32 aCksum[2];                  /* Checksum on the header content */
   1828   WalIndexHdr h1, h2;             /* Two copies of the header content */
   1829   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
   1830 
   1831   /* The first page of the wal-index must be mapped at this point. */
   1832   assert( pWal->nWiData>0 && pWal->apWiData[0] );
   1833 
   1834   /* Read the header. This might happen concurrently with a write to the
   1835   ** same area of shared memory on a different CPU in a SMP,
   1836   ** meaning it is possible that an inconsistent snapshot is read
   1837   ** from the file. If this happens, return non-zero.
   1838   **
   1839   ** There are two copies of the header at the beginning of the wal-index.
   1840   ** When reading, read [0] first then [1].  Writes are in the reverse order.
   1841   ** Memory barriers are used to prevent the compiler or the hardware from
   1842   ** reordering the reads and writes.
   1843   */
   1844   aHdr = walIndexHdr(pWal);
   1845   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
   1846   walShmBarrier(pWal);
   1847   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
   1848 
   1849   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
   1850     return 1;   /* Dirty read */
   1851   }
   1852   if( h1.isInit==0 ){
   1853     return 1;   /* Malformed header - probably all zeros */
   1854   }
   1855   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
   1856   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
   1857     return 1;   /* Checksum does not match */
   1858   }
   1859 
   1860   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
   1861     *pChanged = 1;
   1862     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
   1863     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
   1864     testcase( pWal->szPage<=32768 );
   1865     testcase( pWal->szPage>=65536 );
   1866   }
   1867 
   1868   /* The header was successfully read. Return zero. */
   1869   return 0;
   1870 }
   1871 
   1872 /*
   1873 ** Read the wal-index header from the wal-index and into pWal->hdr.
   1874 ** If the wal-header appears to be corrupt, try to reconstruct the
   1875 ** wal-index from the WAL before returning.
   1876 **
   1877 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
   1878 ** changed by this opertion.  If pWal->hdr is unchanged, set *pChanged
   1879 ** to 0.
   1880 **
   1881 ** If the wal-index header is successfully read, return SQLITE_OK.
   1882 ** Otherwise an SQLite error code.
   1883 */
   1884 static int walIndexReadHdr(Wal *pWal, int *pChanged){
   1885   int rc;                         /* Return code */
   1886   int badHdr;                     /* True if a header read failed */
   1887   volatile u32 *page0;            /* Chunk of wal-index containing header */
   1888 
   1889   /* Ensure that page 0 of the wal-index (the page that contains the
   1890   ** wal-index header) is mapped. Return early if an error occurs here.
   1891   */
   1892   assert( pChanged );
   1893   rc = walIndexPage(pWal, 0, &page0);
   1894   if( rc!=SQLITE_OK ){
   1895     return rc;
   1896   };
   1897   assert( page0 || pWal->writeLock==0 );
   1898 
   1899   /* If the first page of the wal-index has been mapped, try to read the
   1900   ** wal-index header immediately, without holding any lock. This usually
   1901   ** works, but may fail if the wal-index header is corrupt or currently
   1902   ** being modified by another thread or process.
   1903   */
   1904   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
   1905 
   1906   /* If the first attempt failed, it might have been due to a race
   1907   ** with a writer.  So get a WRITE lock and try again.
   1908   */
   1909   assert( badHdr==0 || pWal->writeLock==0 );
   1910   if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
   1911     pWal->writeLock = 1;
   1912     if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
   1913       badHdr = walIndexTryHdr(pWal, pChanged);
   1914       if( badHdr ){
   1915         /* If the wal-index header is still malformed even while holding
   1916         ** a WRITE lock, it can only mean that the header is corrupted and
   1917         ** needs to be reconstructed.  So run recovery to do exactly that.
   1918         */
   1919         rc = walIndexRecover(pWal);
   1920         *pChanged = 1;
   1921       }
   1922     }
   1923     pWal->writeLock = 0;
   1924     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
   1925   }
   1926 
   1927   /* If the header is read successfully, check the version number to make
   1928   ** sure the wal-index was not constructed with some future format that
   1929   ** this version of SQLite cannot understand.
   1930   */
   1931   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
   1932     rc = SQLITE_CANTOPEN_BKPT;
   1933   }
   1934 
   1935   return rc;
   1936 }
   1937 
   1938 /*
   1939 ** This is the value that walTryBeginRead returns when it needs to
   1940 ** be retried.
   1941 */
   1942 #define WAL_RETRY  (-1)
   1943 
   1944 /*
   1945 ** Attempt to start a read transaction.  This might fail due to a race or
   1946 ** other transient condition.  When that happens, it returns WAL_RETRY to
   1947 ** indicate to the caller that it is safe to retry immediately.
   1948 **
   1949 ** On success return SQLITE_OK.  On a permanent failure (such an
   1950 ** I/O error or an SQLITE_BUSY because another process is running
   1951 ** recovery) return a positive error code.
   1952 **
   1953 ** The useWal parameter is true to force the use of the WAL and disable
   1954 ** the case where the WAL is bypassed because it has been completely
   1955 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
   1956 ** to make a copy of the wal-index header into pWal->hdr.  If the
   1957 ** wal-index header has changed, *pChanged is set to 1 (as an indication
   1958 ** to the caller that the local paget cache is obsolete and needs to be
   1959 ** flushed.)  When useWal==1, the wal-index header is assumed to already
   1960 ** be loaded and the pChanged parameter is unused.
   1961 **
   1962 ** The caller must set the cnt parameter to the number of prior calls to
   1963 ** this routine during the current read attempt that returned WAL_RETRY.
   1964 ** This routine will start taking more aggressive measures to clear the
   1965 ** race conditions after multiple WAL_RETRY returns, and after an excessive
   1966 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
   1967 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
   1968 ** and is not honoring the locking protocol.  There is a vanishingly small
   1969 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
   1970 ** bad luck when there is lots of contention for the wal-index, but that
   1971 ** possibility is so small that it can be safely neglected, we believe.
   1972 **
   1973 ** On success, this routine obtains a read lock on
   1974 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
   1975 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
   1976 ** that means the Wal does not hold any read lock.  The reader must not
   1977 ** access any database page that is modified by a WAL frame up to and
   1978 ** including frame number aReadMark[pWal->readLock].  The reader will
   1979 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
   1980 ** Or if pWal->readLock==0, then the reader will ignore the WAL
   1981 ** completely and get all content directly from the database file.
   1982 ** If the useWal parameter is 1 then the WAL will never be ignored and
   1983 ** this routine will always set pWal->readLock>0 on success.
   1984 ** When the read transaction is completed, the caller must release the
   1985 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
   1986 **
   1987 ** This routine uses the nBackfill and aReadMark[] fields of the header
   1988 ** to select a particular WAL_READ_LOCK() that strives to let the
   1989 ** checkpoint process do as much work as possible.  This routine might
   1990 ** update values of the aReadMark[] array in the header, but if it does
   1991 ** so it takes care to hold an exclusive lock on the corresponding
   1992 ** WAL_READ_LOCK() while changing values.
   1993 */
   1994 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
   1995   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
   1996   u32 mxReadMark;                 /* Largest aReadMark[] value */
   1997   int mxI;                        /* Index of largest aReadMark[] value */
   1998   int i;                          /* Loop counter */
   1999   int rc = SQLITE_OK;             /* Return code  */
   2000 
   2001   assert( pWal->readLock<0 );     /* Not currently locked */
   2002 
   2003   /* Take steps to avoid spinning forever if there is a protocol error.
   2004   **
   2005   ** Circumstances that cause a RETRY should only last for the briefest
   2006   ** instances of time.  No I/O or other system calls are done while the
   2007   ** locks are held, so the locks should not be held for very long. But
   2008   ** if we are unlucky, another process that is holding a lock might get
   2009   ** paged out or take a page-fault that is time-consuming to resolve,
   2010   ** during the few nanoseconds that it is holding the lock.  In that case,
   2011   ** it might take longer than normal for the lock to free.
   2012   **
   2013   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
   2014   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
   2015   ** is more of a scheduler yield than an actual delay.  But on the 10th
   2016   ** an subsequent retries, the delays start becoming longer and longer,
   2017   ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
   2018   ** The total delay time before giving up is less than 1 second.
   2019   */
   2020   if( cnt>5 ){
   2021     int nDelay = 1;                      /* Pause time in microseconds */
   2022     if( cnt>100 ){
   2023       VVA_ONLY( pWal->lockError = 1; )
   2024       return SQLITE_PROTOCOL;
   2025     }
   2026     if( cnt>=10 ) nDelay = (cnt-9)*238;  /* Max delay 21ms. Total delay 996ms */
   2027     sqlite3OsSleep(pWal->pVfs, nDelay);
   2028   }
   2029 
   2030   if( !useWal ){
   2031     rc = walIndexReadHdr(pWal, pChanged);
   2032     if( rc==SQLITE_BUSY ){
   2033       /* If there is not a recovery running in another thread or process
   2034       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
   2035       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
   2036       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
   2037       ** would be technically correct.  But the race is benign since with
   2038       ** WAL_RETRY this routine will be called again and will probably be
   2039       ** right on the second iteration.
   2040       */
   2041       if( pWal->apWiData[0]==0 ){
   2042         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
   2043         ** We assume this is a transient condition, so return WAL_RETRY. The
   2044         ** xShmMap() implementation used by the default unix and win32 VFS
   2045         ** modules may return SQLITE_BUSY due to a race condition in the
   2046         ** code that determines whether or not the shared-memory region
   2047         ** must be zeroed before the requested page is returned.
   2048         */
   2049         rc = WAL_RETRY;
   2050       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
   2051         walUnlockShared(pWal, WAL_RECOVER_LOCK);
   2052         rc = WAL_RETRY;
   2053       }else if( rc==SQLITE_BUSY ){
   2054         rc = SQLITE_BUSY_RECOVERY;
   2055       }
   2056     }
   2057     if( rc!=SQLITE_OK ){
   2058       return rc;
   2059     }
   2060   }
   2061 
   2062   pInfo = walCkptInfo(pWal);
   2063   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
   2064     /* The WAL has been completely backfilled (or it is empty).
   2065     ** and can be safely ignored.
   2066     */
   2067     rc = walLockShared(pWal, WAL_READ_LOCK(0));
   2068     walShmBarrier(pWal);
   2069     if( rc==SQLITE_OK ){
   2070       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
   2071         /* It is not safe to allow the reader to continue here if frames
   2072         ** may have been appended to the log before READ_LOCK(0) was obtained.
   2073         ** When holding READ_LOCK(0), the reader ignores the entire log file,
   2074         ** which implies that the database file contains a trustworthy
   2075         ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
   2076         ** happening, this is usually correct.
   2077         **
   2078         ** However, if frames have been appended to the log (or if the log
   2079         ** is wrapped and written for that matter) before the READ_LOCK(0)
   2080         ** is obtained, that is not necessarily true. A checkpointer may
   2081         ** have started to backfill the appended frames but crashed before
   2082         ** it finished. Leaving a corrupt image in the database file.
   2083         */
   2084         walUnlockShared(pWal, WAL_READ_LOCK(0));
   2085         return WAL_RETRY;
   2086       }
   2087       pWal->readLock = 0;
   2088       return SQLITE_OK;
   2089     }else if( rc!=SQLITE_BUSY ){
   2090       return rc;
   2091     }
   2092   }
   2093 
   2094   /* If we get this far, it means that the reader will want to use
   2095   ** the WAL to get at content from recent commits.  The job now is
   2096   ** to select one of the aReadMark[] entries that is closest to
   2097   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
   2098   */
   2099   mxReadMark = 0;
   2100   mxI = 0;
   2101   for(i=1; i<WAL_NREADER; i++){
   2102     u32 thisMark = pInfo->aReadMark[i];
   2103     if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
   2104       assert( thisMark!=READMARK_NOT_USED );
   2105       mxReadMark = thisMark;
   2106       mxI = i;
   2107     }
   2108   }
   2109   /* There was once an "if" here. The extra "{" is to preserve indentation. */
   2110   {
   2111     if( mxReadMark < pWal->hdr.mxFrame || mxI==0 ){
   2112       for(i=1; i<WAL_NREADER; i++){
   2113         rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
   2114         if( rc==SQLITE_OK ){
   2115           mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
   2116           mxI = i;
   2117           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
   2118           break;
   2119         }else if( rc!=SQLITE_BUSY ){
   2120           return rc;
   2121         }
   2122       }
   2123     }
   2124     if( mxI==0 ){
   2125       assert( rc==SQLITE_BUSY );
   2126       return WAL_RETRY;
   2127     }
   2128 
   2129     rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
   2130     if( rc ){
   2131       return rc==SQLITE_BUSY ? WAL_RETRY : rc;
   2132     }
   2133     /* Now that the read-lock has been obtained, check that neither the
   2134     ** value in the aReadMark[] array or the contents of the wal-index
   2135     ** header have changed.
   2136     **
   2137     ** It is necessary to check that the wal-index header did not change
   2138     ** between the time it was read and when the shared-lock was obtained
   2139     ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
   2140     ** that the log file may have been wrapped by a writer, or that frames
   2141     ** that occur later in the log than pWal->hdr.mxFrame may have been
   2142     ** copied into the database by a checkpointer. If either of these things
   2143     ** happened, then reading the database with the current value of
   2144     ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
   2145     ** instead.
   2146     **
   2147     ** This does not guarantee that the copy of the wal-index header is up to
   2148     ** date before proceeding. That would not be possible without somehow
   2149     ** blocking writers. It only guarantees that a dangerous checkpoint or
   2150     ** log-wrap (either of which would require an exclusive lock on
   2151     ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
   2152     */
   2153     walShmBarrier(pWal);
   2154     if( pInfo->aReadMark[mxI]!=mxReadMark
   2155      || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
   2156     ){
   2157       walUnlockShared(pWal, WAL_READ_LOCK(mxI));
   2158       return WAL_RETRY;
   2159     }else{
   2160       assert( mxReadMark<=pWal->hdr.mxFrame );
   2161       pWal->readLock = (i16)mxI;
   2162     }
   2163   }
   2164   return rc;
   2165 }
   2166 
   2167 /*
   2168 ** Begin a read transaction on the database.
   2169 **
   2170 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
   2171 ** it takes a snapshot of the state of the WAL and wal-index for the current
   2172 ** instant in time.  The current thread will continue to use this snapshot.
   2173 ** Other threads might append new content to the WAL and wal-index but
   2174 ** that extra content is ignored by the current thread.
   2175 **
   2176 ** If the database contents have changes since the previous read
   2177 ** transaction, then *pChanged is set to 1 before returning.  The
   2178 ** Pager layer will use this to know that is cache is stale and
   2179 ** needs to be flushed.
   2180 */
   2181 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
   2182   int rc;                         /* Return code */
   2183   int cnt = 0;                    /* Number of TryBeginRead attempts */
   2184 
   2185   do{
   2186     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
   2187   }while( rc==WAL_RETRY );
   2188   testcase( (rc&0xff)==SQLITE_BUSY );
   2189   testcase( (rc&0xff)==SQLITE_IOERR );
   2190   testcase( rc==SQLITE_PROTOCOL );
   2191   testcase( rc==SQLITE_OK );
   2192   return rc;
   2193 }
   2194 
   2195 /*
   2196 ** Finish with a read transaction.  All this does is release the
   2197 ** read-lock.
   2198 */
   2199 void sqlite3WalEndReadTransaction(Wal *pWal){
   2200   sqlite3WalEndWriteTransaction(pWal);
   2201   if( pWal->readLock>=0 ){
   2202     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
   2203     pWal->readLock = -1;
   2204   }
   2205 }
   2206 
   2207 /*
   2208 ** Read a page from the WAL, if it is present in the WAL and if the
   2209 ** current read transaction is configured to use the WAL.
   2210 **
   2211 ** The *pInWal is set to 1 if the requested page is in the WAL and
   2212 ** has been loaded.  Or *pInWal is set to 0 if the page was not in
   2213 ** the WAL and needs to be read out of the database.
   2214 */
   2215 int sqlite3WalRead(
   2216   Wal *pWal,                      /* WAL handle */
   2217   Pgno pgno,                      /* Database page number to read data for */
   2218   int *pInWal,                    /* OUT: True if data is read from WAL */
   2219   int nOut,                       /* Size of buffer pOut in bytes */
   2220   u8 *pOut                        /* Buffer to write page data to */
   2221 ){
   2222   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
   2223   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
   2224   int iHash;                      /* Used to loop through N hash tables */
   2225 
   2226   /* This routine is only be called from within a read transaction. */
   2227   assert( pWal->readLock>=0 || pWal->lockError );
   2228 
   2229   /* If the "last page" field of the wal-index header snapshot is 0, then
   2230   ** no data will be read from the wal under any circumstances. Return early
   2231   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
   2232   ** then the WAL is ignored by the reader so return early, as if the
   2233   ** WAL were empty.
   2234   */
   2235   if( iLast==0 || pWal->readLock==0 ){
   2236     *pInWal = 0;
   2237     return SQLITE_OK;
   2238   }
   2239 
   2240   /* Search the hash table or tables for an entry matching page number
   2241   ** pgno. Each iteration of the following for() loop searches one
   2242   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
   2243   **
   2244   ** This code might run concurrently to the code in walIndexAppend()
   2245   ** that adds entries to the wal-index (and possibly to this hash
   2246   ** table). This means the value just read from the hash
   2247   ** slot (aHash[iKey]) may have been added before or after the
   2248   ** current read transaction was opened. Values added after the
   2249   ** read transaction was opened may have been written incorrectly -
   2250   ** i.e. these slots may contain garbage data. However, we assume
   2251   ** that any slots written before the current read transaction was
   2252   ** opened remain unmodified.
   2253   **
   2254   ** For the reasons above, the if(...) condition featured in the inner
   2255   ** loop of the following block is more stringent that would be required
   2256   ** if we had exclusive access to the hash-table:
   2257   **
   2258   **   (aPgno[iFrame]==pgno):
   2259   **     This condition filters out normal hash-table collisions.
   2260   **
   2261   **   (iFrame<=iLast):
   2262   **     This condition filters out entries that were added to the hash
   2263   **     table after the current read-transaction had started.
   2264   */
   2265   for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
   2266     volatile ht_slot *aHash;      /* Pointer to hash table */
   2267     volatile u32 *aPgno;          /* Pointer to array of page numbers */
   2268     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
   2269     int iKey;                     /* Hash slot index */
   2270     int nCollide;                 /* Number of hash collisions remaining */
   2271     int rc;                       /* Error code */
   2272 
   2273     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
   2274     if( rc!=SQLITE_OK ){
   2275       return rc;
   2276     }
   2277     nCollide = HASHTABLE_NSLOT;
   2278     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
   2279       u32 iFrame = aHash[iKey] + iZero;
   2280       if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
   2281         assert( iFrame>iRead );
   2282         iRead = iFrame;
   2283       }
   2284       if( (nCollide--)==0 ){
   2285         return SQLITE_CORRUPT_BKPT;
   2286       }
   2287     }
   2288   }
   2289 
   2290 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
   2291   /* If expensive assert() statements are available, do a linear search
   2292   ** of the wal-index file content. Make sure the results agree with the
   2293   ** result obtained using the hash indexes above.  */
   2294   {
   2295     u32 iRead2 = 0;
   2296     u32 iTest;
   2297     for(iTest=iLast; iTest>0; iTest--){
   2298       if( walFramePgno(pWal, iTest)==pgno ){
   2299         iRead2 = iTest;
   2300         break;
   2301       }
   2302     }
   2303     assert( iRead==iRead2 );
   2304   }
   2305 #endif
   2306 
   2307   /* If iRead is non-zero, then it is the log frame number that contains the
   2308   ** required page. Read and return data from the log file.
   2309   */
   2310   if( iRead ){
   2311     int sz;
   2312     i64 iOffset;
   2313     sz = pWal->hdr.szPage;
   2314     sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
   2315     testcase( sz<=32768 );
   2316     testcase( sz>=65536 );
   2317     iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
   2318     *pInWal = 1;
   2319     /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
   2320     return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
   2321   }
   2322 
   2323   *pInWal = 0;
   2324   return SQLITE_OK;
   2325 }
   2326 
   2327 
   2328 /*
   2329 ** Return the size of the database in pages (or zero, if unknown).
   2330 */
   2331 Pgno sqlite3WalDbsize(Wal *pWal){
   2332   if( pWal && ALWAYS(pWal->readLock>=0) ){
   2333     return pWal->hdr.nPage;
   2334   }
   2335   return 0;
   2336 }
   2337 
   2338 
   2339 /*
   2340 ** This function starts a write transaction on the WAL.
   2341 **
   2342 ** A read transaction must have already been started by a prior call
   2343 ** to sqlite3WalBeginReadTransaction().
   2344 **
   2345 ** If another thread or process has written into the database since
   2346 ** the read transaction was started, then it is not possible for this
   2347 ** thread to write as doing so would cause a fork.  So this routine
   2348 ** returns SQLITE_BUSY in that case and no write transaction is started.
   2349 **
   2350 ** There can only be a single writer active at a time.
   2351 */
   2352 int sqlite3WalBeginWriteTransaction(Wal *pWal){
   2353   int rc;
   2354 
   2355   /* Cannot start a write transaction without first holding a read
   2356   ** transaction. */
   2357   assert( pWal->readLock>=0 );
   2358 
   2359   if( pWal->readOnly ){
   2360     return SQLITE_READONLY;
   2361   }
   2362 
   2363   /* Only one writer allowed at a time.  Get the write lock.  Return
   2364   ** SQLITE_BUSY if unable.
   2365   */
   2366   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
   2367   if( rc ){
   2368     return rc;
   2369   }
   2370   pWal->writeLock = 1;
   2371 
   2372   /* If another connection has written to the database file since the
   2373   ** time the read transaction on this connection was started, then
   2374   ** the write is disallowed.
   2375   */
   2376   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
   2377     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
   2378     pWal->writeLock = 0;
   2379     rc = SQLITE_BUSY;
   2380   }
   2381 
   2382   return rc;
   2383 }
   2384 
   2385 /*
   2386 ** End a write transaction.  The commit has already been done.  This
   2387 ** routine merely releases the lock.
   2388 */
   2389 int sqlite3WalEndWriteTransaction(Wal *pWal){
   2390   if( pWal->writeLock ){
   2391     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
   2392     pWal->writeLock = 0;
   2393   }
   2394   return SQLITE_OK;
   2395 }
   2396 
   2397 /*
   2398 ** If any data has been written (but not committed) to the log file, this
   2399 ** function moves the write-pointer back to the start of the transaction.
   2400 **
   2401 ** Additionally, the callback function is invoked for each frame written
   2402 ** to the WAL since the start of the transaction. If the callback returns
   2403 ** other than SQLITE_OK, it is not invoked again and the error code is
   2404 ** returned to the caller.
   2405 **
   2406 ** Otherwise, if the callback function does not return an error, this
   2407 ** function returns SQLITE_OK.
   2408 */
   2409 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
   2410   int rc = SQLITE_OK;
   2411   if( ALWAYS(pWal->writeLock) ){
   2412     Pgno iMax = pWal->hdr.mxFrame;
   2413     Pgno iFrame;
   2414 
   2415     /* Restore the clients cache of the wal-index header to the state it
   2416     ** was in before the client began writing to the database.
   2417     */
   2418     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
   2419 
   2420     for(iFrame=pWal->hdr.mxFrame+1;
   2421         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
   2422         iFrame++
   2423     ){
   2424       /* This call cannot fail. Unless the page for which the page number
   2425       ** is passed as the second argument is (a) in the cache and
   2426       ** (b) has an outstanding reference, then xUndo is either a no-op
   2427       ** (if (a) is false) or simply expels the page from the cache (if (b)
   2428       ** is false).
   2429       **
   2430       ** If the upper layer is doing a rollback, it is guaranteed that there
   2431       ** are no outstanding references to any page other than page 1. And
   2432       ** page 1 is never written to the log until the transaction is
   2433       ** committed. As a result, the call to xUndo may not fail.
   2434       */
   2435       assert( walFramePgno(pWal, iFrame)!=1 );
   2436       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
   2437     }
   2438     walCleanupHash(pWal);
   2439   }
   2440   assert( rc==SQLITE_OK );
   2441   return rc;
   2442 }
   2443 
   2444 /*
   2445 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
   2446 ** values. This function populates the array with values required to
   2447 ** "rollback" the write position of the WAL handle back to the current
   2448 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
   2449 */
   2450 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
   2451   assert( pWal->writeLock );
   2452   aWalData[0] = pWal->hdr.mxFrame;
   2453   aWalData[1] = pWal->hdr.aFrameCksum[0];
   2454   aWalData[2] = pWal->hdr.aFrameCksum[1];
   2455   aWalData[3] = pWal->nCkpt;
   2456 }
   2457 
   2458 /*
   2459 ** Move the write position of the WAL back to the point identified by
   2460 ** the values in the aWalData[] array. aWalData must point to an array
   2461 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
   2462 ** by a call to WalSavepoint().
   2463 */
   2464 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
   2465   int rc = SQLITE_OK;
   2466 
   2467   assert( pWal->writeLock );
   2468   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
   2469 
   2470   if( aWalData[3]!=pWal->nCkpt ){
   2471     /* This savepoint was opened immediately after the write-transaction
   2472     ** was started. Right after that, the writer decided to wrap around
   2473     ** to the start of the log. Update the savepoint values to match.
   2474     */
   2475     aWalData[0] = 0;
   2476     aWalData[3] = pWal->nCkpt;
   2477   }
   2478 
   2479   if( aWalData[0]<pWal->hdr.mxFrame ){
   2480     pWal->hdr.mxFrame = aWalData[0];
   2481     pWal->hdr.aFrameCksum[0] = aWalData[1];
   2482     pWal->hdr.aFrameCksum[1] = aWalData[2];
   2483     walCleanupHash(pWal);
   2484   }
   2485 
   2486   return rc;
   2487 }
   2488 
   2489 /*
   2490 ** This function is called just before writing a set of frames to the log
   2491 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
   2492 ** to the current log file, it is possible to overwrite the start of the
   2493 ** existing log file with the new frames (i.e. "reset" the log). If so,
   2494 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
   2495 ** unchanged.
   2496 **
   2497 ** SQLITE_OK is returned if no error is encountered (regardless of whether
   2498 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
   2499 ** if an error occurs.
   2500 */
   2501 static int walRestartLog(Wal *pWal){
   2502   int rc = SQLITE_OK;
   2503   int cnt;
   2504 
   2505   if( pWal->readLock==0 ){
   2506     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
   2507     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
   2508     if( pInfo->nBackfill>0 ){
   2509       u32 salt1;
   2510       sqlite3_randomness(4, &salt1);
   2511       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
   2512       if( rc==SQLITE_OK ){
   2513         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
   2514         ** readers are currently using the WAL), then the transactions
   2515         ** frames will overwrite the start of the existing log. Update the
   2516         ** wal-index header to reflect this.
   2517         **
   2518         ** In theory it would be Ok to update the cache of the header only
   2519         ** at this point. But updating the actual wal-index header is also
   2520         ** safe and means there is no special case for sqlite3WalUndo()
   2521         ** to handle if this transaction is rolled back.
   2522         */
   2523         int i;                    /* Loop counter */
   2524         u32 *aSalt = pWal->hdr.aSalt;       /* Big-endian salt values */
   2525         pWal->nCkpt++;
   2526         pWal->hdr.mxFrame = 0;
   2527         sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
   2528         aSalt[1] = salt1;
   2529         walIndexWriteHdr(pWal);
   2530         pInfo->nBackfill = 0;
   2531         for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
   2532         assert( pInfo->aReadMark[0]==0 );
   2533         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
   2534       }else if( rc!=SQLITE_BUSY ){
   2535         return rc;
   2536       }
   2537     }
   2538     walUnlockShared(pWal, WAL_READ_LOCK(0));
   2539     pWal->readLock = -1;
   2540     cnt = 0;
   2541     do{
   2542       int notUsed;
   2543       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
   2544     }while( rc==WAL_RETRY );
   2545     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
   2546     testcase( (rc&0xff)==SQLITE_IOERR );
   2547     testcase( rc==SQLITE_PROTOCOL );
   2548     testcase( rc==SQLITE_OK );
   2549   }
   2550   return rc;
   2551 }
   2552 
   2553 /*
   2554 ** Write a set of frames to the log. The caller must hold the write-lock
   2555 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
   2556 */
   2557 int sqlite3WalFrames(
   2558   Wal *pWal,                      /* Wal handle to write to */
   2559   int szPage,                     /* Database page-size in bytes */
   2560   PgHdr *pList,                   /* List of dirty pages to write */
   2561   Pgno nTruncate,                 /* Database size after this commit */
   2562   int isCommit,                   /* True if this is a commit */
   2563   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
   2564 ){
   2565   int rc;                         /* Used to catch return codes */
   2566   u32 iFrame;                     /* Next frame address */
   2567   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
   2568   PgHdr *p;                       /* Iterator to run through pList with. */
   2569   PgHdr *pLast = 0;               /* Last frame in list */
   2570   int nLast = 0;                  /* Number of extra copies of last page */
   2571 
   2572   assert( pList );
   2573   assert( pWal->writeLock );
   2574 
   2575 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
   2576   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
   2577     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
   2578               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
   2579   }
   2580 #endif
   2581 
   2582   /* See if it is possible to write these frames into the start of the
   2583   ** log file, instead of appending to it at pWal->hdr.mxFrame.
   2584   */
   2585   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
   2586     return rc;
   2587   }
   2588 
   2589   /* If this is the first frame written into the log, write the WAL
   2590   ** header to the start of the WAL file. See comments at the top of
   2591   ** this source file for a description of the WAL header format.
   2592   */
   2593   iFrame = pWal->hdr.mxFrame;
   2594   if( iFrame==0 ){
   2595     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
   2596     u32 aCksum[2];                /* Checksum for wal-header */
   2597 
   2598     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
   2599     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
   2600     sqlite3Put4byte(&aWalHdr[8], szPage);
   2601     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
   2602     sqlite3_randomness(8, pWal->hdr.aSalt);
   2603     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
   2604     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
   2605     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
   2606     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
   2607 
   2608     pWal->szPage = szPage;
   2609     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
   2610     pWal->hdr.aFrameCksum[0] = aCksum[0];
   2611     pWal->hdr.aFrameCksum[1] = aCksum[1];
   2612 
   2613     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
   2614     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
   2615     if( rc!=SQLITE_OK ){
   2616       return rc;
   2617     }
   2618   }
   2619   assert( (int)pWal->szPage==szPage );
   2620 
   2621   /* Write the log file. */
   2622   for(p=pList; p; p=p->pDirty){
   2623     u32 nDbsize;                  /* Db-size field for frame header */
   2624     i64 iOffset;                  /* Write offset in log file */
   2625     void *pData;
   2626 
   2627     iOffset = walFrameOffset(++iFrame, szPage);
   2628     /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
   2629 
   2630     /* Populate and write the frame header */
   2631     nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
   2632 #if defined(SQLITE_HAS_CODEC)
   2633     if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
   2634 #else
   2635     pData = p->pData;
   2636 #endif
   2637     walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame);
   2638     rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
   2639     if( rc!=SQLITE_OK ){
   2640       return rc;
   2641     }
   2642 
   2643     /* Write the page data */
   2644     rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame));
   2645     if( rc!=SQLITE_OK ){
   2646       return rc;
   2647     }
   2648     pLast = p;
   2649   }
   2650 
   2651   /* Sync the log file if the 'isSync' flag was specified. */
   2652   if( sync_flags ){
   2653     i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
   2654     i64 iOffset = walFrameOffset(iFrame+1, szPage);
   2655 
   2656     assert( isCommit );
   2657     assert( iSegment>0 );
   2658 
   2659     iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
   2660     while( iOffset<iSegment ){
   2661       void *pData;
   2662 #if defined(SQLITE_HAS_CODEC)
   2663       if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM;
   2664 #else
   2665       pData = pLast->pData;
   2666 #endif
   2667       walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame);
   2668       /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
   2669       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
   2670       if( rc!=SQLITE_OK ){
   2671         return rc;
   2672       }
   2673       iOffset += WAL_FRAME_HDRSIZE;
   2674       rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset);
   2675       if( rc!=SQLITE_OK ){
   2676         return rc;
   2677       }
   2678       nLast++;
   2679       iOffset += szPage;
   2680     }
   2681 
   2682     rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
   2683   }
   2684 
   2685   /* Append data to the wal-index. It is not necessary to lock the
   2686   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
   2687   ** guarantees that there are no other writers, and no data that may
   2688   ** be in use by existing readers is being overwritten.
   2689   */
   2690   iFrame = pWal->hdr.mxFrame;
   2691   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
   2692     iFrame++;
   2693     rc = walIndexAppend(pWal, iFrame, p->pgno);
   2694   }
   2695   while( nLast>0 && rc==SQLITE_OK ){
   2696     iFrame++;
   2697     nLast--;
   2698     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
   2699   }
   2700 
   2701   if( rc==SQLITE_OK ){
   2702     /* Update the private copy of the header. */
   2703     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
   2704     testcase( szPage<=32768 );
   2705     testcase( szPage>=65536 );
   2706     pWal->hdr.mxFrame = iFrame;
   2707     if( isCommit ){
   2708       pWal->hdr.iChange++;
   2709       pWal->hdr.nPage = nTruncate;
   2710     }
   2711     /* If this is a commit, update the wal-index header too. */
   2712     if( isCommit ){
   2713       walIndexWriteHdr(pWal);
   2714       pWal->iCallback = iFrame;
   2715     }
   2716   }
   2717 
   2718   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
   2719   return rc;
   2720 }
   2721 
   2722 /*
   2723 ** This routine is called to implement sqlite3_wal_checkpoint() and
   2724 ** related interfaces.
   2725 **
   2726 ** Obtain a CHECKPOINT lock and then backfill as much information as
   2727 ** we can from WAL into the database.
   2728 **
   2729 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
   2730 ** callback. In this case this function runs a blocking checkpoint.
   2731 */
   2732 int sqlite3WalCheckpoint(
   2733   Wal *pWal,                      /* Wal connection */
   2734   int eMode,                      /* PASSIVE, FULL or RESTART */
   2735   int (*xBusy)(void*),            /* Function to call when busy */
   2736   void *pBusyArg,                 /* Context argument for xBusyHandler */
   2737   int sync_flags,                 /* Flags to sync db file with (or 0) */
   2738   int nBuf,                       /* Size of temporary buffer */
   2739   u8 *zBuf,                       /* Temporary buffer to use */
   2740   int *pnLog,                     /* OUT: Number of frames in WAL */
   2741   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
   2742 ){
   2743   int rc;                         /* Return code */
   2744   int isChanged = 0;              /* True if a new wal-index header is loaded */
   2745   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
   2746 
   2747   assert( pWal->ckptLock==0 );
   2748   assert( pWal->writeLock==0 );
   2749 
   2750   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
   2751   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
   2752   if( rc ){
   2753     /* Usually this is SQLITE_BUSY meaning that another thread or process
   2754     ** is already running a checkpoint, or maybe a recovery.  But it might
   2755     ** also be SQLITE_IOERR. */
   2756     return rc;
   2757   }
   2758   pWal->ckptLock = 1;
   2759 
   2760   /* If this is a blocking-checkpoint, then obtain the write-lock as well
   2761   ** to prevent any writers from running while the checkpoint is underway.
   2762   ** This has to be done before the call to walIndexReadHdr() below.
   2763   **
   2764   ** If the writer lock cannot be obtained, then a passive checkpoint is
   2765   ** run instead. Since the checkpointer is not holding the writer lock,
   2766   ** there is no point in blocking waiting for any readers. Assuming no
   2767   ** other error occurs, this function will return SQLITE_BUSY to the caller.
   2768   */
   2769   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
   2770     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
   2771     if( rc==SQLITE_OK ){
   2772       pWal->writeLock = 1;
   2773     }else if( rc==SQLITE_BUSY ){
   2774       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
   2775       rc = SQLITE_OK;
   2776     }
   2777   }
   2778 
   2779   /* Read the wal-index header. */
   2780   if( rc==SQLITE_OK ){
   2781     rc = walIndexReadHdr(pWal, &isChanged);
   2782   }
   2783 
   2784   /* Copy data from the log to the database file. */
   2785   if( rc==SQLITE_OK ){
   2786     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
   2787       rc = SQLITE_CORRUPT_BKPT;
   2788     }else{
   2789       rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
   2790     }
   2791 
   2792     /* If no error occurred, set the output variables. */
   2793     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
   2794       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
   2795       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
   2796     }
   2797   }
   2798 
   2799   if( isChanged ){
   2800     /* If a new wal-index header was loaded before the checkpoint was
   2801     ** performed, then the pager-cache associated with pWal is now
   2802     ** out of date. So zero the cached wal-index header to ensure that
   2803     ** next time the pager opens a snapshot on this database it knows that
   2804     ** the cache needs to be reset.
   2805     */
   2806     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
   2807   }
   2808 
   2809   /* Release the locks. */
   2810   sqlite3WalEndWriteTransaction(pWal);
   2811   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
   2812   pWal->ckptLock = 0;
   2813   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
   2814   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
   2815 }
   2816 
   2817 /* Return the value to pass to a sqlite3_wal_hook callback, the
   2818 ** number of frames in the WAL at the point of the last commit since
   2819 ** sqlite3WalCallback() was called.  If no commits have occurred since
   2820 ** the last call, then return 0.
   2821 */
   2822 int sqlite3WalCallback(Wal *pWal){
   2823   u32 ret = 0;
   2824   if( pWal ){
   2825     ret = pWal->iCallback;
   2826     pWal->iCallback = 0;
   2827   }
   2828   return (int)ret;
   2829 }
   2830 
   2831 /*
   2832 ** This function is called to change the WAL subsystem into or out
   2833 ** of locking_mode=EXCLUSIVE.
   2834 **
   2835 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
   2836 ** into locking_mode=NORMAL.  This means that we must acquire a lock
   2837 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
   2838 ** or if the acquisition of the lock fails, then return 0.  If the
   2839 ** transition out of exclusive-mode is successful, return 1.  This
   2840 ** operation must occur while the pager is still holding the exclusive
   2841 ** lock on the main database file.
   2842 **
   2843 ** If op is one, then change from locking_mode=NORMAL into
   2844 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
   2845 ** be released.  Return 1 if the transition is made and 0 if the
   2846 ** WAL is already in exclusive-locking mode - meaning that this
   2847 ** routine is a no-op.  The pager must already hold the exclusive lock
   2848 ** on the main database file before invoking this operation.
   2849 **
   2850 ** If op is negative, then do a dry-run of the op==1 case but do
   2851 ** not actually change anything. The pager uses this to see if it
   2852 ** should acquire the database exclusive lock prior to invoking
   2853 ** the op==1 case.
   2854 */
   2855 int sqlite3WalExclusiveMode(Wal *pWal, int op){
   2856   int rc;
   2857   assert( pWal->writeLock==0 );
   2858   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
   2859 
   2860   /* pWal->readLock is usually set, but might be -1 if there was a
   2861   ** prior error while attempting to acquire are read-lock. This cannot
   2862   ** happen if the connection is actually in exclusive mode (as no xShmLock
   2863   ** locks are taken in this case). Nor should the pager attempt to
   2864   ** upgrade to exclusive-mode following such an error.
   2865   */
   2866   assert( pWal->readLock>=0 || pWal->lockError );
   2867   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
   2868 
   2869   if( op==0 ){
   2870     if( pWal->exclusiveMode ){
   2871       pWal->exclusiveMode = 0;
   2872       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
   2873         pWal->exclusiveMode = 1;
   2874       }
   2875       rc = pWal->exclusiveMode==0;
   2876     }else{
   2877       /* Already in locking_mode=NORMAL */
   2878       rc = 0;
   2879     }
   2880   }else if( op>0 ){
   2881     assert( pWal->exclusiveMode==0 );
   2882     assert( pWal->readLock>=0 );
   2883     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
   2884     pWal->exclusiveMode = 1;
   2885     rc = 1;
   2886   }else{
   2887     rc = pWal->exclusiveMode==0;
   2888   }
   2889   return rc;
   2890 }
   2891 
   2892 /*
   2893 ** Return true if the argument is non-NULL and the WAL module is using
   2894 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
   2895 ** WAL module is using shared-memory, return false.
   2896 */
   2897 int sqlite3WalHeapMemory(Wal *pWal){
   2898   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
   2899 }
   2900 
   2901 #endif /* #ifndef SQLITE_OMIT_WAL */
   2902