Home | History | Annotate | Download | only in base
      1 /*
      2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/base/virtualsocketserver.h"
     12 
     13 #include <errno.h>
     14 #include <math.h>
     15 
     16 #include <algorithm>
     17 #include <map>
     18 #include <vector>
     19 
     20 #include "webrtc/base/common.h"
     21 #include "webrtc/base/logging.h"
     22 #include "webrtc/base/physicalsocketserver.h"
     23 #include "webrtc/base/socketaddresspair.h"
     24 #include "webrtc/base/thread.h"
     25 #include "webrtc/base/timeutils.h"
     26 
     27 namespace rtc {
     28 #if defined(WEBRTC_WIN)
     29 const in_addr kInitialNextIPv4 = { {0x01, 0, 0, 0} };
     30 #else
     31 // This value is entirely arbitrary, hence the lack of concern about endianness.
     32 const in_addr kInitialNextIPv4 = { 0x01000000 };
     33 #endif
     34 // Starts at ::2 so as to not cause confusion with ::1.
     35 const in6_addr kInitialNextIPv6 = { { {
     36       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
     37     } } };
     38 
     39 const uint16 kFirstEphemeralPort = 49152;
     40 const uint16 kLastEphemeralPort = 65535;
     41 const uint16 kEphemeralPortCount = kLastEphemeralPort - kFirstEphemeralPort + 1;
     42 const uint32 kDefaultNetworkCapacity = 64 * 1024;
     43 const uint32 kDefaultTcpBufferSize = 32 * 1024;
     44 
     45 const uint32 UDP_HEADER_SIZE = 28;  // IP + UDP headers
     46 const uint32 TCP_HEADER_SIZE = 40;  // IP + TCP headers
     47 const uint32 TCP_MSS = 1400;  // Maximum segment size
     48 
     49 // Note: The current algorithm doesn't work for sample sizes smaller than this.
     50 const int NUM_SAMPLES = 1000;
     51 
     52 enum {
     53   MSG_ID_PACKET,
     54   MSG_ID_CONNECT,
     55   MSG_ID_DISCONNECT,
     56 };
     57 
     58 // Packets are passed between sockets as messages.  We copy the data just like
     59 // the kernel does.
     60 class Packet : public MessageData {
     61  public:
     62   Packet(const char* data, size_t size, const SocketAddress& from)
     63         : size_(size), consumed_(0), from_(from) {
     64     ASSERT(NULL != data);
     65     data_ = new char[size_];
     66     memcpy(data_, data, size_);
     67   }
     68 
     69   virtual ~Packet() {
     70     delete[] data_;
     71   }
     72 
     73   const char* data() const { return data_ + consumed_; }
     74   size_t size() const { return size_ - consumed_; }
     75   const SocketAddress& from() const { return from_; }
     76 
     77   // Remove the first size bytes from the data.
     78   void Consume(size_t size) {
     79     ASSERT(size + consumed_ < size_);
     80     consumed_ += size;
     81   }
     82 
     83  private:
     84   char* data_;
     85   size_t size_, consumed_;
     86   SocketAddress from_;
     87 };
     88 
     89 struct MessageAddress : public MessageData {
     90   explicit MessageAddress(const SocketAddress& a) : addr(a) { }
     91   SocketAddress addr;
     92 };
     93 
     94 // Implements the socket interface using the virtual network.  Packets are
     95 // passed as messages using the message queue of the socket server.
     96 class VirtualSocket : public AsyncSocket, public MessageHandler {
     97  public:
     98   VirtualSocket(VirtualSocketServer* server, int family, int type, bool async)
     99       : server_(server), family_(family), type_(type), async_(async),
    100         state_(CS_CLOSED), error_(0), listen_queue_(NULL),
    101         write_enabled_(false),
    102         network_size_(0), recv_buffer_size_(0), bound_(false), was_any_(false) {
    103     ASSERT((type_ == SOCK_DGRAM) || (type_ == SOCK_STREAM));
    104     ASSERT(async_ || (type_ != SOCK_STREAM));  // We only support async streams
    105   }
    106 
    107   virtual ~VirtualSocket() {
    108     Close();
    109 
    110     for (RecvBuffer::iterator it = recv_buffer_.begin();
    111          it != recv_buffer_.end(); ++it) {
    112       delete *it;
    113     }
    114   }
    115 
    116   virtual SocketAddress GetLocalAddress() const {
    117     return local_addr_;
    118   }
    119 
    120   virtual SocketAddress GetRemoteAddress() const {
    121     return remote_addr_;
    122   }
    123 
    124   // Used by server sockets to set the local address without binding.
    125   void SetLocalAddress(const SocketAddress& addr) {
    126     local_addr_ = addr;
    127   }
    128 
    129   virtual int Bind(const SocketAddress& addr) {
    130     if (!local_addr_.IsNil()) {
    131       error_ = EINVAL;
    132       return -1;
    133     }
    134     local_addr_ = addr;
    135     int result = server_->Bind(this, &local_addr_);
    136     if (result != 0) {
    137       local_addr_.Clear();
    138       error_ = EADDRINUSE;
    139     } else {
    140       bound_ = true;
    141       was_any_ = addr.IsAnyIP();
    142     }
    143     return result;
    144   }
    145 
    146   virtual int Connect(const SocketAddress& addr) {
    147     return InitiateConnect(addr, true);
    148   }
    149 
    150   virtual int Close() {
    151     if (!local_addr_.IsNil() && bound_) {
    152       // Remove from the binding table.
    153       server_->Unbind(local_addr_, this);
    154       bound_ = false;
    155     }
    156 
    157     if (SOCK_STREAM == type_) {
    158       // Cancel pending sockets
    159       if (listen_queue_) {
    160         while (!listen_queue_->empty()) {
    161           SocketAddress addr = listen_queue_->front();
    162 
    163           // Disconnect listening socket.
    164           server_->Disconnect(server_->LookupBinding(addr));
    165           listen_queue_->pop_front();
    166         }
    167         delete listen_queue_;
    168         listen_queue_ = NULL;
    169       }
    170       // Disconnect stream sockets
    171       if (CS_CONNECTED == state_) {
    172         // Disconnect remote socket, check if it is a child of a server socket.
    173         VirtualSocket* socket =
    174             server_->LookupConnection(local_addr_, remote_addr_);
    175         if (!socket) {
    176           // Not a server socket child, then see if it is bound.
    177           // TODO: If this is indeed a server socket that has no
    178           // children this will cause the server socket to be
    179           // closed. This might lead to unexpected results, how to fix this?
    180           socket = server_->LookupBinding(remote_addr_);
    181         }
    182         server_->Disconnect(socket);
    183 
    184         // Remove mapping for both directions.
    185         server_->RemoveConnection(remote_addr_, local_addr_);
    186         server_->RemoveConnection(local_addr_, remote_addr_);
    187       }
    188       // Cancel potential connects
    189       MessageList msgs;
    190       if (server_->msg_queue_) {
    191         server_->msg_queue_->Clear(this, MSG_ID_CONNECT, &msgs);
    192       }
    193       for (MessageList::iterator it = msgs.begin(); it != msgs.end(); ++it) {
    194         ASSERT(NULL != it->pdata);
    195         MessageAddress* data = static_cast<MessageAddress*>(it->pdata);
    196 
    197         // Lookup remote side.
    198         VirtualSocket* socket = server_->LookupConnection(local_addr_,
    199                                                           data->addr);
    200         if (socket) {
    201           // Server socket, remote side is a socket retreived by
    202           // accept. Accepted sockets are not bound so we will not
    203           // find it by looking in the bindings table.
    204           server_->Disconnect(socket);
    205           server_->RemoveConnection(local_addr_, data->addr);
    206         } else {
    207           server_->Disconnect(server_->LookupBinding(data->addr));
    208         }
    209         delete data;
    210       }
    211       // Clear incoming packets and disconnect messages
    212       if (server_->msg_queue_) {
    213         server_->msg_queue_->Clear(this);
    214       }
    215     }
    216 
    217     state_ = CS_CLOSED;
    218     local_addr_.Clear();
    219     remote_addr_.Clear();
    220     return 0;
    221   }
    222 
    223   virtual int Send(const void *pv, size_t cb) {
    224     if (CS_CONNECTED != state_) {
    225       error_ = ENOTCONN;
    226       return -1;
    227     }
    228     if (SOCK_DGRAM == type_) {
    229       return SendUdp(pv, cb, remote_addr_);
    230     } else {
    231       return SendTcp(pv, cb);
    232     }
    233   }
    234 
    235   virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr) {
    236     if (SOCK_DGRAM == type_) {
    237       return SendUdp(pv, cb, addr);
    238     } else {
    239       if (CS_CONNECTED != state_) {
    240         error_ = ENOTCONN;
    241         return -1;
    242       }
    243       return SendTcp(pv, cb);
    244     }
    245   }
    246 
    247   virtual int Recv(void *pv, size_t cb) {
    248     SocketAddress addr;
    249     return RecvFrom(pv, cb, &addr);
    250   }
    251 
    252   virtual int RecvFrom(void *pv, size_t cb, SocketAddress *paddr) {
    253     // If we don't have a packet, then either error or wait for one to arrive.
    254     if (recv_buffer_.empty()) {
    255       if (async_) {
    256         error_ = EAGAIN;
    257         return -1;
    258       }
    259       while (recv_buffer_.empty()) {
    260         Message msg;
    261         server_->msg_queue_->Get(&msg);
    262         server_->msg_queue_->Dispatch(&msg);
    263       }
    264     }
    265 
    266     // Return the packet at the front of the queue.
    267     Packet* packet = recv_buffer_.front();
    268     size_t data_read = _min(cb, packet->size());
    269     memcpy(pv, packet->data(), data_read);
    270     *paddr = packet->from();
    271 
    272     if (data_read < packet->size()) {
    273       packet->Consume(data_read);
    274     } else {
    275       recv_buffer_.pop_front();
    276       delete packet;
    277     }
    278 
    279     if (SOCK_STREAM == type_) {
    280       bool was_full = (recv_buffer_size_ == server_->recv_buffer_capacity_);
    281       recv_buffer_size_ -= data_read;
    282       if (was_full) {
    283         VirtualSocket* sender = server_->LookupBinding(remote_addr_);
    284         ASSERT(NULL != sender);
    285         server_->SendTcp(sender);
    286       }
    287     }
    288 
    289     return static_cast<int>(data_read);
    290   }
    291 
    292   virtual int Listen(int backlog) {
    293     ASSERT(SOCK_STREAM == type_);
    294     ASSERT(CS_CLOSED == state_);
    295     if (local_addr_.IsNil()) {
    296       error_ = EINVAL;
    297       return -1;
    298     }
    299     ASSERT(NULL == listen_queue_);
    300     listen_queue_ = new ListenQueue;
    301     state_ = CS_CONNECTING;
    302     return 0;
    303   }
    304 
    305   virtual VirtualSocket* Accept(SocketAddress *paddr) {
    306     if (NULL == listen_queue_) {
    307       error_ = EINVAL;
    308       return NULL;
    309     }
    310     while (!listen_queue_->empty()) {
    311       VirtualSocket* socket = new VirtualSocket(server_, AF_INET, type_,
    312                                                 async_);
    313 
    314       // Set the new local address to the same as this server socket.
    315       socket->SetLocalAddress(local_addr_);
    316       // Sockets made from a socket that 'was Any' need to inherit that.
    317       socket->set_was_any(was_any_);
    318       SocketAddress remote_addr(listen_queue_->front());
    319       int result = socket->InitiateConnect(remote_addr, false);
    320       listen_queue_->pop_front();
    321       if (result != 0) {
    322         delete socket;
    323         continue;
    324       }
    325       socket->CompleteConnect(remote_addr, false);
    326       if (paddr) {
    327         *paddr = remote_addr;
    328       }
    329       return socket;
    330     }
    331     error_ = EWOULDBLOCK;
    332     return NULL;
    333   }
    334 
    335   virtual int GetError() const {
    336     return error_;
    337   }
    338 
    339   virtual void SetError(int error) {
    340     error_ = error;
    341   }
    342 
    343   virtual ConnState GetState() const {
    344     return state_;
    345   }
    346 
    347   virtual int GetOption(Option opt, int* value) {
    348     OptionsMap::const_iterator it = options_map_.find(opt);
    349     if (it == options_map_.end()) {
    350       return -1;
    351     }
    352     *value = it->second;
    353     return 0;  // 0 is success to emulate getsockopt()
    354   }
    355 
    356   virtual int SetOption(Option opt, int value) {
    357     options_map_[opt] = value;
    358     return 0;  // 0 is success to emulate setsockopt()
    359   }
    360 
    361   virtual int EstimateMTU(uint16* mtu) {
    362     if (CS_CONNECTED != state_)
    363       return ENOTCONN;
    364     else
    365       return 65536;
    366   }
    367 
    368   void OnMessage(Message *pmsg) {
    369     if (pmsg->message_id == MSG_ID_PACKET) {
    370       //ASSERT(!local_addr_.IsAny());
    371       ASSERT(NULL != pmsg->pdata);
    372       Packet* packet = static_cast<Packet*>(pmsg->pdata);
    373 
    374       recv_buffer_.push_back(packet);
    375 
    376       if (async_) {
    377         SignalReadEvent(this);
    378       }
    379     } else if (pmsg->message_id == MSG_ID_CONNECT) {
    380       ASSERT(NULL != pmsg->pdata);
    381       MessageAddress* data = static_cast<MessageAddress*>(pmsg->pdata);
    382       if (listen_queue_ != NULL) {
    383         listen_queue_->push_back(data->addr);
    384         if (async_) {
    385           SignalReadEvent(this);
    386         }
    387       } else if ((SOCK_STREAM == type_) && (CS_CONNECTING == state_)) {
    388         CompleteConnect(data->addr, true);
    389       } else {
    390         LOG(LS_VERBOSE) << "Socket at " << local_addr_ << " is not listening";
    391         server_->Disconnect(server_->LookupBinding(data->addr));
    392       }
    393       delete data;
    394     } else if (pmsg->message_id == MSG_ID_DISCONNECT) {
    395       ASSERT(SOCK_STREAM == type_);
    396       if (CS_CLOSED != state_) {
    397         int error = (CS_CONNECTING == state_) ? ECONNREFUSED : 0;
    398         state_ = CS_CLOSED;
    399         remote_addr_.Clear();
    400         if (async_) {
    401           SignalCloseEvent(this, error);
    402         }
    403       }
    404     } else {
    405       ASSERT(false);
    406     }
    407   }
    408 
    409   bool was_any() { return was_any_; }
    410   void set_was_any(bool was_any) { was_any_ = was_any; }
    411 
    412  private:
    413   struct NetworkEntry {
    414     size_t size;
    415     uint32 done_time;
    416   };
    417 
    418   typedef std::deque<SocketAddress> ListenQueue;
    419   typedef std::deque<NetworkEntry> NetworkQueue;
    420   typedef std::vector<char> SendBuffer;
    421   typedef std::list<Packet*> RecvBuffer;
    422   typedef std::map<Option, int> OptionsMap;
    423 
    424   int InitiateConnect(const SocketAddress& addr, bool use_delay) {
    425     if (!remote_addr_.IsNil()) {
    426       error_ = (CS_CONNECTED == state_) ? EISCONN : EINPROGRESS;
    427       return -1;
    428     }
    429     if (local_addr_.IsNil()) {
    430       // If there's no local address set, grab a random one in the correct AF.
    431       int result = 0;
    432       if (addr.ipaddr().family() == AF_INET) {
    433         result = Bind(SocketAddress("0.0.0.0", 0));
    434       } else if (addr.ipaddr().family() == AF_INET6) {
    435         result = Bind(SocketAddress("::", 0));
    436       }
    437       if (result != 0) {
    438         return result;
    439       }
    440     }
    441     if (type_ == SOCK_DGRAM) {
    442       remote_addr_ = addr;
    443       state_ = CS_CONNECTED;
    444     } else {
    445       int result = server_->Connect(this, addr, use_delay);
    446       if (result != 0) {
    447         error_ = EHOSTUNREACH;
    448         return -1;
    449       }
    450       state_ = CS_CONNECTING;
    451     }
    452     return 0;
    453   }
    454 
    455   void CompleteConnect(const SocketAddress& addr, bool notify) {
    456     ASSERT(CS_CONNECTING == state_);
    457     remote_addr_ = addr;
    458     state_ = CS_CONNECTED;
    459     server_->AddConnection(remote_addr_, local_addr_, this);
    460     if (async_ && notify) {
    461       SignalConnectEvent(this);
    462     }
    463   }
    464 
    465   int SendUdp(const void* pv, size_t cb, const SocketAddress& addr) {
    466     // If we have not been assigned a local port, then get one.
    467     if (local_addr_.IsNil()) {
    468       local_addr_ = EmptySocketAddressWithFamily(addr.ipaddr().family());
    469       int result = server_->Bind(this, &local_addr_);
    470       if (result != 0) {
    471         local_addr_.Clear();
    472         error_ = EADDRINUSE;
    473         return result;
    474       }
    475     }
    476 
    477     // Send the data in a message to the appropriate socket.
    478     return server_->SendUdp(this, static_cast<const char*>(pv), cb, addr);
    479   }
    480 
    481   int SendTcp(const void* pv, size_t cb) {
    482     size_t capacity = server_->send_buffer_capacity_ - send_buffer_.size();
    483     if (0 == capacity) {
    484       write_enabled_ = true;
    485       error_ = EWOULDBLOCK;
    486       return -1;
    487     }
    488     size_t consumed = _min(cb, capacity);
    489     const char* cpv = static_cast<const char*>(pv);
    490     send_buffer_.insert(send_buffer_.end(), cpv, cpv + consumed);
    491     server_->SendTcp(this);
    492     return static_cast<int>(consumed);
    493   }
    494 
    495   VirtualSocketServer* server_;
    496   int family_;
    497   int type_;
    498   bool async_;
    499   ConnState state_;
    500   int error_;
    501   SocketAddress local_addr_;
    502   SocketAddress remote_addr_;
    503 
    504   // Pending sockets which can be Accepted
    505   ListenQueue* listen_queue_;
    506 
    507   // Data which tcp has buffered for sending
    508   SendBuffer send_buffer_;
    509   bool write_enabled_;
    510 
    511   // Critical section to protect the recv_buffer and queue_
    512   CriticalSection crit_;
    513 
    514   // Network model that enforces bandwidth and capacity constraints
    515   NetworkQueue network_;
    516   size_t network_size_;
    517 
    518   // Data which has been received from the network
    519   RecvBuffer recv_buffer_;
    520   // The amount of data which is in flight or in recv_buffer_
    521   size_t recv_buffer_size_;
    522 
    523   // Is this socket bound?
    524   bool bound_;
    525 
    526   // When we bind a socket to Any, VSS's Bind gives it another address. For
    527   // dual-stack sockets, we want to distinguish between sockets that were
    528   // explicitly given a particular address and sockets that had one picked
    529   // for them by VSS.
    530   bool was_any_;
    531 
    532   // Store the options that are set
    533   OptionsMap options_map_;
    534 
    535   friend class VirtualSocketServer;
    536 };
    537 
    538 VirtualSocketServer::VirtualSocketServer(SocketServer* ss)
    539     : server_(ss), server_owned_(false), msg_queue_(NULL), stop_on_idle_(false),
    540       network_delay_(Time()), next_ipv4_(kInitialNextIPv4),
    541       next_ipv6_(kInitialNextIPv6), next_port_(kFirstEphemeralPort),
    542       bindings_(new AddressMap()), connections_(new ConnectionMap()),
    543       bandwidth_(0), network_capacity_(kDefaultNetworkCapacity),
    544       send_buffer_capacity_(kDefaultTcpBufferSize),
    545       recv_buffer_capacity_(kDefaultTcpBufferSize),
    546       delay_mean_(0), delay_stddev_(0), delay_samples_(NUM_SAMPLES),
    547       delay_dist_(NULL), drop_prob_(0.0) {
    548   if (!server_) {
    549     server_ = new PhysicalSocketServer();
    550     server_owned_ = true;
    551   }
    552   UpdateDelayDistribution();
    553 }
    554 
    555 VirtualSocketServer::~VirtualSocketServer() {
    556   delete bindings_;
    557   delete connections_;
    558   delete delay_dist_;
    559   if (server_owned_) {
    560     delete server_;
    561   }
    562 }
    563 
    564 IPAddress VirtualSocketServer::GetNextIP(int family) {
    565   if (family == AF_INET) {
    566     IPAddress next_ip(next_ipv4_);
    567     next_ipv4_.s_addr =
    568         HostToNetwork32(NetworkToHost32(next_ipv4_.s_addr) + 1);
    569     return next_ip;
    570   } else if (family == AF_INET6) {
    571     IPAddress next_ip(next_ipv6_);
    572     uint32* as_ints = reinterpret_cast<uint32*>(&next_ipv6_.s6_addr);
    573     as_ints[3] += 1;
    574     return next_ip;
    575   }
    576   return IPAddress();
    577 }
    578 
    579 uint16 VirtualSocketServer::GetNextPort() {
    580   uint16 port = next_port_;
    581   if (next_port_ < kLastEphemeralPort) {
    582     ++next_port_;
    583   } else {
    584     next_port_ = kFirstEphemeralPort;
    585   }
    586   return port;
    587 }
    588 
    589 Socket* VirtualSocketServer::CreateSocket(int type) {
    590   return CreateSocket(AF_INET, type);
    591 }
    592 
    593 Socket* VirtualSocketServer::CreateSocket(int family, int type) {
    594   return CreateSocketInternal(family, type);
    595 }
    596 
    597 AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int type) {
    598   return CreateAsyncSocket(AF_INET, type);
    599 }
    600 
    601 AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int family, int type) {
    602   return CreateSocketInternal(family, type);
    603 }
    604 
    605 VirtualSocket* VirtualSocketServer::CreateSocketInternal(int family, int type) {
    606   return new VirtualSocket(this, family, type, true);
    607 }
    608 
    609 void VirtualSocketServer::SetMessageQueue(MessageQueue* msg_queue) {
    610   msg_queue_ = msg_queue;
    611   if (msg_queue_) {
    612     msg_queue_->SignalQueueDestroyed.connect(this,
    613         &VirtualSocketServer::OnMessageQueueDestroyed);
    614   }
    615 }
    616 
    617 bool VirtualSocketServer::Wait(int cmsWait, bool process_io) {
    618   ASSERT(msg_queue_ == Thread::Current());
    619   if (stop_on_idle_ && Thread::Current()->empty()) {
    620     return false;
    621   }
    622   return socketserver()->Wait(cmsWait, process_io);
    623 }
    624 
    625 void VirtualSocketServer::WakeUp() {
    626   socketserver()->WakeUp();
    627 }
    628 
    629 bool VirtualSocketServer::ProcessMessagesUntilIdle() {
    630   ASSERT(msg_queue_ == Thread::Current());
    631   stop_on_idle_ = true;
    632   while (!msg_queue_->empty()) {
    633     Message msg;
    634     if (msg_queue_->Get(&msg, kForever)) {
    635       msg_queue_->Dispatch(&msg);
    636     }
    637   }
    638   stop_on_idle_ = false;
    639   return !msg_queue_->IsQuitting();
    640 }
    641 
    642 int VirtualSocketServer::Bind(VirtualSocket* socket,
    643                               const SocketAddress& addr) {
    644   ASSERT(NULL != socket);
    645   // Address must be completely specified at this point
    646   ASSERT(!IPIsUnspec(addr.ipaddr()));
    647   ASSERT(addr.port() != 0);
    648 
    649   // Normalize the address (turns v6-mapped addresses into v4-addresses).
    650   SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
    651 
    652   AddressMap::value_type entry(normalized, socket);
    653   return bindings_->insert(entry).second ? 0 : -1;
    654 }
    655 
    656 int VirtualSocketServer::Bind(VirtualSocket* socket, SocketAddress* addr) {
    657   ASSERT(NULL != socket);
    658 
    659   if (IPIsAny(addr->ipaddr())) {
    660     addr->SetIP(GetNextIP(addr->ipaddr().family()));
    661   } else if (!IPIsUnspec(addr->ipaddr())) {
    662     addr->SetIP(addr->ipaddr().Normalized());
    663   } else {
    664     ASSERT(false);
    665   }
    666 
    667   if (addr->port() == 0) {
    668     for (int i = 0; i < kEphemeralPortCount; ++i) {
    669       addr->SetPort(GetNextPort());
    670       if (bindings_->find(*addr) == bindings_->end()) {
    671         break;
    672       }
    673     }
    674   }
    675 
    676   return Bind(socket, *addr);
    677 }
    678 
    679 VirtualSocket* VirtualSocketServer::LookupBinding(const SocketAddress& addr) {
    680   SocketAddress normalized(addr.ipaddr().Normalized(),
    681                            addr.port());
    682   AddressMap::iterator it = bindings_->find(normalized);
    683   return (bindings_->end() != it) ? it->second : NULL;
    684 }
    685 
    686 int VirtualSocketServer::Unbind(const SocketAddress& addr,
    687                                 VirtualSocket* socket) {
    688   SocketAddress normalized(addr.ipaddr().Normalized(),
    689                            addr.port());
    690   ASSERT((*bindings_)[normalized] == socket);
    691   bindings_->erase(bindings_->find(normalized));
    692   return 0;
    693 }
    694 
    695 void VirtualSocketServer::AddConnection(const SocketAddress& local,
    696                                         const SocketAddress& remote,
    697                                         VirtualSocket* remote_socket) {
    698   // Add this socket pair to our routing table. This will allow
    699   // multiple clients to connect to the same server address.
    700   SocketAddress local_normalized(local.ipaddr().Normalized(),
    701                                  local.port());
    702   SocketAddress remote_normalized(remote.ipaddr().Normalized(),
    703                                   remote.port());
    704   SocketAddressPair address_pair(local_normalized, remote_normalized);
    705   connections_->insert(std::pair<SocketAddressPair,
    706                        VirtualSocket*>(address_pair, remote_socket));
    707 }
    708 
    709 VirtualSocket* VirtualSocketServer::LookupConnection(
    710     const SocketAddress& local,
    711     const SocketAddress& remote) {
    712   SocketAddress local_normalized(local.ipaddr().Normalized(),
    713                                  local.port());
    714   SocketAddress remote_normalized(remote.ipaddr().Normalized(),
    715                                   remote.port());
    716   SocketAddressPair address_pair(local_normalized, remote_normalized);
    717   ConnectionMap::iterator it = connections_->find(address_pair);
    718   return (connections_->end() != it) ? it->second : NULL;
    719 }
    720 
    721 void VirtualSocketServer::RemoveConnection(const SocketAddress& local,
    722                                            const SocketAddress& remote) {
    723   SocketAddress local_normalized(local.ipaddr().Normalized(),
    724                                 local.port());
    725   SocketAddress remote_normalized(remote.ipaddr().Normalized(),
    726                                  remote.port());
    727   SocketAddressPair address_pair(local_normalized, remote_normalized);
    728   connections_->erase(address_pair);
    729 }
    730 
    731 static double Random() {
    732   return static_cast<double>(rand()) / RAND_MAX;
    733 }
    734 
    735 int VirtualSocketServer::Connect(VirtualSocket* socket,
    736                                  const SocketAddress& remote_addr,
    737                                  bool use_delay) {
    738   uint32 delay = use_delay ? GetRandomTransitDelay() : 0;
    739   VirtualSocket* remote = LookupBinding(remote_addr);
    740   if (!CanInteractWith(socket, remote)) {
    741     LOG(LS_INFO) << "Address family mismatch between "
    742                  << socket->GetLocalAddress() << " and " << remote_addr;
    743     return -1;
    744   }
    745   if (remote != NULL) {
    746     SocketAddress addr = socket->GetLocalAddress();
    747     msg_queue_->PostDelayed(delay, remote, MSG_ID_CONNECT,
    748                             new MessageAddress(addr));
    749   } else {
    750     LOG(LS_INFO) << "No one listening at " << remote_addr;
    751     msg_queue_->PostDelayed(delay, socket, MSG_ID_DISCONNECT);
    752   }
    753   return 0;
    754 }
    755 
    756 bool VirtualSocketServer::Disconnect(VirtualSocket* socket) {
    757   if (socket) {
    758     // Remove the mapping.
    759     msg_queue_->Post(socket, MSG_ID_DISCONNECT);
    760     return true;
    761   }
    762   return false;
    763 }
    764 
    765 int VirtualSocketServer::SendUdp(VirtualSocket* socket,
    766                                  const char* data, size_t data_size,
    767                                  const SocketAddress& remote_addr) {
    768   // See if we want to drop this packet.
    769   if (Random() < drop_prob_) {
    770     LOG(LS_VERBOSE) << "Dropping packet: bad luck";
    771     return static_cast<int>(data_size);
    772   }
    773 
    774   VirtualSocket* recipient = LookupBinding(remote_addr);
    775   if (!recipient) {
    776     // Make a fake recipient for address family checking.
    777     scoped_ptr<VirtualSocket> dummy_socket(
    778         CreateSocketInternal(AF_INET, SOCK_DGRAM));
    779     dummy_socket->SetLocalAddress(remote_addr);
    780     if (!CanInteractWith(socket, dummy_socket.get())) {
    781       LOG(LS_VERBOSE) << "Incompatible address families: "
    782                       << socket->GetLocalAddress() << " and " << remote_addr;
    783       return -1;
    784     }
    785     LOG(LS_VERBOSE) << "No one listening at " << remote_addr;
    786     return static_cast<int>(data_size);
    787   }
    788 
    789   if (!CanInteractWith(socket, recipient)) {
    790     LOG(LS_VERBOSE) << "Incompatible address families: "
    791                     << socket->GetLocalAddress() << " and " << remote_addr;
    792     return -1;
    793   }
    794 
    795   CritScope cs(&socket->crit_);
    796 
    797   uint32 cur_time = Time();
    798   PurgeNetworkPackets(socket, cur_time);
    799 
    800   // Determine whether we have enough bandwidth to accept this packet.  To do
    801   // this, we need to update the send queue.  Once we know it's current size,
    802   // we know whether we can fit this packet.
    803   //
    804   // NOTE: There are better algorithms for maintaining such a queue (such as
    805   // "Derivative Random Drop"); however, this algorithm is a more accurate
    806   // simulation of what a normal network would do.
    807 
    808   size_t packet_size = data_size + UDP_HEADER_SIZE;
    809   if (socket->network_size_ + packet_size > network_capacity_) {
    810     LOG(LS_VERBOSE) << "Dropping packet: network capacity exceeded";
    811     return static_cast<int>(data_size);
    812   }
    813 
    814   AddPacketToNetwork(socket, recipient, cur_time, data, data_size,
    815                      UDP_HEADER_SIZE, false);
    816 
    817   return static_cast<int>(data_size);
    818 }
    819 
    820 void VirtualSocketServer::SendTcp(VirtualSocket* socket) {
    821   // TCP can't send more data than will fill up the receiver's buffer.
    822   // We track the data that is in the buffer plus data in flight using the
    823   // recipient's recv_buffer_size_.  Anything beyond that must be stored in the
    824   // sender's buffer.  We will trigger the buffered data to be sent when data
    825   // is read from the recv_buffer.
    826 
    827   // Lookup the local/remote pair in the connections table.
    828   VirtualSocket* recipient = LookupConnection(socket->local_addr_,
    829                                               socket->remote_addr_);
    830   if (!recipient) {
    831     LOG(LS_VERBOSE) << "Sending data to no one.";
    832     return;
    833   }
    834 
    835   CritScope cs(&socket->crit_);
    836 
    837   uint32 cur_time = Time();
    838   PurgeNetworkPackets(socket, cur_time);
    839 
    840   while (true) {
    841     size_t available = recv_buffer_capacity_ - recipient->recv_buffer_size_;
    842     size_t max_data_size = _min<size_t>(available, TCP_MSS - TCP_HEADER_SIZE);
    843     size_t data_size = _min(socket->send_buffer_.size(), max_data_size);
    844     if (0 == data_size)
    845       break;
    846 
    847     AddPacketToNetwork(socket, recipient, cur_time, &socket->send_buffer_[0],
    848                        data_size, TCP_HEADER_SIZE, true);
    849     recipient->recv_buffer_size_ += data_size;
    850 
    851     size_t new_buffer_size = socket->send_buffer_.size() - data_size;
    852     // Avoid undefined access beyond the last element of the vector.
    853     // This only happens when new_buffer_size is 0.
    854     if (data_size < socket->send_buffer_.size()) {
    855       // memmove is required for potentially overlapping source/destination.
    856       memmove(&socket->send_buffer_[0], &socket->send_buffer_[data_size],
    857               new_buffer_size);
    858     }
    859     socket->send_buffer_.resize(new_buffer_size);
    860   }
    861 
    862   if (socket->write_enabled_
    863       && (socket->send_buffer_.size() < send_buffer_capacity_)) {
    864     socket->write_enabled_ = false;
    865     socket->SignalWriteEvent(socket);
    866   }
    867 }
    868 
    869 void VirtualSocketServer::AddPacketToNetwork(VirtualSocket* sender,
    870                                              VirtualSocket* recipient,
    871                                              uint32 cur_time,
    872                                              const char* data,
    873                                              size_t data_size,
    874                                              size_t header_size,
    875                                              bool ordered) {
    876   VirtualSocket::NetworkEntry entry;
    877   entry.size = data_size + header_size;
    878 
    879   sender->network_size_ += entry.size;
    880   uint32 send_delay = SendDelay(static_cast<uint32>(sender->network_size_));
    881   entry.done_time = cur_time + send_delay;
    882   sender->network_.push_back(entry);
    883 
    884   // Find the delay for crossing the many virtual hops of the network.
    885   uint32 transit_delay = GetRandomTransitDelay();
    886 
    887   // Post the packet as a message to be delivered (on our own thread)
    888   Packet* p = new Packet(data, data_size, sender->local_addr_);
    889   uint32 ts = TimeAfter(send_delay + transit_delay);
    890   if (ordered) {
    891     // Ensure that new packets arrive after previous ones
    892     // TODO: consider ordering on a per-socket basis, since this
    893     // introduces artifical delay.
    894     ts = TimeMax(ts, network_delay_);
    895   }
    896   msg_queue_->PostAt(ts, recipient, MSG_ID_PACKET, p);
    897   network_delay_ = TimeMax(ts, network_delay_);
    898 }
    899 
    900 void VirtualSocketServer::PurgeNetworkPackets(VirtualSocket* socket,
    901                                               uint32 cur_time) {
    902   while (!socket->network_.empty() &&
    903          (socket->network_.front().done_time <= cur_time)) {
    904     ASSERT(socket->network_size_ >= socket->network_.front().size);
    905     socket->network_size_ -= socket->network_.front().size;
    906     socket->network_.pop_front();
    907   }
    908 }
    909 
    910 uint32 VirtualSocketServer::SendDelay(uint32 size) {
    911   if (bandwidth_ == 0)
    912     return 0;
    913   else
    914     return 1000 * size / bandwidth_;
    915 }
    916 
    917 #if 0
    918 void PrintFunction(std::vector<std::pair<double, double> >* f) {
    919   return;
    920   double sum = 0;
    921   for (uint32 i = 0; i < f->size(); ++i) {
    922     std::cout << (*f)[i].first << '\t' << (*f)[i].second << std::endl;
    923     sum += (*f)[i].second;
    924   }
    925   if (!f->empty()) {
    926     const double mean = sum / f->size();
    927     double sum_sq_dev = 0;
    928     for (uint32 i = 0; i < f->size(); ++i) {
    929       double dev = (*f)[i].second - mean;
    930       sum_sq_dev += dev * dev;
    931     }
    932     std::cout << "Mean = " << mean << " StdDev = "
    933               << sqrt(sum_sq_dev / f->size()) << std::endl;
    934   }
    935 }
    936 #endif  // <unused>
    937 
    938 void VirtualSocketServer::UpdateDelayDistribution() {
    939   Function* dist = CreateDistribution(delay_mean_, delay_stddev_,
    940                                       delay_samples_);
    941   // We take a lock just to make sure we don't leak memory.
    942   {
    943     CritScope cs(&delay_crit_);
    944     delete delay_dist_;
    945     delay_dist_ = dist;
    946   }
    947 }
    948 
    949 static double PI = 4 * atan(1.0);
    950 
    951 static double Normal(double x, double mean, double stddev) {
    952   double a = (x - mean) * (x - mean) / (2 * stddev * stddev);
    953   return exp(-a) / (stddev * sqrt(2 * PI));
    954 }
    955 
    956 #if 0  // static unused gives a warning
    957 static double Pareto(double x, double min, double k) {
    958   if (x < min)
    959     return 0;
    960   else
    961     return k * std::pow(min, k) / std::pow(x, k+1);
    962 }
    963 #endif
    964 
    965 VirtualSocketServer::Function* VirtualSocketServer::CreateDistribution(
    966     uint32 mean, uint32 stddev, uint32 samples) {
    967   Function* f = new Function();
    968 
    969   if (0 == stddev) {
    970     f->push_back(Point(mean, 1.0));
    971   } else {
    972     double start = 0;
    973     if (mean >= 4 * static_cast<double>(stddev))
    974       start = mean - 4 * static_cast<double>(stddev);
    975     double end = mean + 4 * static_cast<double>(stddev);
    976 
    977     for (uint32 i = 0; i < samples; i++) {
    978       double x = start + (end - start) * i / (samples - 1);
    979       double y = Normal(x, mean, stddev);
    980       f->push_back(Point(x, y));
    981     }
    982   }
    983   return Resample(Invert(Accumulate(f)), 0, 1, samples);
    984 }
    985 
    986 uint32 VirtualSocketServer::GetRandomTransitDelay() {
    987   size_t index = rand() % delay_dist_->size();
    988   double delay = (*delay_dist_)[index].second;
    989   //LOG_F(LS_INFO) << "random[" << index << "] = " << delay;
    990   return static_cast<uint32>(delay);
    991 }
    992 
    993 struct FunctionDomainCmp {
    994   bool operator()(const VirtualSocketServer::Point& p1,
    995                    const VirtualSocketServer::Point& p2) {
    996     return p1.first < p2.first;
    997   }
    998   bool operator()(double v1, const VirtualSocketServer::Point& p2) {
    999     return v1 < p2.first;
   1000   }
   1001   bool operator()(const VirtualSocketServer::Point& p1, double v2) {
   1002     return p1.first < v2;
   1003   }
   1004 };
   1005 
   1006 VirtualSocketServer::Function* VirtualSocketServer::Accumulate(Function* f) {
   1007   ASSERT(f->size() >= 1);
   1008   double v = 0;
   1009   for (Function::size_type i = 0; i < f->size() - 1; ++i) {
   1010     double dx = (*f)[i + 1].first - (*f)[i].first;
   1011     double avgy = ((*f)[i + 1].second + (*f)[i].second) / 2;
   1012     (*f)[i].second = v;
   1013     v = v + dx * avgy;
   1014   }
   1015   (*f)[f->size()-1].second = v;
   1016   return f;
   1017 }
   1018 
   1019 VirtualSocketServer::Function* VirtualSocketServer::Invert(Function* f) {
   1020   for (Function::size_type i = 0; i < f->size(); ++i)
   1021     std::swap((*f)[i].first, (*f)[i].second);
   1022 
   1023   std::sort(f->begin(), f->end(), FunctionDomainCmp());
   1024   return f;
   1025 }
   1026 
   1027 VirtualSocketServer::Function* VirtualSocketServer::Resample(
   1028     Function* f, double x1, double x2, uint32 samples) {
   1029   Function* g = new Function();
   1030 
   1031   for (size_t i = 0; i < samples; i++) {
   1032     double x = x1 + (x2 - x1) * i / (samples - 1);
   1033     double y = Evaluate(f, x);
   1034     g->push_back(Point(x, y));
   1035   }
   1036 
   1037   delete f;
   1038   return g;
   1039 }
   1040 
   1041 double VirtualSocketServer::Evaluate(Function* f, double x) {
   1042   Function::iterator iter =
   1043       std::lower_bound(f->begin(), f->end(), x, FunctionDomainCmp());
   1044   if (iter == f->begin()) {
   1045     return (*f)[0].second;
   1046   } else if (iter == f->end()) {
   1047     ASSERT(f->size() >= 1);
   1048     return (*f)[f->size() - 1].second;
   1049   } else if (iter->first == x) {
   1050     return iter->second;
   1051   } else {
   1052     double x1 = (iter - 1)->first;
   1053     double y1 = (iter - 1)->second;
   1054     double x2 = iter->first;
   1055     double y2 = iter->second;
   1056     return y1 + (y2 - y1) * (x - x1) / (x2 - x1);
   1057   }
   1058 }
   1059 
   1060 bool VirtualSocketServer::CanInteractWith(VirtualSocket* local,
   1061                                           VirtualSocket* remote) {
   1062   if (!local || !remote) {
   1063     return false;
   1064   }
   1065   IPAddress local_ip = local->GetLocalAddress().ipaddr();
   1066   IPAddress remote_ip = remote->GetLocalAddress().ipaddr();
   1067   IPAddress local_normalized = local_ip.Normalized();
   1068   IPAddress remote_normalized = remote_ip.Normalized();
   1069   // Check if the addresses are the same family after Normalization (turns
   1070   // mapped IPv6 address into IPv4 addresses).
   1071   // This will stop unmapped V6 addresses from talking to mapped V6 addresses.
   1072   if (local_normalized.family() == remote_normalized.family()) {
   1073     return true;
   1074   }
   1075 
   1076   // If ip1 is IPv4 and ip2 is :: and ip2 is not IPV6_V6ONLY.
   1077   int remote_v6_only = 0;
   1078   remote->GetOption(Socket::OPT_IPV6_V6ONLY, &remote_v6_only);
   1079   if (local_ip.family() == AF_INET && !remote_v6_only && IPIsAny(remote_ip)) {
   1080     return true;
   1081   }
   1082   // Same check, backwards.
   1083   int local_v6_only = 0;
   1084   local->GetOption(Socket::OPT_IPV6_V6ONLY, &local_v6_only);
   1085   if (remote_ip.family() == AF_INET && !local_v6_only && IPIsAny(local_ip)) {
   1086     return true;
   1087   }
   1088 
   1089   // Check to see if either socket was explicitly bound to IPv6-any.
   1090   // These sockets can talk with anyone.
   1091   if (local_ip.family() == AF_INET6 && local->was_any()) {
   1092     return true;
   1093   }
   1094   if (remote_ip.family() == AF_INET6 && remote->was_any()) {
   1095     return true;
   1096   }
   1097 
   1098   return false;
   1099 }
   1100 
   1101 }  // namespace rtc
   1102