Home | History | Annotate | Download | only in resampler
      1 /*
      2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 // Modified from the Chromium original:
     12 // src/media/base/sinc_resampler_unittest.cc
     13 
     14 // MSVC++ requires this to be set before any other includes to get M_PI.
     15 #define _USE_MATH_DEFINES
     16 
     17 #include <math.h>
     18 
     19 #include "testing/gmock/include/gmock/gmock.h"
     20 #include "testing/gtest/include/gtest/gtest.h"
     21 #include "webrtc/common_audio/resampler/sinc_resampler.h"
     22 #include "webrtc/common_audio/resampler/sinusoidal_linear_chirp_source.h"
     23 #include "webrtc/system_wrappers/interface/cpu_features_wrapper.h"
     24 #include "webrtc/system_wrappers/interface/scoped_ptr.h"
     25 #include "webrtc/system_wrappers/interface/stringize_macros.h"
     26 #include "webrtc/system_wrappers/interface/tick_util.h"
     27 #include "webrtc/test/test_suite.h"
     28 
     29 using testing::_;
     30 
     31 namespace webrtc {
     32 
     33 static const double kSampleRateRatio = 192000.0 / 44100.0;
     34 static const double kKernelInterpolationFactor = 0.5;
     35 
     36 // Helper class to ensure ChunkedResample() functions properly.
     37 class MockSource : public SincResamplerCallback {
     38  public:
     39   MOCK_METHOD2(Run, void(int frames, float* destination));
     40 };
     41 
     42 ACTION(ClearBuffer) {
     43   memset(arg1, 0, arg0 * sizeof(float));
     44 }
     45 
     46 ACTION(FillBuffer) {
     47   // Value chosen arbitrarily such that SincResampler resamples it to something
     48   // easily representable on all platforms; e.g., using kSampleRateRatio this
     49   // becomes 1.81219.
     50   memset(arg1, 64, arg0 * sizeof(float));
     51 }
     52 
     53 // Test requesting multiples of ChunkSize() frames results in the proper number
     54 // of callbacks.
     55 TEST(SincResamplerTest, ChunkedResample) {
     56   MockSource mock_source;
     57 
     58   // Choose a high ratio of input to output samples which will result in quick
     59   // exhaustion of SincResampler's internal buffers.
     60   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
     61                           &mock_source);
     62 
     63   static const int kChunks = 2;
     64   int max_chunk_size = resampler.ChunkSize() * kChunks;
     65   scoped_ptr<float[]> resampled_destination(new float[max_chunk_size]);
     66 
     67   // Verify requesting ChunkSize() frames causes a single callback.
     68   EXPECT_CALL(mock_source, Run(_, _))
     69       .Times(1).WillOnce(ClearBuffer());
     70   resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
     71 
     72   // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
     73   testing::Mock::VerifyAndClear(&mock_source);
     74   EXPECT_CALL(mock_source, Run(_, _))
     75       .Times(kChunks).WillRepeatedly(ClearBuffer());
     76   resampler.Resample(max_chunk_size, resampled_destination.get());
     77 }
     78 
     79 // Test flush resets the internal state properly.
     80 TEST(SincResamplerTest, Flush) {
     81   MockSource mock_source;
     82   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
     83                           &mock_source);
     84   scoped_ptr<float[]> resampled_destination(new float[resampler.ChunkSize()]);
     85 
     86   // Fill the resampler with junk data.
     87   EXPECT_CALL(mock_source, Run(_, _))
     88       .Times(1).WillOnce(FillBuffer());
     89   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
     90   ASSERT_NE(resampled_destination[0], 0);
     91 
     92   // Flush and request more data, which should all be zeros now.
     93   resampler.Flush();
     94   testing::Mock::VerifyAndClear(&mock_source);
     95   EXPECT_CALL(mock_source, Run(_, _))
     96       .Times(1).WillOnce(ClearBuffer());
     97   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
     98   for (int i = 0; i < resampler.ChunkSize() / 2; ++i)
     99     ASSERT_FLOAT_EQ(resampled_destination[i], 0);
    100 }
    101 
    102 // Test flush resets the internal state properly.
    103 TEST(SincResamplerTest, DISABLED_SetRatioBench) {
    104   MockSource mock_source;
    105   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
    106                           &mock_source);
    107 
    108   TickTime start = TickTime::Now();
    109   for (int i = 1; i < 10000; ++i)
    110     resampler.SetRatio(1.0 / i);
    111   double total_time_c_us = (TickTime::Now() - start).Microseconds();
    112   printf("SetRatio() took %.2fms.\n", total_time_c_us / 1000);
    113 }
    114 
    115 
    116 // Define platform independent function name for Convolve* tests.
    117 #if defined(WEBRTC_ARCH_X86_FAMILY)
    118 #define CONVOLVE_FUNC Convolve_SSE
    119 #elif defined(WEBRTC_ARCH_ARM_V7)
    120 #define CONVOLVE_FUNC Convolve_NEON
    121 #endif
    122 
    123 // Ensure various optimized Convolve() methods return the same value.  Only run
    124 // this test if other optimized methods exist, otherwise the default Convolve()
    125 // will be tested by the parameterized SincResampler tests below.
    126 #if defined(CONVOLVE_FUNC)
    127 TEST(SincResamplerTest, Convolve) {
    128 #if defined(WEBRTC_ARCH_X86_FAMILY)
    129   ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2));
    130 #elif defined(WEBRTC_ARCH_ARM_V7)
    131   ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON);
    132 #endif
    133 
    134   // Initialize a dummy resampler.
    135   MockSource mock_source;
    136   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
    137                           &mock_source);
    138 
    139   // The optimized Convolve methods are slightly more precise than Convolve_C(),
    140   // so comparison must be done using an epsilon.
    141   static const double kEpsilon = 0.00000005;
    142 
    143   // Use a kernel from SincResampler as input and kernel data, this has the
    144   // benefit of already being properly sized and aligned for Convolve_SSE().
    145   double result = resampler.Convolve_C(
    146       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
    147       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    148   double result2 = resampler.CONVOLVE_FUNC(
    149       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
    150       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    151   EXPECT_NEAR(result2, result, kEpsilon);
    152 
    153   // Test Convolve() w/ unaligned input pointer.
    154   result = resampler.Convolve_C(
    155       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
    156       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    157   result2 = resampler.CONVOLVE_FUNC(
    158       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
    159       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    160   EXPECT_NEAR(result2, result, kEpsilon);
    161 }
    162 #endif
    163 
    164 // Benchmark for the various Convolve() methods.  Make sure to build with
    165 // branding=Chrome so that DCHECKs are compiled out when benchmarking.  Original
    166 // benchmarks were run with --convolve-iterations=50000000.
    167 TEST(SincResamplerTest, ConvolveBenchmark) {
    168   // Initialize a dummy resampler.
    169   MockSource mock_source;
    170   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
    171                           &mock_source);
    172 
    173   // Retrieve benchmark iterations from command line.
    174   // TODO(ajm): Reintroduce this as a command line option.
    175   const int kConvolveIterations = 1000000;
    176 
    177   printf("Benchmarking %d iterations:\n", kConvolveIterations);
    178 
    179   // Benchmark Convolve_C().
    180   TickTime start = TickTime::Now();
    181   for (int i = 0; i < kConvolveIterations; ++i) {
    182     resampler.Convolve_C(
    183         resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
    184         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    185   }
    186   double total_time_c_us = (TickTime::Now() - start).Microseconds();
    187   printf("Convolve_C took %.2fms.\n", total_time_c_us / 1000);
    188 
    189 #if defined(CONVOLVE_FUNC)
    190 #if defined(WEBRTC_ARCH_X86_FAMILY)
    191   ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2));
    192 #elif defined(WEBRTC_ARCH_ARM_V7)
    193   ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON);
    194 #endif
    195 
    196   // Benchmark with unaligned input pointer.
    197   start = TickTime::Now();
    198   for (int j = 0; j < kConvolveIterations; ++j) {
    199     resampler.CONVOLVE_FUNC(
    200         resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
    201         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    202   }
    203   double total_time_optimized_unaligned_us =
    204       (TickTime::Now() - start).Microseconds();
    205   printf(STRINGIZE(CONVOLVE_FUNC) "(unaligned) took %.2fms; which is %.2fx "
    206          "faster than Convolve_C.\n", total_time_optimized_unaligned_us / 1000,
    207          total_time_c_us / total_time_optimized_unaligned_us);
    208 
    209   // Benchmark with aligned input pointer.
    210   start = TickTime::Now();
    211   for (int j = 0; j < kConvolveIterations; ++j) {
    212     resampler.CONVOLVE_FUNC(
    213         resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
    214         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    215   }
    216   double total_time_optimized_aligned_us =
    217       (TickTime::Now() - start).Microseconds();
    218   printf(STRINGIZE(CONVOLVE_FUNC) " (aligned) took %.2fms; which is %.2fx "
    219          "faster than Convolve_C and %.2fx faster than "
    220          STRINGIZE(CONVOLVE_FUNC) " (unaligned).\n",
    221          total_time_optimized_aligned_us / 1000,
    222          total_time_c_us / total_time_optimized_aligned_us,
    223          total_time_optimized_unaligned_us / total_time_optimized_aligned_us);
    224 #endif
    225 }
    226 
    227 #undef CONVOLVE_FUNC
    228 
    229 typedef std::tr1::tuple<int, int, double, double> SincResamplerTestData;
    230 class SincResamplerTest
    231     : public testing::TestWithParam<SincResamplerTestData> {
    232  public:
    233   SincResamplerTest()
    234       : input_rate_(std::tr1::get<0>(GetParam())),
    235         output_rate_(std::tr1::get<1>(GetParam())),
    236         rms_error_(std::tr1::get<2>(GetParam())),
    237         low_freq_error_(std::tr1::get<3>(GetParam())) {
    238   }
    239 
    240   virtual ~SincResamplerTest() {}
    241 
    242  protected:
    243   int input_rate_;
    244   int output_rate_;
    245   double rms_error_;
    246   double low_freq_error_;
    247 };
    248 
    249 // Tests resampling using a given input and output sample rate.
    250 TEST_P(SincResamplerTest, Resample) {
    251   // Make comparisons using one second of data.
    252   static const double kTestDurationSecs = 1;
    253   const int input_samples = kTestDurationSecs * input_rate_;
    254   const int output_samples = kTestDurationSecs * output_rate_;
    255 
    256   // Nyquist frequency for the input sampling rate.
    257   const double input_nyquist_freq = 0.5 * input_rate_;
    258 
    259   // Source for data to be resampled.
    260   SinusoidalLinearChirpSource resampler_source(
    261       input_rate_, input_samples, input_nyquist_freq, 0);
    262 
    263   const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
    264   SincResampler resampler(io_ratio, SincResampler::kDefaultRequestSize,
    265                           &resampler_source);
    266 
    267   // Force an update to the sample rate ratio to ensure dyanmic sample rate
    268   // changes are working correctly.
    269   scoped_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
    270   memcpy(kernel.get(), resampler.get_kernel_for_testing(),
    271          SincResampler::kKernelStorageSize);
    272   resampler.SetRatio(M_PI);
    273   ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
    274                       SincResampler::kKernelStorageSize));
    275   resampler.SetRatio(io_ratio);
    276   ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
    277                       SincResampler::kKernelStorageSize));
    278 
    279   // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
    280   // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
    281   scoped_ptr<float[]> resampled_destination(new float[output_samples]);
    282   scoped_ptr<float[]> pure_destination(new float[output_samples]);
    283 
    284   // Generate resampled signal.
    285   resampler.Resample(output_samples, resampled_destination.get());
    286 
    287   // Generate pure signal.
    288   SinusoidalLinearChirpSource pure_source(
    289       output_rate_, output_samples, input_nyquist_freq, 0);
    290   pure_source.Run(output_samples, pure_destination.get());
    291 
    292   // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
    293   // we refer to as low and high.
    294   static const double kLowFrequencyNyquistRange = 0.7;
    295   static const double kHighFrequencyNyquistRange = 0.9;
    296 
    297   // Calculate Root-Mean-Square-Error and maximum error for the resampling.
    298   double sum_of_squares = 0;
    299   double low_freq_max_error = 0;
    300   double high_freq_max_error = 0;
    301   int minimum_rate = std::min(input_rate_, output_rate_);
    302   double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
    303   double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
    304   for (int i = 0; i < output_samples; ++i) {
    305     double error = fabs(resampled_destination[i] - pure_destination[i]);
    306 
    307     if (pure_source.Frequency(i) < low_frequency_range) {
    308       if (error > low_freq_max_error)
    309         low_freq_max_error = error;
    310     } else if (pure_source.Frequency(i) < high_frequency_range) {
    311       if (error > high_freq_max_error)
    312         high_freq_max_error = error;
    313     }
    314     // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
    315 
    316     sum_of_squares += error * error;
    317   }
    318 
    319   double rms_error = sqrt(sum_of_squares / output_samples);
    320 
    321   // Convert each error to dbFS.
    322   #define DBFS(x) 20 * log10(x)
    323   rms_error = DBFS(rms_error);
    324   low_freq_max_error = DBFS(low_freq_max_error);
    325   high_freq_max_error = DBFS(high_freq_max_error);
    326 
    327   EXPECT_LE(rms_error, rms_error_);
    328   EXPECT_LE(low_freq_max_error, low_freq_error_);
    329 
    330   // All conversions currently have a high frequency error around -6 dbFS.
    331   static const double kHighFrequencyMaxError = -6.02;
    332   EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
    333 }
    334 
    335 // Almost all conversions have an RMS error of around -14 dbFS.
    336 static const double kResamplingRMSError = -14.58;
    337 
    338 // Thresholds chosen arbitrarily based on what each resampling reported during
    339 // testing.  All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
    340 INSTANTIATE_TEST_CASE_P(
    341     SincResamplerTest, SincResamplerTest, testing::Values(
    342         // To 44.1kHz
    343         std::tr1::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
    344         std::tr1::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
    345         std::tr1::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
    346         std::tr1::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
    347         std::tr1::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
    348         std::tr1::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
    349         std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
    350         std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
    351         std::tr1::make_tuple(192000, 44100, -20.50, -13.31),
    352 
    353         // To 48kHz
    354         std::tr1::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
    355         std::tr1::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
    356         std::tr1::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
    357         std::tr1::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
    358         std::tr1::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
    359         std::tr1::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
    360         std::tr1::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
    361         std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
    362         std::tr1::make_tuple(192000, 48000, -20.43, -14.11),
    363 
    364         // To 96kHz
    365         std::tr1::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
    366         std::tr1::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
    367         std::tr1::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
    368         std::tr1::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
    369         std::tr1::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
    370         std::tr1::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
    371         std::tr1::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
    372         std::tr1::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
    373         std::tr1::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
    374 
    375         // To 192kHz
    376         std::tr1::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
    377         std::tr1::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
    378         std::tr1::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
    379         std::tr1::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
    380         std::tr1::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
    381         std::tr1::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
    382         std::tr1::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
    383         std::tr1::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
    384         std::tr1::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));
    385 
    386 }  // namespace webrtc
    387