Home | History | Annotate | Download | only in interface
      1 /*
      2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 // Borrowed from Chromium's src/base/memory/scoped_ptr.h.
     12 
     13 // Scopers help you manage ownership of a pointer, helping you easily manage the
     14 // a pointer within a scope, and automatically destroying the pointer at the
     15 // end of a scope.  There are two main classes you will use, which correspond
     16 // to the operators new/delete and new[]/delete[].
     17 //
     18 // Example usage (scoped_ptr<T>):
     19 //   {
     20 //     scoped_ptr<Foo> foo(new Foo("wee"));
     21 //   }  // foo goes out of scope, releasing the pointer with it.
     22 //
     23 //   {
     24 //     scoped_ptr<Foo> foo;          // No pointer managed.
     25 //     foo.reset(new Foo("wee"));    // Now a pointer is managed.
     26 //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
     27 //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
     28 //     foo->Method();                // Foo::Method() called.
     29 //     foo.get()->Method();          // Foo::Method() called.
     30 //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
     31 //                                   // manages a pointer.
     32 //     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
     33 //     foo.reset();                  // Foo("wee4") destroyed, foo no longer
     34 //                                   // manages a pointer.
     35 //   }  // foo wasn't managing a pointer, so nothing was destroyed.
     36 //
     37 // Example usage (scoped_ptr<T[]>):
     38 //   {
     39 //     scoped_ptr<Foo[]> foo(new Foo[100]);
     40 //     foo.get()->Method();  // Foo::Method on the 0th element.
     41 //     foo[10].Method();     // Foo::Method on the 10th element.
     42 //   }
     43 //
     44 // These scopers also implement part of the functionality of C++11 unique_ptr
     45 // in that they are "movable but not copyable."  You can use the scopers in
     46 // the parameter and return types of functions to signify ownership transfer
     47 // in to and out of a function.  When calling a function that has a scoper
     48 // as the argument type, it must be called with the result of an analogous
     49 // scoper's Pass() function or another function that generates a temporary;
     50 // passing by copy will NOT work.  Here is an example using scoped_ptr:
     51 //
     52 //   void TakesOwnership(scoped_ptr<Foo> arg) {
     53 //     // Do something with arg
     54 //   }
     55 //   scoped_ptr<Foo> CreateFoo() {
     56 //     // No need for calling Pass() because we are constructing a temporary
     57 //     // for the return value.
     58 //     return scoped_ptr<Foo>(new Foo("new"));
     59 //   }
     60 //   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
     61 //     return arg.Pass();
     62 //   }
     63 //
     64 //   {
     65 //     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
     66 //     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
     67 //     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
     68 //     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
     69 //         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
     70 //   }
     71 //
     72 // Notice that if you do not call Pass() when returning from PassThru(), or
     73 // when invoking TakesOwnership(), the code will not compile because scopers
     74 // are not copyable; they only implement move semantics which require calling
     75 // the Pass() function to signify a destructive transfer of state. CreateFoo()
     76 // is different though because we are constructing a temporary on the return
     77 // line and thus can avoid needing to call Pass().
     78 //
     79 // Pass() properly handles upcast in initialization, i.e. you can use a
     80 // scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
     81 //
     82 //   scoped_ptr<Foo> foo(new Foo());
     83 //   scoped_ptr<FooParent> parent(foo.Pass());
     84 //
     85 // PassAs<>() should be used to upcast return value in return statement:
     86 //
     87 //   scoped_ptr<Foo> CreateFoo() {
     88 //     scoped_ptr<FooChild> result(new FooChild());
     89 //     return result.PassAs<Foo>();
     90 //   }
     91 //
     92 // Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
     93 // scoped_ptr<T[]>. This is because casting array pointers may not be safe.
     94 
     95 #ifndef WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_
     96 #define WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_
     97 
     98 // This is an implementation designed to match the anticipated future TR2
     99 // implementation of the scoped_ptr class.
    100 
    101 #include <assert.h>
    102 #include <stddef.h>
    103 #include <stdlib.h>
    104 
    105 #include <algorithm>  // For std::swap().
    106 
    107 #include "webrtc/base/constructormagic.h"
    108 #include "webrtc/system_wrappers/interface/compile_assert.h"
    109 #include "webrtc/system_wrappers/interface/template_util.h"
    110 #include "webrtc/system_wrappers/source/move.h"
    111 #include "webrtc/typedefs.h"
    112 
    113 namespace webrtc {
    114 
    115 // Function object which deletes its parameter, which must be a pointer.
    116 // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
    117 // invokes 'delete'. The default deleter for scoped_ptr<T>.
    118 template <class T>
    119 struct DefaultDeleter {
    120   DefaultDeleter() {}
    121   template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
    122     // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
    123     // if U* is implicitly convertible to T* and U is not an array type.
    124     //
    125     // Correct implementation should use SFINAE to disable this
    126     // constructor. However, since there are no other 1-argument constructors,
    127     // using a COMPILE_ASSERT() based on is_convertible<> and requiring
    128     // complete types is simpler and will cause compile failures for equivalent
    129     // misuses.
    130     //
    131     // Note, the is_convertible<U*, T*> check also ensures that U is not an
    132     // array. T is guaranteed to be a non-array, so any U* where U is an array
    133     // cannot convert to T*.
    134     enum { T_must_be_complete = sizeof(T) };
    135     enum { U_must_be_complete = sizeof(U) };
    136     COMPILE_ASSERT((webrtc::is_convertible<U*, T*>::value),
    137                    U_ptr_must_implicitly_convert_to_T_ptr);
    138   }
    139   inline void operator()(T* ptr) const {
    140     enum { type_must_be_complete = sizeof(T) };
    141     delete ptr;
    142   }
    143 };
    144 
    145 // Specialization of DefaultDeleter for array types.
    146 template <class T>
    147 struct DefaultDeleter<T[]> {
    148   inline void operator()(T* ptr) const {
    149     enum { type_must_be_complete = sizeof(T) };
    150     delete[] ptr;
    151   }
    152 
    153  private:
    154   // Disable this operator for any U != T because it is undefined to execute
    155   // an array delete when the static type of the array mismatches the dynamic
    156   // type.
    157   //
    158   // References:
    159   //   C++98 [expr.delete]p3
    160   //   http://cplusplus.github.com/LWG/lwg-defects.html#938
    161   template <typename U> void operator()(U* array) const;
    162 };
    163 
    164 template <class T, int n>
    165 struct DefaultDeleter<T[n]> {
    166   // Never allow someone to declare something like scoped_ptr<int[10]>.
    167   COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
    168 };
    169 
    170 // Function object which invokes 'free' on its parameter, which must be
    171 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
    172 //
    173 // scoped_ptr<int, webrtc::FreeDeleter> foo_ptr(
    174 //     static_cast<int*>(malloc(sizeof(int))));
    175 struct FreeDeleter {
    176   inline void operator()(void* ptr) const {
    177     free(ptr);
    178   }
    179 };
    180 
    181 namespace internal {
    182 
    183 // Minimal implementation of the core logic of scoped_ptr, suitable for
    184 // reuse in both scoped_ptr and its specializations.
    185 template <class T, class D>
    186 class scoped_ptr_impl {
    187  public:
    188   explicit scoped_ptr_impl(T* p) : data_(p) { }
    189 
    190   // Initializer for deleters that have data parameters.
    191   scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
    192 
    193   // Templated constructor that destructively takes the value from another
    194   // scoped_ptr_impl.
    195   template <typename U, typename V>
    196   scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
    197       : data_(other->release(), other->get_deleter()) {
    198     // We do not support move-only deleters.  We could modify our move
    199     // emulation to have webrtc::subtle::move() and webrtc::subtle::forward()
    200     // functions that are imperfect emulations of their C++11 equivalents,
    201     // but until there's a requirement, just assume deleters are copyable.
    202   }
    203 
    204   template <typename U, typename V>
    205   void TakeState(scoped_ptr_impl<U, V>* other) {
    206     // See comment in templated constructor above regarding lack of support
    207     // for move-only deleters.
    208     reset(other->release());
    209     get_deleter() = other->get_deleter();
    210   }
    211 
    212   ~scoped_ptr_impl() {
    213     if (data_.ptr != NULL) {
    214       // Not using get_deleter() saves one function call in non-optimized
    215       // builds.
    216       static_cast<D&>(data_)(data_.ptr);
    217     }
    218   }
    219 
    220   void reset(T* p) {
    221     // This is a self-reset, which is no longer allowed: http://crbug.com/162971
    222     if (p != NULL && p == data_.ptr)
    223       abort();
    224 
    225     // Note that running data_.ptr = p can lead to undefined behavior if
    226     // get_deleter()(get()) deletes this. In order to pevent this, reset()
    227     // should update the stored pointer before deleting its old value.
    228     //
    229     // However, changing reset() to use that behavior may cause current code to
    230     // break in unexpected ways. If the destruction of the owned object
    231     // dereferences the scoped_ptr when it is destroyed by a call to reset(),
    232     // then it will incorrectly dispatch calls to |p| rather than the original
    233     // value of |data_.ptr|.
    234     //
    235     // During the transition period, set the stored pointer to NULL while
    236     // deleting the object. Eventually, this safety check will be removed to
    237     // prevent the scenario initially described from occuring and
    238     // http://crbug.com/176091 can be closed.
    239     T* old = data_.ptr;
    240     data_.ptr = NULL;
    241     if (old != NULL)
    242       static_cast<D&>(data_)(old);
    243     data_.ptr = p;
    244   }
    245 
    246   T* get() const { return data_.ptr; }
    247 
    248   D& get_deleter() { return data_; }
    249   const D& get_deleter() const { return data_; }
    250 
    251   void swap(scoped_ptr_impl& p2) {
    252     // Standard swap idiom: 'using std::swap' ensures that std::swap is
    253     // present in the overload set, but we call swap unqualified so that
    254     // any more-specific overloads can be used, if available.
    255     using std::swap;
    256     swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
    257     swap(data_.ptr, p2.data_.ptr);
    258   }
    259 
    260   T* release() {
    261     T* old_ptr = data_.ptr;
    262     data_.ptr = NULL;
    263     return old_ptr;
    264   }
    265 
    266  private:
    267   // Needed to allow type-converting constructor.
    268   template <typename U, typename V> friend class scoped_ptr_impl;
    269 
    270   // Use the empty base class optimization to allow us to have a D
    271   // member, while avoiding any space overhead for it when D is an
    272   // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
    273   // discussion of this technique.
    274   struct Data : public D {
    275     explicit Data(T* ptr_in) : ptr(ptr_in) {}
    276     Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
    277     T* ptr;
    278   };
    279 
    280   Data data_;
    281 
    282   DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
    283 };
    284 
    285 }  // namespace internal
    286 
    287 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
    288 // automatically deletes the pointer it holds (if any).
    289 // That is, scoped_ptr<T> owns the T object that it points to.
    290 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
    291 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
    292 // dereference it, you get the thread safety guarantees of T.
    293 //
    294 // The size of scoped_ptr is small. On most compilers, when using the
    295 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
    296 // increase the size proportional to whatever state they need to have. See
    297 // comments inside scoped_ptr_impl<> for details.
    298 //
    299 // Current implementation targets having a strict subset of  C++11's
    300 // unique_ptr<> features. Known deficiencies include not supporting move-only
    301 // deleteres, function pointers as deleters, and deleters with reference
    302 // types.
    303 template <class T, class D = webrtc::DefaultDeleter<T> >
    304 class scoped_ptr {
    305   WEBRTC_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
    306 
    307  public:
    308   // The element and deleter types.
    309   typedef T element_type;
    310   typedef D deleter_type;
    311 
    312   // Constructor.  Defaults to initializing with NULL.
    313   scoped_ptr() : impl_(NULL) { }
    314 
    315   // Constructor.  Takes ownership of p.
    316   explicit scoped_ptr(element_type* p) : impl_(p) { }
    317 
    318   // Constructor.  Allows initialization of a stateful deleter.
    319   scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
    320 
    321   // Constructor.  Allows construction from a scoped_ptr rvalue for a
    322   // convertible type and deleter.
    323   //
    324   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
    325   // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
    326   // has different post-conditions if D is a reference type. Since this
    327   // implementation does not support deleters with reference type,
    328   // we do not need a separate move constructor allowing us to avoid one
    329   // use of SFINAE. You only need to care about this if you modify the
    330   // implementation of scoped_ptr.
    331   template <typename U, typename V>
    332   scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
    333     COMPILE_ASSERT(!webrtc::is_array<U>::value, U_cannot_be_an_array);
    334   }
    335 
    336   // Constructor.  Move constructor for C++03 move emulation of this type.
    337   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
    338 
    339   // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
    340   // type and deleter.
    341   //
    342   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
    343   // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
    344   // form has different requirements on for move-only Deleters. Since this
    345   // implementation does not support move-only Deleters, we do not need a
    346   // separate move assignment operator allowing us to avoid one use of SFINAE.
    347   // You only need to care about this if you modify the implementation of
    348   // scoped_ptr.
    349   template <typename U, typename V>
    350   scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
    351     COMPILE_ASSERT(!webrtc::is_array<U>::value, U_cannot_be_an_array);
    352     impl_.TakeState(&rhs.impl_);
    353     return *this;
    354   }
    355 
    356   // Reset.  Deletes the currently owned object, if any.
    357   // Then takes ownership of a new object, if given.
    358   void reset(element_type* p = NULL) { impl_.reset(p); }
    359 
    360   // Accessors to get the owned object.
    361   // operator* and operator-> will assert() if there is no current object.
    362   element_type& operator*() const {
    363     assert(impl_.get() != NULL);
    364     return *impl_.get();
    365   }
    366   element_type* operator->() const  {
    367     assert(impl_.get() != NULL);
    368     return impl_.get();
    369   }
    370   element_type* get() const { return impl_.get(); }
    371 
    372   // Access to the deleter.
    373   deleter_type& get_deleter() { return impl_.get_deleter(); }
    374   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
    375 
    376   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
    377   // implicitly convertible to a real bool (which is dangerous).
    378   //
    379   // Note that this trick is only safe when the == and != operators
    380   // are declared explicitly, as otherwise "scoped_ptr1 ==
    381   // scoped_ptr2" will compile but do the wrong thing (i.e., convert
    382   // to Testable and then do the comparison).
    383  private:
    384   typedef webrtc::internal::scoped_ptr_impl<element_type, deleter_type>
    385       scoped_ptr::*Testable;
    386 
    387  public:
    388   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
    389 
    390   // Comparison operators.
    391   // These return whether two scoped_ptr refer to the same object, not just to
    392   // two different but equal objects.
    393   bool operator==(const element_type* p) const { return impl_.get() == p; }
    394   bool operator!=(const element_type* p) const { return impl_.get() != p; }
    395 
    396   // Swap two scoped pointers.
    397   void swap(scoped_ptr& p2) {
    398     impl_.swap(p2.impl_);
    399   }
    400 
    401   // Release a pointer.
    402   // The return value is the current pointer held by this object.
    403   // If this object holds a NULL pointer, the return value is NULL.
    404   // After this operation, this object will hold a NULL pointer,
    405   // and will not own the object any more.
    406   element_type* release() WARN_UNUSED_RESULT {
    407     return impl_.release();
    408   }
    409 
    410   // C++98 doesn't support functions templates with default parameters which
    411   // makes it hard to write a PassAs() that understands converting the deleter
    412   // while preserving simple calling semantics.
    413   //
    414   // Until there is a use case for PassAs() with custom deleters, just ignore
    415   // the custom deleter.
    416   template <typename PassAsType>
    417   scoped_ptr<PassAsType> PassAs() {
    418     return scoped_ptr<PassAsType>(Pass());
    419   }
    420 
    421  private:
    422   // Needed to reach into |impl_| in the constructor.
    423   template <typename U, typename V> friend class scoped_ptr;
    424   webrtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
    425 
    426   // Forbidden for API compatibility with std::unique_ptr.
    427   explicit scoped_ptr(int disallow_construction_from_null);
    428 
    429   // Forbid comparison of scoped_ptr types.  If U != T, it totally
    430   // doesn't make sense, and if U == T, it still doesn't make sense
    431   // because you should never have the same object owned by two different
    432   // scoped_ptrs.
    433   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
    434   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
    435 };
    436 
    437 template <class T, class D>
    438 class scoped_ptr<T[], D> {
    439   WEBRTC_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
    440 
    441  public:
    442   // The element and deleter types.
    443   typedef T element_type;
    444   typedef D deleter_type;
    445 
    446   // Constructor.  Defaults to initializing with NULL.
    447   scoped_ptr() : impl_(NULL) { }
    448 
    449   // Constructor. Stores the given array. Note that the argument's type
    450   // must exactly match T*. In particular:
    451   // - it cannot be a pointer to a type derived from T, because it is
    452   //   inherently unsafe in the general case to access an array through a
    453   //   pointer whose dynamic type does not match its static type (eg., if
    454   //   T and the derived types had different sizes access would be
    455   //   incorrectly calculated). Deletion is also always undefined
    456   //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
    457   // - it cannot be NULL, because NULL is an integral expression, not a
    458   //   pointer to T. Use the no-argument version instead of explicitly
    459   //   passing NULL.
    460   // - it cannot be const-qualified differently from T per unique_ptr spec
    461   //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
    462   //   to work around this may use implicit_cast<const T*>().
    463   //   However, because of the first bullet in this comment, users MUST
    464   //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
    465   explicit scoped_ptr(element_type* array) : impl_(array) { }
    466 
    467   // Constructor.  Move constructor for C++03 move emulation of this type.
    468   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
    469 
    470   // operator=.  Move operator= for C++03 move emulation of this type.
    471   scoped_ptr& operator=(RValue rhs) {
    472     impl_.TakeState(&rhs.object->impl_);
    473     return *this;
    474   }
    475 
    476   // Reset.  Deletes the currently owned array, if any.
    477   // Then takes ownership of a new object, if given.
    478   void reset(element_type* array = NULL) { impl_.reset(array); }
    479 
    480   // Accessors to get the owned array.
    481   element_type& operator[](size_t i) const {
    482     assert(impl_.get() != NULL);
    483     return impl_.get()[i];
    484   }
    485   element_type* get() const { return impl_.get(); }
    486 
    487   // Access to the deleter.
    488   deleter_type& get_deleter() { return impl_.get_deleter(); }
    489   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
    490 
    491   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
    492   // implicitly convertible to a real bool (which is dangerous).
    493  private:
    494   typedef webrtc::internal::scoped_ptr_impl<element_type, deleter_type>
    495       scoped_ptr::*Testable;
    496 
    497  public:
    498   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
    499 
    500   // Comparison operators.
    501   // These return whether two scoped_ptr refer to the same object, not just to
    502   // two different but equal objects.
    503   bool operator==(element_type* array) const { return impl_.get() == array; }
    504   bool operator!=(element_type* array) const { return impl_.get() != array; }
    505 
    506   // Swap two scoped pointers.
    507   void swap(scoped_ptr& p2) {
    508     impl_.swap(p2.impl_);
    509   }
    510 
    511   // Release a pointer.
    512   // The return value is the current pointer held by this object.
    513   // If this object holds a NULL pointer, the return value is NULL.
    514   // After this operation, this object will hold a NULL pointer,
    515   // and will not own the object any more.
    516   element_type* release() WARN_UNUSED_RESULT {
    517     return impl_.release();
    518   }
    519 
    520  private:
    521   // Force element_type to be a complete type.
    522   enum { type_must_be_complete = sizeof(element_type) };
    523 
    524   // Actually hold the data.
    525   webrtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
    526 
    527   // Disable initialization from any type other than element_type*, by
    528   // providing a constructor that matches such an initialization, but is
    529   // private and has no definition. This is disabled because it is not safe to
    530   // call delete[] on an array whose static type does not match its dynamic
    531   // type.
    532   template <typename U> explicit scoped_ptr(U* array);
    533   explicit scoped_ptr(int disallow_construction_from_null);
    534 
    535   // Disable reset() from any type other than element_type*, for the same
    536   // reasons as the constructor above.
    537   template <typename U> void reset(U* array);
    538   void reset(int disallow_reset_from_null);
    539 
    540   // Forbid comparison of scoped_ptr types.  If U != T, it totally
    541   // doesn't make sense, and if U == T, it still doesn't make sense
    542   // because you should never have the same object owned by two different
    543   // scoped_ptrs.
    544   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
    545   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
    546 };
    547 
    548 }  // namespace webrtc
    549 
    550 // Free functions
    551 template <class T, class D>
    552 void swap(webrtc::scoped_ptr<T, D>& p1, webrtc::scoped_ptr<T, D>& p2) {
    553   p1.swap(p2);
    554 }
    555 
    556 template <class T, class D>
    557 bool operator==(T* p1, const webrtc::scoped_ptr<T, D>& p2) {
    558   return p1 == p2.get();
    559 }
    560 
    561 template <class T, class D>
    562 bool operator!=(T* p1, const webrtc::scoped_ptr<T, D>& p2) {
    563   return p1 != p2.get();
    564 }
    565 
    566 #endif  // WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_
    567