Home | History | Annotate | Download | only in src
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <cmath>
      6 
      7 #include "include/v8stdint.h"
      8 #include "src/checks.h"
      9 #include "src/utils.h"
     10 
     11 #include "src/double.h"
     12 #include "src/fixed-dtoa.h"
     13 
     14 namespace v8 {
     15 namespace internal {
     16 
     17 // Represents a 128bit type. This class should be replaced by a native type on
     18 // platforms that support 128bit integers.
     19 class UInt128 {
     20  public:
     21   UInt128() : high_bits_(0), low_bits_(0) { }
     22   UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
     23 
     24   void Multiply(uint32_t multiplicand) {
     25     uint64_t accumulator;
     26 
     27     accumulator = (low_bits_ & kMask32) * multiplicand;
     28     uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
     29     accumulator >>= 32;
     30     accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
     31     low_bits_ = (accumulator << 32) + part;
     32     accumulator >>= 32;
     33     accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
     34     part = static_cast<uint32_t>(accumulator & kMask32);
     35     accumulator >>= 32;
     36     accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
     37     high_bits_ = (accumulator << 32) + part;
     38     ASSERT((accumulator >> 32) == 0);
     39   }
     40 
     41   void Shift(int shift_amount) {
     42     ASSERT(-64 <= shift_amount && shift_amount <= 64);
     43     if (shift_amount == 0) {
     44       return;
     45     } else if (shift_amount == -64) {
     46       high_bits_ = low_bits_;
     47       low_bits_ = 0;
     48     } else if (shift_amount == 64) {
     49       low_bits_ = high_bits_;
     50       high_bits_ = 0;
     51     } else if (shift_amount <= 0) {
     52       high_bits_ <<= -shift_amount;
     53       high_bits_ += low_bits_ >> (64 + shift_amount);
     54       low_bits_ <<= -shift_amount;
     55     } else {
     56       low_bits_ >>= shift_amount;
     57       low_bits_ += high_bits_ << (64 - shift_amount);
     58       high_bits_ >>= shift_amount;
     59     }
     60   }
     61 
     62   // Modifies *this to *this MOD (2^power).
     63   // Returns *this DIV (2^power).
     64   int DivModPowerOf2(int power) {
     65     if (power >= 64) {
     66       int result = static_cast<int>(high_bits_ >> (power - 64));
     67       high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
     68       return result;
     69     } else {
     70       uint64_t part_low = low_bits_ >> power;
     71       uint64_t part_high = high_bits_ << (64 - power);
     72       int result = static_cast<int>(part_low + part_high);
     73       high_bits_ = 0;
     74       low_bits_ -= part_low << power;
     75       return result;
     76     }
     77   }
     78 
     79   bool IsZero() const {
     80     return high_bits_ == 0 && low_bits_ == 0;
     81   }
     82 
     83   int BitAt(int position) {
     84     if (position >= 64) {
     85       return static_cast<int>(high_bits_ >> (position - 64)) & 1;
     86     } else {
     87       return static_cast<int>(low_bits_ >> position) & 1;
     88     }
     89   }
     90 
     91  private:
     92   static const uint64_t kMask32 = 0xFFFFFFFF;
     93   // Value == (high_bits_ << 64) + low_bits_
     94   uint64_t high_bits_;
     95   uint64_t low_bits_;
     96 };
     97 
     98 
     99 static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
    100 
    101 
    102 static void FillDigits32FixedLength(uint32_t number, int requested_length,
    103                                     Vector<char> buffer, int* length) {
    104   for (int i = requested_length - 1; i >= 0; --i) {
    105     buffer[(*length) + i] = '0' + number % 10;
    106     number /= 10;
    107   }
    108   *length += requested_length;
    109 }
    110 
    111 
    112 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
    113   int number_length = 0;
    114   // We fill the digits in reverse order and exchange them afterwards.
    115   while (number != 0) {
    116     int digit = number % 10;
    117     number /= 10;
    118     buffer[(*length) + number_length] = '0' + digit;
    119     number_length++;
    120   }
    121   // Exchange the digits.
    122   int i = *length;
    123   int j = *length + number_length - 1;
    124   while (i < j) {
    125     char tmp = buffer[i];
    126     buffer[i] = buffer[j];
    127     buffer[j] = tmp;
    128     i++;
    129     j--;
    130   }
    131   *length += number_length;
    132 }
    133 
    134 
    135 static void FillDigits64FixedLength(uint64_t number, int requested_length,
    136                                     Vector<char> buffer, int* length) {
    137   const uint32_t kTen7 = 10000000;
    138   // For efficiency cut the number into 3 uint32_t parts, and print those.
    139   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
    140   number /= kTen7;
    141   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
    142   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
    143 
    144   FillDigits32FixedLength(part0, 3, buffer, length);
    145   FillDigits32FixedLength(part1, 7, buffer, length);
    146   FillDigits32FixedLength(part2, 7, buffer, length);
    147 }
    148 
    149 
    150 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
    151   const uint32_t kTen7 = 10000000;
    152   // For efficiency cut the number into 3 uint32_t parts, and print those.
    153   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
    154   number /= kTen7;
    155   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
    156   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
    157 
    158   if (part0 != 0) {
    159     FillDigits32(part0, buffer, length);
    160     FillDigits32FixedLength(part1, 7, buffer, length);
    161     FillDigits32FixedLength(part2, 7, buffer, length);
    162   } else if (part1 != 0) {
    163     FillDigits32(part1, buffer, length);
    164     FillDigits32FixedLength(part2, 7, buffer, length);
    165   } else {
    166     FillDigits32(part2, buffer, length);
    167   }
    168 }
    169 
    170 
    171 static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
    172   // An empty buffer represents 0.
    173   if (*length == 0) {
    174     buffer[0] = '1';
    175     *decimal_point = 1;
    176     *length = 1;
    177     return;
    178   }
    179   // Round the last digit until we either have a digit that was not '9' or until
    180   // we reached the first digit.
    181   buffer[(*length) - 1]++;
    182   for (int i = (*length) - 1; i > 0; --i) {
    183     if (buffer[i] != '0' + 10) {
    184       return;
    185     }
    186     buffer[i] = '0';
    187     buffer[i - 1]++;
    188   }
    189   // If the first digit is now '0' + 10, we would need to set it to '0' and add
    190   // a '1' in front. However we reach the first digit only if all following
    191   // digits had been '9' before rounding up. Now all trailing digits are '0' and
    192   // we simply switch the first digit to '1' and update the decimal-point
    193   // (indicating that the point is now one digit to the right).
    194   if (buffer[0] == '0' + 10) {
    195     buffer[0] = '1';
    196     (*decimal_point)++;
    197   }
    198 }
    199 
    200 
    201 // The given fractionals number represents a fixed-point number with binary
    202 // point at bit (-exponent).
    203 // Preconditions:
    204 //   -128 <= exponent <= 0.
    205 //   0 <= fractionals * 2^exponent < 1
    206 //   The buffer holds the result.
    207 // The function will round its result. During the rounding-process digits not
    208 // generated by this function might be updated, and the decimal-point variable
    209 // might be updated. If this function generates the digits 99 and the buffer
    210 // already contained "199" (thus yielding a buffer of "19999") then a
    211 // rounding-up will change the contents of the buffer to "20000".
    212 static void FillFractionals(uint64_t fractionals, int exponent,
    213                             int fractional_count, Vector<char> buffer,
    214                             int* length, int* decimal_point) {
    215   ASSERT(-128 <= exponent && exponent <= 0);
    216   // 'fractionals' is a fixed-point number, with binary point at bit
    217   // (-exponent). Inside the function the non-converted remainder of fractionals
    218   // is a fixed-point number, with binary point at bit 'point'.
    219   if (-exponent <= 64) {
    220     // One 64 bit number is sufficient.
    221     ASSERT(fractionals >> 56 == 0);
    222     int point = -exponent;
    223     for (int i = 0; i < fractional_count; ++i) {
    224       if (fractionals == 0) break;
    225       // Instead of multiplying by 10 we multiply by 5 and adjust the point
    226       // location. This way the fractionals variable will not overflow.
    227       // Invariant at the beginning of the loop: fractionals < 2^point.
    228       // Initially we have: point <= 64 and fractionals < 2^56
    229       // After each iteration the point is decremented by one.
    230       // Note that 5^3 = 125 < 128 = 2^7.
    231       // Therefore three iterations of this loop will not overflow fractionals
    232       // (even without the subtraction at the end of the loop body). At this
    233       // time point will satisfy point <= 61 and therefore fractionals < 2^point
    234       // and any further multiplication of fractionals by 5 will not overflow.
    235       fractionals *= 5;
    236       point--;
    237       int digit = static_cast<int>(fractionals >> point);
    238       buffer[*length] = '0' + digit;
    239       (*length)++;
    240       fractionals -= static_cast<uint64_t>(digit) << point;
    241     }
    242     // If the first bit after the point is set we have to round up.
    243     if (((fractionals >> (point - 1)) & 1) == 1) {
    244       RoundUp(buffer, length, decimal_point);
    245     }
    246   } else {  // We need 128 bits.
    247     ASSERT(64 < -exponent && -exponent <= 128);
    248     UInt128 fractionals128 = UInt128(fractionals, 0);
    249     fractionals128.Shift(-exponent - 64);
    250     int point = 128;
    251     for (int i = 0; i < fractional_count; ++i) {
    252       if (fractionals128.IsZero()) break;
    253       // As before: instead of multiplying by 10 we multiply by 5 and adjust the
    254       // point location.
    255       // This multiplication will not overflow for the same reasons as before.
    256       fractionals128.Multiply(5);
    257       point--;
    258       int digit = fractionals128.DivModPowerOf2(point);
    259       buffer[*length] = '0' + digit;
    260       (*length)++;
    261     }
    262     if (fractionals128.BitAt(point - 1) == 1) {
    263       RoundUp(buffer, length, decimal_point);
    264     }
    265   }
    266 }
    267 
    268 
    269 // Removes leading and trailing zeros.
    270 // If leading zeros are removed then the decimal point position is adjusted.
    271 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
    272   while (*length > 0 && buffer[(*length) - 1] == '0') {
    273     (*length)--;
    274   }
    275   int first_non_zero = 0;
    276   while (first_non_zero < *length && buffer[first_non_zero] == '0') {
    277     first_non_zero++;
    278   }
    279   if (first_non_zero != 0) {
    280     for (int i = first_non_zero; i < *length; ++i) {
    281       buffer[i - first_non_zero] = buffer[i];
    282     }
    283     *length -= first_non_zero;
    284     *decimal_point -= first_non_zero;
    285   }
    286 }
    287 
    288 
    289 bool FastFixedDtoa(double v,
    290                    int fractional_count,
    291                    Vector<char> buffer,
    292                    int* length,
    293                    int* decimal_point) {
    294   const uint32_t kMaxUInt32 = 0xFFFFFFFF;
    295   uint64_t significand = Double(v).Significand();
    296   int exponent = Double(v).Exponent();
    297   // v = significand * 2^exponent (with significand a 53bit integer).
    298   // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
    299   // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
    300   // If necessary this limit could probably be increased, but we don't need
    301   // more.
    302   if (exponent > 20) return false;
    303   if (fractional_count > 20) return false;
    304   *length = 0;
    305   // At most kDoubleSignificandSize bits of the significand are non-zero.
    306   // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
    307   // bits:  0..11*..0xxx..53*..xx
    308   if (exponent + kDoubleSignificandSize > 64) {
    309     // The exponent must be > 11.
    310     //
    311     // We know that v = significand * 2^exponent.
    312     // And the exponent > 11.
    313     // We simplify the task by dividing v by 10^17.
    314     // The quotient delivers the first digits, and the remainder fits into a 64
    315     // bit number.
    316     // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
    317     const uint64_t kFive17 = V8_2PART_UINT64_C(0xB1, A2BC2EC5);  // 5^17
    318     uint64_t divisor = kFive17;
    319     int divisor_power = 17;
    320     uint64_t dividend = significand;
    321     uint32_t quotient;
    322     uint64_t remainder;
    323     // Let v = f * 2^e with f == significand and e == exponent.
    324     // Then need q (quotient) and r (remainder) as follows:
    325     //   v            = q * 10^17       + r
    326     //   f * 2^e      = q * 10^17       + r
    327     //   f * 2^e      = q * 5^17 * 2^17 + r
    328     // If e > 17 then
    329     //   f * 2^(e-17) = q * 5^17        + r/2^17
    330     // else
    331     //   f  = q * 5^17 * 2^(17-e) + r/2^e
    332     if (exponent > divisor_power) {
    333       // We only allow exponents of up to 20 and therefore (17 - e) <= 3
    334       dividend <<= exponent - divisor_power;
    335       quotient = static_cast<uint32_t>(dividend / divisor);
    336       remainder = (dividend % divisor) << divisor_power;
    337     } else {
    338       divisor <<= divisor_power - exponent;
    339       quotient = static_cast<uint32_t>(dividend / divisor);
    340       remainder = (dividend % divisor) << exponent;
    341     }
    342     FillDigits32(quotient, buffer, length);
    343     FillDigits64FixedLength(remainder, divisor_power, buffer, length);
    344     *decimal_point = *length;
    345   } else if (exponent >= 0) {
    346     // 0 <= exponent <= 11
    347     significand <<= exponent;
    348     FillDigits64(significand, buffer, length);
    349     *decimal_point = *length;
    350   } else if (exponent > -kDoubleSignificandSize) {
    351     // We have to cut the number.
    352     uint64_t integrals = significand >> -exponent;
    353     uint64_t fractionals = significand - (integrals << -exponent);
    354     if (integrals > kMaxUInt32) {
    355       FillDigits64(integrals, buffer, length);
    356     } else {
    357       FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
    358     }
    359     *decimal_point = *length;
    360     FillFractionals(fractionals, exponent, fractional_count,
    361                     buffer, length, decimal_point);
    362   } else if (exponent < -128) {
    363     // This configuration (with at most 20 digits) means that all digits must be
    364     // 0.
    365     ASSERT(fractional_count <= 20);
    366     buffer[0] = '\0';
    367     *length = 0;
    368     *decimal_point = -fractional_count;
    369   } else {
    370     *decimal_point = 0;
    371     FillFractionals(significand, exponent, fractional_count,
    372                     buffer, length, decimal_point);
    373   }
    374   TrimZeros(buffer, length, decimal_point);
    375   buffer[*length] = '\0';
    376   if ((*length) == 0) {
    377     // The string is empty and the decimal_point thus has no importance. Mimick
    378     // Gay's dtoa and and set it to -fractional_count.
    379     *decimal_point = -fractional_count;
    380   }
    381   return true;
    382 }
    383 
    384 } }  // namespace v8::internal
    385