Home | History | Annotate | Download | only in ia32
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_IA32
      8 
      9 #include "src/bootstrapper.h"
     10 #include "src/code-stubs.h"
     11 #include "src/isolate.h"
     12 #include "src/jsregexp.h"
     13 #include "src/regexp-macro-assembler.h"
     14 #include "src/runtime.h"
     15 #include "src/stub-cache.h"
     16 #include "src/codegen.h"
     17 #include "src/runtime.h"
     18 
     19 namespace v8 {
     20 namespace internal {
     21 
     22 
     23 void FastNewClosureStub::InitializeInterfaceDescriptor(
     24     CodeStubInterfaceDescriptor* descriptor) {
     25   static Register registers[] = { ebx };
     26   descriptor->register_param_count_ = 1;
     27   descriptor->register_params_ = registers;
     28   descriptor->deoptimization_handler_ =
     29       Runtime::FunctionForId(Runtime::kHiddenNewClosureFromStubFailure)->entry;
     30 }
     31 
     32 
     33 void FastNewContextStub::InitializeInterfaceDescriptor(
     34     CodeStubInterfaceDescriptor* descriptor) {
     35   static Register registers[] = { edi };
     36   descriptor->register_param_count_ = 1;
     37   descriptor->register_params_ = registers;
     38   descriptor->deoptimization_handler_ = NULL;
     39 }
     40 
     41 
     42 void ToNumberStub::InitializeInterfaceDescriptor(
     43     CodeStubInterfaceDescriptor* descriptor) {
     44   static Register registers[] = { eax };
     45   descriptor->register_param_count_ = 1;
     46   descriptor->register_params_ = registers;
     47   descriptor->deoptimization_handler_ = NULL;
     48 }
     49 
     50 
     51 void NumberToStringStub::InitializeInterfaceDescriptor(
     52     CodeStubInterfaceDescriptor* descriptor) {
     53   static Register registers[] = { eax };
     54   descriptor->register_param_count_ = 1;
     55   descriptor->register_params_ = registers;
     56   descriptor->deoptimization_handler_ =
     57       Runtime::FunctionForId(Runtime::kHiddenNumberToString)->entry;
     58 }
     59 
     60 
     61 void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
     62     CodeStubInterfaceDescriptor* descriptor) {
     63   static Register registers[] = { eax, ebx, ecx };
     64   descriptor->register_param_count_ = 3;
     65   descriptor->register_params_ = registers;
     66   static Representation representations[] = {
     67     Representation::Tagged(),
     68     Representation::Smi(),
     69     Representation::Tagged() };
     70   descriptor->register_param_representations_ = representations;
     71   descriptor->deoptimization_handler_ =
     72       Runtime::FunctionForId(
     73           Runtime::kHiddenCreateArrayLiteralStubBailout)->entry;
     74 }
     75 
     76 
     77 void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
     78     CodeStubInterfaceDescriptor* descriptor) {
     79   static Register registers[] = { eax, ebx, ecx, edx };
     80   descriptor->register_param_count_ = 4;
     81   descriptor->register_params_ = registers;
     82   descriptor->deoptimization_handler_ =
     83       Runtime::FunctionForId(Runtime::kHiddenCreateObjectLiteral)->entry;
     84 }
     85 
     86 
     87 void CreateAllocationSiteStub::InitializeInterfaceDescriptor(
     88     CodeStubInterfaceDescriptor* descriptor) {
     89   static Register registers[] = { ebx, edx };
     90   descriptor->register_param_count_ = 2;
     91   descriptor->register_params_ = registers;
     92   descriptor->deoptimization_handler_ = NULL;
     93 }
     94 
     95 
     96 void KeyedLoadFastElementStub::InitializeInterfaceDescriptor(
     97     CodeStubInterfaceDescriptor* descriptor) {
     98   static Register registers[] = { edx, ecx };
     99   descriptor->register_param_count_ = 2;
    100   descriptor->register_params_ = registers;
    101   descriptor->deoptimization_handler_ =
    102       FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
    103 }
    104 
    105 
    106 void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor(
    107     CodeStubInterfaceDescriptor* descriptor) {
    108   static Register registers[] = { edx, ecx };
    109   descriptor->register_param_count_ = 2;
    110   descriptor->register_params_ = registers;
    111   descriptor->deoptimization_handler_ =
    112       FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
    113 }
    114 
    115 
    116 void RegExpConstructResultStub::InitializeInterfaceDescriptor(
    117     CodeStubInterfaceDescriptor* descriptor) {
    118   static Register registers[] = { ecx, ebx, eax };
    119   descriptor->register_param_count_ = 3;
    120   descriptor->register_params_ = registers;
    121   descriptor->deoptimization_handler_ =
    122       Runtime::FunctionForId(Runtime::kHiddenRegExpConstructResult)->entry;
    123 }
    124 
    125 
    126 void KeyedLoadGenericElementStub::InitializeInterfaceDescriptor(
    127     CodeStubInterfaceDescriptor* descriptor) {
    128   static Register registers[] = { edx, ecx };
    129   descriptor->register_param_count_ = 2;
    130   descriptor->register_params_ = registers;
    131   descriptor->deoptimization_handler_ =
    132       Runtime::FunctionForId(Runtime::kKeyedGetProperty)->entry;
    133 }
    134 
    135 
    136 void LoadFieldStub::InitializeInterfaceDescriptor(
    137     CodeStubInterfaceDescriptor* descriptor) {
    138   static Register registers[] = { edx };
    139   descriptor->register_param_count_ = 1;
    140   descriptor->register_params_ = registers;
    141   descriptor->deoptimization_handler_ = NULL;
    142 }
    143 
    144 
    145 void KeyedLoadFieldStub::InitializeInterfaceDescriptor(
    146     CodeStubInterfaceDescriptor* descriptor) {
    147   static Register registers[] = { edx };
    148   descriptor->register_param_count_ = 1;
    149   descriptor->register_params_ = registers;
    150   descriptor->deoptimization_handler_ = NULL;
    151 }
    152 
    153 
    154 void StringLengthStub::InitializeInterfaceDescriptor(
    155     CodeStubInterfaceDescriptor* descriptor) {
    156   static Register registers[] = { edx, ecx };
    157   descriptor->register_param_count_ = 2;
    158   descriptor->register_params_ = registers;
    159   descriptor->deoptimization_handler_ = NULL;
    160 }
    161 
    162 
    163 void KeyedStringLengthStub::InitializeInterfaceDescriptor(
    164     CodeStubInterfaceDescriptor* descriptor) {
    165   static Register registers[] = { edx, ecx };
    166   descriptor->register_param_count_ = 2;
    167   descriptor->register_params_ = registers;
    168   descriptor->deoptimization_handler_ = NULL;
    169 }
    170 
    171 
    172 void KeyedStoreFastElementStub::InitializeInterfaceDescriptor(
    173     CodeStubInterfaceDescriptor* descriptor) {
    174   static Register registers[] = { edx, ecx, eax };
    175   descriptor->register_param_count_ = 3;
    176   descriptor->register_params_ = registers;
    177   descriptor->deoptimization_handler_ =
    178       FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure);
    179 }
    180 
    181 
    182 void TransitionElementsKindStub::InitializeInterfaceDescriptor(
    183     CodeStubInterfaceDescriptor* descriptor) {
    184   static Register registers[] = { eax, ebx };
    185   descriptor->register_param_count_ = 2;
    186   descriptor->register_params_ = registers;
    187   descriptor->deoptimization_handler_ =
    188       Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
    189 }
    190 
    191 
    192 static void InitializeArrayConstructorDescriptor(
    193     Isolate* isolate,
    194     CodeStubInterfaceDescriptor* descriptor,
    195     int constant_stack_parameter_count) {
    196   // register state
    197   // eax -- number of arguments
    198   // edi -- function
    199   // ebx -- allocation site with elements kind
    200   static Register registers_variable_args[] = { edi, ebx, eax };
    201   static Register registers_no_args[] = { edi, ebx };
    202 
    203   if (constant_stack_parameter_count == 0) {
    204     descriptor->register_param_count_ = 2;
    205     descriptor->register_params_ = registers_no_args;
    206   } else {
    207     // stack param count needs (constructor pointer, and single argument)
    208     descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
    209     descriptor->stack_parameter_count_ = eax;
    210     descriptor->register_param_count_ = 3;
    211     descriptor->register_params_ = registers_variable_args;
    212     static Representation representations[] = {
    213         Representation::Tagged(),
    214         Representation::Tagged(),
    215         Representation::Integer32() };
    216     descriptor->register_param_representations_ = representations;
    217   }
    218 
    219   descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
    220   descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
    221   descriptor->deoptimization_handler_ =
    222       Runtime::FunctionForId(Runtime::kHiddenArrayConstructor)->entry;
    223 }
    224 
    225 
    226 static void InitializeInternalArrayConstructorDescriptor(
    227     CodeStubInterfaceDescriptor* descriptor,
    228     int constant_stack_parameter_count) {
    229   // register state
    230   // eax -- number of arguments
    231   // edi -- constructor function
    232   static Register registers_variable_args[] = { edi, eax };
    233   static Register registers_no_args[] = { edi };
    234 
    235   if (constant_stack_parameter_count == 0) {
    236     descriptor->register_param_count_ = 1;
    237     descriptor->register_params_ = registers_no_args;
    238   } else {
    239     // stack param count needs (constructor pointer, and single argument)
    240     descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
    241     descriptor->stack_parameter_count_ = eax;
    242     descriptor->register_param_count_ = 2;
    243     descriptor->register_params_ = registers_variable_args;
    244     static Representation representations[] = {
    245         Representation::Tagged(),
    246         Representation::Integer32() };
    247     descriptor->register_param_representations_ = representations;
    248   }
    249 
    250   descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
    251   descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
    252   descriptor->deoptimization_handler_ =
    253       Runtime::FunctionForId(Runtime::kHiddenInternalArrayConstructor)->entry;
    254 }
    255 
    256 
    257 void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
    258     CodeStubInterfaceDescriptor* descriptor) {
    259   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
    260 }
    261 
    262 
    263 void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
    264     CodeStubInterfaceDescriptor* descriptor) {
    265   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
    266 }
    267 
    268 
    269 void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
    270     CodeStubInterfaceDescriptor* descriptor) {
    271   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
    272 }
    273 
    274 
    275 void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
    276     CodeStubInterfaceDescriptor* descriptor) {
    277   InitializeInternalArrayConstructorDescriptor(descriptor, 0);
    278 }
    279 
    280 
    281 void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
    282     CodeStubInterfaceDescriptor* descriptor) {
    283   InitializeInternalArrayConstructorDescriptor(descriptor, 1);
    284 }
    285 
    286 
    287 void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
    288     CodeStubInterfaceDescriptor* descriptor) {
    289   InitializeInternalArrayConstructorDescriptor(descriptor, -1);
    290 }
    291 
    292 
    293 void CompareNilICStub::InitializeInterfaceDescriptor(
    294     CodeStubInterfaceDescriptor* descriptor) {
    295   static Register registers[] = { eax };
    296   descriptor->register_param_count_ = 1;
    297   descriptor->register_params_ = registers;
    298   descriptor->deoptimization_handler_ =
    299       FUNCTION_ADDR(CompareNilIC_Miss);
    300   descriptor->SetMissHandler(
    301       ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate()));
    302 }
    303 
    304 void ToBooleanStub::InitializeInterfaceDescriptor(
    305     CodeStubInterfaceDescriptor* descriptor) {
    306   static Register registers[] = { eax };
    307   descriptor->register_param_count_ = 1;
    308   descriptor->register_params_ = registers;
    309   descriptor->deoptimization_handler_ =
    310       FUNCTION_ADDR(ToBooleanIC_Miss);
    311   descriptor->SetMissHandler(
    312       ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate()));
    313 }
    314 
    315 
    316 void StoreGlobalStub::InitializeInterfaceDescriptor(
    317     CodeStubInterfaceDescriptor* descriptor) {
    318   static Register registers[] = { edx, ecx, eax };
    319   descriptor->register_param_count_ = 3;
    320   descriptor->register_params_ = registers;
    321   descriptor->deoptimization_handler_ =
    322       FUNCTION_ADDR(StoreIC_MissFromStubFailure);
    323 }
    324 
    325 
    326 void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor(
    327     CodeStubInterfaceDescriptor* descriptor) {
    328   static Register registers[] = { eax, ebx, ecx, edx };
    329   descriptor->register_param_count_ = 4;
    330   descriptor->register_params_ = registers;
    331   descriptor->deoptimization_handler_ =
    332       FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss);
    333 }
    334 
    335 
    336 void BinaryOpICStub::InitializeInterfaceDescriptor(
    337     CodeStubInterfaceDescriptor* descriptor) {
    338   static Register registers[] = { edx, eax };
    339   descriptor->register_param_count_ = 2;
    340   descriptor->register_params_ = registers;
    341   descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss);
    342   descriptor->SetMissHandler(
    343       ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate()));
    344 }
    345 
    346 
    347 void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor(
    348     CodeStubInterfaceDescriptor* descriptor) {
    349   static Register registers[] = { ecx, edx, eax };
    350   descriptor->register_param_count_ = 3;
    351   descriptor->register_params_ = registers;
    352   descriptor->deoptimization_handler_ =
    353       FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite);
    354 }
    355 
    356 
    357 void StringAddStub::InitializeInterfaceDescriptor(
    358     CodeStubInterfaceDescriptor* descriptor) {
    359   static Register registers[] = { edx, eax };
    360   descriptor->register_param_count_ = 2;
    361   descriptor->register_params_ = registers;
    362   descriptor->deoptimization_handler_ =
    363       Runtime::FunctionForId(Runtime::kHiddenStringAdd)->entry;
    364 }
    365 
    366 
    367 void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
    368   {
    369     CallInterfaceDescriptor* descriptor =
    370         isolate->call_descriptor(Isolate::ArgumentAdaptorCall);
    371     static Register registers[] = { edi,  // JSFunction
    372                                     esi,  // context
    373                                     eax,  // actual number of arguments
    374                                     ebx,  // expected number of arguments
    375     };
    376     static Representation representations[] = {
    377         Representation::Tagged(),     // JSFunction
    378         Representation::Tagged(),     // context
    379         Representation::Integer32(),  // actual number of arguments
    380         Representation::Integer32(),  // expected number of arguments
    381     };
    382     descriptor->register_param_count_ = 4;
    383     descriptor->register_params_ = registers;
    384     descriptor->param_representations_ = representations;
    385   }
    386   {
    387     CallInterfaceDescriptor* descriptor =
    388         isolate->call_descriptor(Isolate::KeyedCall);
    389     static Register registers[] = { esi,  // context
    390                                     ecx,  // key
    391     };
    392     static Representation representations[] = {
    393         Representation::Tagged(),     // context
    394         Representation::Tagged(),     // key
    395     };
    396     descriptor->register_param_count_ = 2;
    397     descriptor->register_params_ = registers;
    398     descriptor->param_representations_ = representations;
    399   }
    400   {
    401     CallInterfaceDescriptor* descriptor =
    402         isolate->call_descriptor(Isolate::NamedCall);
    403     static Register registers[] = { esi,  // context
    404                                     ecx,  // name
    405     };
    406     static Representation representations[] = {
    407         Representation::Tagged(),     // context
    408         Representation::Tagged(),     // name
    409     };
    410     descriptor->register_param_count_ = 2;
    411     descriptor->register_params_ = registers;
    412     descriptor->param_representations_ = representations;
    413   }
    414   {
    415     CallInterfaceDescriptor* descriptor =
    416         isolate->call_descriptor(Isolate::CallHandler);
    417     static Register registers[] = { esi,  // context
    418                                     edx,  // receiver
    419     };
    420     static Representation representations[] = {
    421         Representation::Tagged(),  // context
    422         Representation::Tagged(),  // receiver
    423     };
    424     descriptor->register_param_count_ = 2;
    425     descriptor->register_params_ = registers;
    426     descriptor->param_representations_ = representations;
    427   }
    428   {
    429     CallInterfaceDescriptor* descriptor =
    430         isolate->call_descriptor(Isolate::ApiFunctionCall);
    431     static Register registers[] = { eax,  // callee
    432                                     ebx,  // call_data
    433                                     ecx,  // holder
    434                                     edx,  // api_function_address
    435                                     esi,  // context
    436     };
    437     static Representation representations[] = {
    438         Representation::Tagged(),    // callee
    439         Representation::Tagged(),    // call_data
    440         Representation::Tagged(),    // holder
    441         Representation::External(),  // api_function_address
    442         Representation::Tagged(),    // context
    443     };
    444     descriptor->register_param_count_ = 5;
    445     descriptor->register_params_ = registers;
    446     descriptor->param_representations_ = representations;
    447   }
    448 }
    449 
    450 
    451 #define __ ACCESS_MASM(masm)
    452 
    453 
    454 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
    455   // Update the static counter each time a new code stub is generated.
    456   isolate()->counters()->code_stubs()->Increment();
    457 
    458   CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor();
    459   int param_count = descriptor->register_param_count_;
    460   {
    461     // Call the runtime system in a fresh internal frame.
    462     FrameScope scope(masm, StackFrame::INTERNAL);
    463     ASSERT(descriptor->register_param_count_ == 0 ||
    464            eax.is(descriptor->register_params_[param_count - 1]));
    465     // Push arguments
    466     for (int i = 0; i < param_count; ++i) {
    467       __ push(descriptor->register_params_[i]);
    468     }
    469     ExternalReference miss = descriptor->miss_handler();
    470     __ CallExternalReference(miss, descriptor->register_param_count_);
    471   }
    472 
    473   __ ret(0);
    474 }
    475 
    476 
    477 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
    478   // We don't allow a GC during a store buffer overflow so there is no need to
    479   // store the registers in any particular way, but we do have to store and
    480   // restore them.
    481   __ pushad();
    482   if (save_doubles_ == kSaveFPRegs) {
    483     __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
    484     for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
    485       XMMRegister reg = XMMRegister::from_code(i);
    486       __ movsd(Operand(esp, i * kDoubleSize), reg);
    487     }
    488   }
    489   const int argument_count = 1;
    490 
    491   AllowExternalCallThatCantCauseGC scope(masm);
    492   __ PrepareCallCFunction(argument_count, ecx);
    493   __ mov(Operand(esp, 0 * kPointerSize),
    494          Immediate(ExternalReference::isolate_address(isolate())));
    495   __ CallCFunction(
    496       ExternalReference::store_buffer_overflow_function(isolate()),
    497       argument_count);
    498   if (save_doubles_ == kSaveFPRegs) {
    499     for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
    500       XMMRegister reg = XMMRegister::from_code(i);
    501       __ movsd(reg, Operand(esp, i * kDoubleSize));
    502     }
    503     __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
    504   }
    505   __ popad();
    506   __ ret(0);
    507 }
    508 
    509 
    510 class FloatingPointHelper : public AllStatic {
    511  public:
    512   enum ArgLocation {
    513     ARGS_ON_STACK,
    514     ARGS_IN_REGISTERS
    515   };
    516 
    517   // Code pattern for loading a floating point value. Input value must
    518   // be either a smi or a heap number object (fp value). Requirements:
    519   // operand in register number. Returns operand as floating point number
    520   // on FPU stack.
    521   static void LoadFloatOperand(MacroAssembler* masm, Register number);
    522 
    523   // Test if operands are smi or number objects (fp). Requirements:
    524   // operand_1 in eax, operand_2 in edx; falls through on float
    525   // operands, jumps to the non_float label otherwise.
    526   static void CheckFloatOperands(MacroAssembler* masm,
    527                                  Label* non_float,
    528                                  Register scratch);
    529 
    530   // Test if operands are numbers (smi or HeapNumber objects), and load
    531   // them into xmm0 and xmm1 if they are.  Jump to label not_numbers if
    532   // either operand is not a number.  Operands are in edx and eax.
    533   // Leaves operands unchanged.
    534   static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
    535 };
    536 
    537 
    538 void DoubleToIStub::Generate(MacroAssembler* masm) {
    539   Register input_reg = this->source();
    540   Register final_result_reg = this->destination();
    541   ASSERT(is_truncating());
    542 
    543   Label check_negative, process_64_bits, done, done_no_stash;
    544 
    545   int double_offset = offset();
    546 
    547   // Account for return address and saved regs if input is esp.
    548   if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
    549 
    550   MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
    551   MemOperand exponent_operand(MemOperand(input_reg,
    552                                          double_offset + kDoubleSize / 2));
    553 
    554   Register scratch1;
    555   {
    556     Register scratch_candidates[3] = { ebx, edx, edi };
    557     for (int i = 0; i < 3; i++) {
    558       scratch1 = scratch_candidates[i];
    559       if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
    560     }
    561   }
    562   // Since we must use ecx for shifts below, use some other register (eax)
    563   // to calculate the result if ecx is the requested return register.
    564   Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
    565   // Save ecx if it isn't the return register and therefore volatile, or if it
    566   // is the return register, then save the temp register we use in its stead for
    567   // the result.
    568   Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
    569   __ push(scratch1);
    570   __ push(save_reg);
    571 
    572   bool stash_exponent_copy = !input_reg.is(esp);
    573   __ mov(scratch1, mantissa_operand);
    574   if (CpuFeatures::IsSupported(SSE3)) {
    575     CpuFeatureScope scope(masm, SSE3);
    576     // Load x87 register with heap number.
    577     __ fld_d(mantissa_operand);
    578   }
    579   __ mov(ecx, exponent_operand);
    580   if (stash_exponent_copy) __ push(ecx);
    581 
    582   __ and_(ecx, HeapNumber::kExponentMask);
    583   __ shr(ecx, HeapNumber::kExponentShift);
    584   __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
    585   __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
    586   __ j(below, &process_64_bits);
    587 
    588   // Result is entirely in lower 32-bits of mantissa
    589   int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
    590   if (CpuFeatures::IsSupported(SSE3)) {
    591     __ fstp(0);
    592   }
    593   __ sub(ecx, Immediate(delta));
    594   __ xor_(result_reg, result_reg);
    595   __ cmp(ecx, Immediate(31));
    596   __ j(above, &done);
    597   __ shl_cl(scratch1);
    598   __ jmp(&check_negative);
    599 
    600   __ bind(&process_64_bits);
    601   if (CpuFeatures::IsSupported(SSE3)) {
    602     CpuFeatureScope scope(masm, SSE3);
    603     if (stash_exponent_copy) {
    604       // Already a copy of the exponent on the stack, overwrite it.
    605       STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
    606       __ sub(esp, Immediate(kDoubleSize / 2));
    607     } else {
    608       // Reserve space for 64 bit answer.
    609       __ sub(esp, Immediate(kDoubleSize));  // Nolint.
    610     }
    611     // Do conversion, which cannot fail because we checked the exponent.
    612     __ fisttp_d(Operand(esp, 0));
    613     __ mov(result_reg, Operand(esp, 0));  // Load low word of answer as result
    614     __ add(esp, Immediate(kDoubleSize));
    615     __ jmp(&done_no_stash);
    616   } else {
    617     // Result must be extracted from shifted 32-bit mantissa
    618     __ sub(ecx, Immediate(delta));
    619     __ neg(ecx);
    620     if (stash_exponent_copy) {
    621       __ mov(result_reg, MemOperand(esp, 0));
    622     } else {
    623       __ mov(result_reg, exponent_operand);
    624     }
    625     __ and_(result_reg,
    626             Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
    627     __ add(result_reg,
    628            Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
    629     __ shrd(result_reg, scratch1);
    630     __ shr_cl(result_reg);
    631     __ test(ecx, Immediate(32));
    632     __ cmov(not_equal, scratch1, result_reg);
    633   }
    634 
    635   // If the double was negative, negate the integer result.
    636   __ bind(&check_negative);
    637   __ mov(result_reg, scratch1);
    638   __ neg(result_reg);
    639   if (stash_exponent_copy) {
    640     __ cmp(MemOperand(esp, 0), Immediate(0));
    641   } else {
    642     __ cmp(exponent_operand, Immediate(0));
    643   }
    644     __ cmov(greater, result_reg, scratch1);
    645 
    646   // Restore registers
    647   __ bind(&done);
    648   if (stash_exponent_copy) {
    649     __ add(esp, Immediate(kDoubleSize / 2));
    650   }
    651   __ bind(&done_no_stash);
    652   if (!final_result_reg.is(result_reg)) {
    653     ASSERT(final_result_reg.is(ecx));
    654     __ mov(final_result_reg, result_reg);
    655   }
    656   __ pop(save_reg);
    657   __ pop(scratch1);
    658   __ ret(0);
    659 }
    660 
    661 
    662 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
    663                                            Register number) {
    664   Label load_smi, done;
    665 
    666   __ JumpIfSmi(number, &load_smi, Label::kNear);
    667   __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
    668   __ jmp(&done, Label::kNear);
    669 
    670   __ bind(&load_smi);
    671   __ SmiUntag(number);
    672   __ push(number);
    673   __ fild_s(Operand(esp, 0));
    674   __ pop(number);
    675 
    676   __ bind(&done);
    677 }
    678 
    679 
    680 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
    681                                            Label* not_numbers) {
    682   Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
    683   // Load operand in edx into xmm0, or branch to not_numbers.
    684   __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
    685   Factory* factory = masm->isolate()->factory();
    686   __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
    687   __ j(not_equal, not_numbers);  // Argument in edx is not a number.
    688   __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
    689   __ bind(&load_eax);
    690   // Load operand in eax into xmm1, or branch to not_numbers.
    691   __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
    692   __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
    693   __ j(equal, &load_float_eax, Label::kNear);
    694   __ jmp(not_numbers);  // Argument in eax is not a number.
    695   __ bind(&load_smi_edx);
    696   __ SmiUntag(edx);  // Untag smi before converting to float.
    697   __ Cvtsi2sd(xmm0, edx);
    698   __ SmiTag(edx);  // Retag smi for heap number overwriting test.
    699   __ jmp(&load_eax);
    700   __ bind(&load_smi_eax);
    701   __ SmiUntag(eax);  // Untag smi before converting to float.
    702   __ Cvtsi2sd(xmm1, eax);
    703   __ SmiTag(eax);  // Retag smi for heap number overwriting test.
    704   __ jmp(&done, Label::kNear);
    705   __ bind(&load_float_eax);
    706   __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
    707   __ bind(&done);
    708 }
    709 
    710 
    711 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
    712                                              Label* non_float,
    713                                              Register scratch) {
    714   Label test_other, done;
    715   // Test if both operands are floats or smi -> scratch=k_is_float;
    716   // Otherwise scratch = k_not_float.
    717   __ JumpIfSmi(edx, &test_other, Label::kNear);
    718   __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
    719   Factory* factory = masm->isolate()->factory();
    720   __ cmp(scratch, factory->heap_number_map());
    721   __ j(not_equal, non_float);  // argument in edx is not a number -> NaN
    722 
    723   __ bind(&test_other);
    724   __ JumpIfSmi(eax, &done, Label::kNear);
    725   __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
    726   __ cmp(scratch, factory->heap_number_map());
    727   __ j(not_equal, non_float);  // argument in eax is not a number -> NaN
    728 
    729   // Fall-through: Both operands are numbers.
    730   __ bind(&done);
    731 }
    732 
    733 
    734 void MathPowStub::Generate(MacroAssembler* masm) {
    735   Factory* factory = isolate()->factory();
    736   const Register exponent = eax;
    737   const Register base = edx;
    738   const Register scratch = ecx;
    739   const XMMRegister double_result = xmm3;
    740   const XMMRegister double_base = xmm2;
    741   const XMMRegister double_exponent = xmm1;
    742   const XMMRegister double_scratch = xmm4;
    743 
    744   Label call_runtime, done, exponent_not_smi, int_exponent;
    745 
    746   // Save 1 in double_result - we need this several times later on.
    747   __ mov(scratch, Immediate(1));
    748   __ Cvtsi2sd(double_result, scratch);
    749 
    750   if (exponent_type_ == ON_STACK) {
    751     Label base_is_smi, unpack_exponent;
    752     // The exponent and base are supplied as arguments on the stack.
    753     // This can only happen if the stub is called from non-optimized code.
    754     // Load input parameters from stack.
    755     __ mov(base, Operand(esp, 2 * kPointerSize));
    756     __ mov(exponent, Operand(esp, 1 * kPointerSize));
    757 
    758     __ JumpIfSmi(base, &base_is_smi, Label::kNear);
    759     __ cmp(FieldOperand(base, HeapObject::kMapOffset),
    760            factory->heap_number_map());
    761     __ j(not_equal, &call_runtime);
    762 
    763     __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
    764     __ jmp(&unpack_exponent, Label::kNear);
    765 
    766     __ bind(&base_is_smi);
    767     __ SmiUntag(base);
    768     __ Cvtsi2sd(double_base, base);
    769 
    770     __ bind(&unpack_exponent);
    771     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
    772     __ SmiUntag(exponent);
    773     __ jmp(&int_exponent);
    774 
    775     __ bind(&exponent_not_smi);
    776     __ cmp(FieldOperand(exponent, HeapObject::kMapOffset),
    777            factory->heap_number_map());
    778     __ j(not_equal, &call_runtime);
    779     __ movsd(double_exponent,
    780               FieldOperand(exponent, HeapNumber::kValueOffset));
    781   } else if (exponent_type_ == TAGGED) {
    782     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
    783     __ SmiUntag(exponent);
    784     __ jmp(&int_exponent);
    785 
    786     __ bind(&exponent_not_smi);
    787     __ movsd(double_exponent,
    788               FieldOperand(exponent, HeapNumber::kValueOffset));
    789   }
    790 
    791   if (exponent_type_ != INTEGER) {
    792     Label fast_power, try_arithmetic_simplification;
    793     __ DoubleToI(exponent, double_exponent, double_scratch,
    794                  TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification);
    795     __ jmp(&int_exponent);
    796 
    797     __ bind(&try_arithmetic_simplification);
    798     // Skip to runtime if possibly NaN (indicated by the indefinite integer).
    799     __ cvttsd2si(exponent, Operand(double_exponent));
    800     __ cmp(exponent, Immediate(0x1));
    801     __ j(overflow, &call_runtime);
    802 
    803     if (exponent_type_ == ON_STACK) {
    804       // Detect square root case.  Crankshaft detects constant +/-0.5 at
    805       // compile time and uses DoMathPowHalf instead.  We then skip this check
    806       // for non-constant cases of +/-0.5 as these hardly occur.
    807       Label continue_sqrt, continue_rsqrt, not_plus_half;
    808       // Test for 0.5.
    809       // Load double_scratch with 0.5.
    810       __ mov(scratch, Immediate(0x3F000000u));
    811       __ movd(double_scratch, scratch);
    812       __ cvtss2sd(double_scratch, double_scratch);
    813       // Already ruled out NaNs for exponent.
    814       __ ucomisd(double_scratch, double_exponent);
    815       __ j(not_equal, &not_plus_half, Label::kNear);
    816 
    817       // Calculates square root of base.  Check for the special case of
    818       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
    819       // According to IEEE-754, single-precision -Infinity has the highest
    820       // 9 bits set and the lowest 23 bits cleared.
    821       __ mov(scratch, 0xFF800000u);
    822       __ movd(double_scratch, scratch);
    823       __ cvtss2sd(double_scratch, double_scratch);
    824       __ ucomisd(double_base, double_scratch);
    825       // Comparing -Infinity with NaN results in "unordered", which sets the
    826       // zero flag as if both were equal.  However, it also sets the carry flag.
    827       __ j(not_equal, &continue_sqrt, Label::kNear);
    828       __ j(carry, &continue_sqrt, Label::kNear);
    829 
    830       // Set result to Infinity in the special case.
    831       __ xorps(double_result, double_result);
    832       __ subsd(double_result, double_scratch);
    833       __ jmp(&done);
    834 
    835       __ bind(&continue_sqrt);
    836       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
    837       __ xorps(double_scratch, double_scratch);
    838       __ addsd(double_scratch, double_base);  // Convert -0 to +0.
    839       __ sqrtsd(double_result, double_scratch);
    840       __ jmp(&done);
    841 
    842       // Test for -0.5.
    843       __ bind(&not_plus_half);
    844       // Load double_exponent with -0.5 by substracting 1.
    845       __ subsd(double_scratch, double_result);
    846       // Already ruled out NaNs for exponent.
    847       __ ucomisd(double_scratch, double_exponent);
    848       __ j(not_equal, &fast_power, Label::kNear);
    849 
    850       // Calculates reciprocal of square root of base.  Check for the special
    851       // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
    852       // According to IEEE-754, single-precision -Infinity has the highest
    853       // 9 bits set and the lowest 23 bits cleared.
    854       __ mov(scratch, 0xFF800000u);
    855       __ movd(double_scratch, scratch);
    856       __ cvtss2sd(double_scratch, double_scratch);
    857       __ ucomisd(double_base, double_scratch);
    858       // Comparing -Infinity with NaN results in "unordered", which sets the
    859       // zero flag as if both were equal.  However, it also sets the carry flag.
    860       __ j(not_equal, &continue_rsqrt, Label::kNear);
    861       __ j(carry, &continue_rsqrt, Label::kNear);
    862 
    863       // Set result to 0 in the special case.
    864       __ xorps(double_result, double_result);
    865       __ jmp(&done);
    866 
    867       __ bind(&continue_rsqrt);
    868       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
    869       __ xorps(double_exponent, double_exponent);
    870       __ addsd(double_exponent, double_base);  // Convert -0 to +0.
    871       __ sqrtsd(double_exponent, double_exponent);
    872       __ divsd(double_result, double_exponent);
    873       __ jmp(&done);
    874     }
    875 
    876     // Using FPU instructions to calculate power.
    877     Label fast_power_failed;
    878     __ bind(&fast_power);
    879     __ fnclex();  // Clear flags to catch exceptions later.
    880     // Transfer (B)ase and (E)xponent onto the FPU register stack.
    881     __ sub(esp, Immediate(kDoubleSize));
    882     __ movsd(Operand(esp, 0), double_exponent);
    883     __ fld_d(Operand(esp, 0));  // E
    884     __ movsd(Operand(esp, 0), double_base);
    885     __ fld_d(Operand(esp, 0));  // B, E
    886 
    887     // Exponent is in st(1) and base is in st(0)
    888     // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
    889     // FYL2X calculates st(1) * log2(st(0))
    890     __ fyl2x();    // X
    891     __ fld(0);     // X, X
    892     __ frndint();  // rnd(X), X
    893     __ fsub(1);    // rnd(X), X-rnd(X)
    894     __ fxch(1);    // X - rnd(X), rnd(X)
    895     // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
    896     __ f2xm1();    // 2^(X-rnd(X)) - 1, rnd(X)
    897     __ fld1();     // 1, 2^(X-rnd(X)) - 1, rnd(X)
    898     __ faddp(1);   // 2^(X-rnd(X)), rnd(X)
    899     // FSCALE calculates st(0) * 2^st(1)
    900     __ fscale();   // 2^X, rnd(X)
    901     __ fstp(1);    // 2^X
    902     // Bail out to runtime in case of exceptions in the status word.
    903     __ fnstsw_ax();
    904     __ test_b(eax, 0x5F);  // We check for all but precision exception.
    905     __ j(not_zero, &fast_power_failed, Label::kNear);
    906     __ fstp_d(Operand(esp, 0));
    907     __ movsd(double_result, Operand(esp, 0));
    908     __ add(esp, Immediate(kDoubleSize));
    909     __ jmp(&done);
    910 
    911     __ bind(&fast_power_failed);
    912     __ fninit();
    913     __ add(esp, Immediate(kDoubleSize));
    914     __ jmp(&call_runtime);
    915   }
    916 
    917   // Calculate power with integer exponent.
    918   __ bind(&int_exponent);
    919   const XMMRegister double_scratch2 = double_exponent;
    920   __ mov(scratch, exponent);  // Back up exponent.
    921   __ movsd(double_scratch, double_base);  // Back up base.
    922   __ movsd(double_scratch2, double_result);  // Load double_exponent with 1.
    923 
    924   // Get absolute value of exponent.
    925   Label no_neg, while_true, while_false;
    926   __ test(scratch, scratch);
    927   __ j(positive, &no_neg, Label::kNear);
    928   __ neg(scratch);
    929   __ bind(&no_neg);
    930 
    931   __ j(zero, &while_false, Label::kNear);
    932   __ shr(scratch, 1);
    933   // Above condition means CF==0 && ZF==0.  This means that the
    934   // bit that has been shifted out is 0 and the result is not 0.
    935   __ j(above, &while_true, Label::kNear);
    936   __ movsd(double_result, double_scratch);
    937   __ j(zero, &while_false, Label::kNear);
    938 
    939   __ bind(&while_true);
    940   __ shr(scratch, 1);
    941   __ mulsd(double_scratch, double_scratch);
    942   __ j(above, &while_true, Label::kNear);
    943   __ mulsd(double_result, double_scratch);
    944   __ j(not_zero, &while_true);
    945 
    946   __ bind(&while_false);
    947   // scratch has the original value of the exponent - if the exponent is
    948   // negative, return 1/result.
    949   __ test(exponent, exponent);
    950   __ j(positive, &done);
    951   __ divsd(double_scratch2, double_result);
    952   __ movsd(double_result, double_scratch2);
    953   // Test whether result is zero.  Bail out to check for subnormal result.
    954   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
    955   __ xorps(double_scratch2, double_scratch2);
    956   __ ucomisd(double_scratch2, double_result);  // Result cannot be NaN.
    957   // double_exponent aliased as double_scratch2 has already been overwritten
    958   // and may not have contained the exponent value in the first place when the
    959   // exponent is a smi.  We reset it with exponent value before bailing out.
    960   __ j(not_equal, &done);
    961   __ Cvtsi2sd(double_exponent, exponent);
    962 
    963   // Returning or bailing out.
    964   Counters* counters = isolate()->counters();
    965   if (exponent_type_ == ON_STACK) {
    966     // The arguments are still on the stack.
    967     __ bind(&call_runtime);
    968     __ TailCallRuntime(Runtime::kHiddenMathPow, 2, 1);
    969 
    970     // The stub is called from non-optimized code, which expects the result
    971     // as heap number in exponent.
    972     __ bind(&done);
    973     __ AllocateHeapNumber(eax, scratch, base, &call_runtime);
    974     __ movsd(FieldOperand(eax, HeapNumber::kValueOffset), double_result);
    975     __ IncrementCounter(counters->math_pow(), 1);
    976     __ ret(2 * kPointerSize);
    977   } else {
    978     __ bind(&call_runtime);
    979     {
    980       AllowExternalCallThatCantCauseGC scope(masm);
    981       __ PrepareCallCFunction(4, scratch);
    982       __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
    983       __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
    984       __ CallCFunction(
    985           ExternalReference::power_double_double_function(isolate()), 4);
    986     }
    987     // Return value is in st(0) on ia32.
    988     // Store it into the (fixed) result register.
    989     __ sub(esp, Immediate(kDoubleSize));
    990     __ fstp_d(Operand(esp, 0));
    991     __ movsd(double_result, Operand(esp, 0));
    992     __ add(esp, Immediate(kDoubleSize));
    993 
    994     __ bind(&done);
    995     __ IncrementCounter(counters->math_pow(), 1);
    996     __ ret(0);
    997   }
    998 }
    999 
   1000 
   1001 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
   1002   // ----------- S t a t e -------------
   1003   //  -- ecx    : name
   1004   //  -- edx    : receiver
   1005   //  -- esp[0] : return address
   1006   // -----------------------------------
   1007   Label miss;
   1008 
   1009   if (kind() == Code::KEYED_LOAD_IC) {
   1010     __ cmp(ecx, Immediate(isolate()->factory()->prototype_string()));
   1011     __ j(not_equal, &miss);
   1012   }
   1013 
   1014   StubCompiler::GenerateLoadFunctionPrototype(masm, edx, eax, ebx, &miss);
   1015   __ bind(&miss);
   1016   StubCompiler::TailCallBuiltin(
   1017       masm, BaseLoadStoreStubCompiler::MissBuiltin(kind()));
   1018 }
   1019 
   1020 
   1021 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
   1022   // The key is in edx and the parameter count is in eax.
   1023 
   1024   // The displacement is used for skipping the frame pointer on the
   1025   // stack. It is the offset of the last parameter (if any) relative
   1026   // to the frame pointer.
   1027   static const int kDisplacement = 1 * kPointerSize;
   1028 
   1029   // Check that the key is a smi.
   1030   Label slow;
   1031   __ JumpIfNotSmi(edx, &slow, Label::kNear);
   1032 
   1033   // Check if the calling frame is an arguments adaptor frame.
   1034   Label adaptor;
   1035   __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   1036   __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
   1037   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1038   __ j(equal, &adaptor, Label::kNear);
   1039 
   1040   // Check index against formal parameters count limit passed in
   1041   // through register eax. Use unsigned comparison to get negative
   1042   // check for free.
   1043   __ cmp(edx, eax);
   1044   __ j(above_equal, &slow, Label::kNear);
   1045 
   1046   // Read the argument from the stack and return it.
   1047   STATIC_ASSERT(kSmiTagSize == 1);
   1048   STATIC_ASSERT(kSmiTag == 0);  // Shifting code depends on these.
   1049   __ lea(ebx, Operand(ebp, eax, times_2, 0));
   1050   __ neg(edx);
   1051   __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
   1052   __ ret(0);
   1053 
   1054   // Arguments adaptor case: Check index against actual arguments
   1055   // limit found in the arguments adaptor frame. Use unsigned
   1056   // comparison to get negative check for free.
   1057   __ bind(&adaptor);
   1058   __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1059   __ cmp(edx, ecx);
   1060   __ j(above_equal, &slow, Label::kNear);
   1061 
   1062   // Read the argument from the stack and return it.
   1063   STATIC_ASSERT(kSmiTagSize == 1);
   1064   STATIC_ASSERT(kSmiTag == 0);  // Shifting code depends on these.
   1065   __ lea(ebx, Operand(ebx, ecx, times_2, 0));
   1066   __ neg(edx);
   1067   __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
   1068   __ ret(0);
   1069 
   1070   // Slow-case: Handle non-smi or out-of-bounds access to arguments
   1071   // by calling the runtime system.
   1072   __ bind(&slow);
   1073   __ pop(ebx);  // Return address.
   1074   __ push(edx);
   1075   __ push(ebx);
   1076   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
   1077 }
   1078 
   1079 
   1080 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
   1081   // esp[0] : return address
   1082   // esp[4] : number of parameters
   1083   // esp[8] : receiver displacement
   1084   // esp[12] : function
   1085 
   1086   // Check if the calling frame is an arguments adaptor frame.
   1087   Label runtime;
   1088   __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   1089   __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
   1090   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1091   __ j(not_equal, &runtime, Label::kNear);
   1092 
   1093   // Patch the arguments.length and the parameters pointer.
   1094   __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1095   __ mov(Operand(esp, 1 * kPointerSize), ecx);
   1096   __ lea(edx, Operand(edx, ecx, times_2,
   1097               StandardFrameConstants::kCallerSPOffset));
   1098   __ mov(Operand(esp, 2 * kPointerSize), edx);
   1099 
   1100   __ bind(&runtime);
   1101   __ TailCallRuntime(Runtime::kHiddenNewSloppyArguments, 3, 1);
   1102 }
   1103 
   1104 
   1105 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
   1106   // esp[0] : return address
   1107   // esp[4] : number of parameters (tagged)
   1108   // esp[8] : receiver displacement
   1109   // esp[12] : function
   1110 
   1111   // ebx = parameter count (tagged)
   1112   __ mov(ebx, Operand(esp, 1 * kPointerSize));
   1113 
   1114   // Check if the calling frame is an arguments adaptor frame.
   1115   // TODO(rossberg): Factor out some of the bits that are shared with the other
   1116   // Generate* functions.
   1117   Label runtime;
   1118   Label adaptor_frame, try_allocate;
   1119   __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   1120   __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
   1121   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1122   __ j(equal, &adaptor_frame, Label::kNear);
   1123 
   1124   // No adaptor, parameter count = argument count.
   1125   __ mov(ecx, ebx);
   1126   __ jmp(&try_allocate, Label::kNear);
   1127 
   1128   // We have an adaptor frame. Patch the parameters pointer.
   1129   __ bind(&adaptor_frame);
   1130   __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1131   __ lea(edx, Operand(edx, ecx, times_2,
   1132                       StandardFrameConstants::kCallerSPOffset));
   1133   __ mov(Operand(esp, 2 * kPointerSize), edx);
   1134 
   1135   // ebx = parameter count (tagged)
   1136   // ecx = argument count (tagged)
   1137   // esp[4] = parameter count (tagged)
   1138   // esp[8] = address of receiver argument
   1139   // Compute the mapped parameter count = min(ebx, ecx) in ebx.
   1140   __ cmp(ebx, ecx);
   1141   __ j(less_equal, &try_allocate, Label::kNear);
   1142   __ mov(ebx, ecx);
   1143 
   1144   __ bind(&try_allocate);
   1145 
   1146   // Save mapped parameter count.
   1147   __ push(ebx);
   1148 
   1149   // Compute the sizes of backing store, parameter map, and arguments object.
   1150   // 1. Parameter map, has 2 extra words containing context and backing store.
   1151   const int kParameterMapHeaderSize =
   1152       FixedArray::kHeaderSize + 2 * kPointerSize;
   1153   Label no_parameter_map;
   1154   __ test(ebx, ebx);
   1155   __ j(zero, &no_parameter_map, Label::kNear);
   1156   __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
   1157   __ bind(&no_parameter_map);
   1158 
   1159   // 2. Backing store.
   1160   __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
   1161 
   1162   // 3. Arguments object.
   1163   __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
   1164 
   1165   // Do the allocation of all three objects in one go.
   1166   __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
   1167 
   1168   // eax = address of new object(s) (tagged)
   1169   // ecx = argument count (tagged)
   1170   // esp[0] = mapped parameter count (tagged)
   1171   // esp[8] = parameter count (tagged)
   1172   // esp[12] = address of receiver argument
   1173   // Get the arguments boilerplate from the current native context into edi.
   1174   Label has_mapped_parameters, copy;
   1175   __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   1176   __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
   1177   __ mov(ebx, Operand(esp, 0 * kPointerSize));
   1178   __ test(ebx, ebx);
   1179   __ j(not_zero, &has_mapped_parameters, Label::kNear);
   1180   __ mov(edi, Operand(edi,
   1181          Context::SlotOffset(Context::SLOPPY_ARGUMENTS_BOILERPLATE_INDEX)));
   1182   __ jmp(&copy, Label::kNear);
   1183 
   1184   __ bind(&has_mapped_parameters);
   1185   __ mov(edi, Operand(edi,
   1186             Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX)));
   1187   __ bind(&copy);
   1188 
   1189   // eax = address of new object (tagged)
   1190   // ebx = mapped parameter count (tagged)
   1191   // ecx = argument count (tagged)
   1192   // edi = address of boilerplate object (tagged)
   1193   // esp[0] = mapped parameter count (tagged)
   1194   // esp[8] = parameter count (tagged)
   1195   // esp[12] = address of receiver argument
   1196   // Copy the JS object part.
   1197   for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
   1198     __ mov(edx, FieldOperand(edi, i));
   1199     __ mov(FieldOperand(eax, i), edx);
   1200   }
   1201 
   1202   // Set up the callee in-object property.
   1203   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
   1204   __ mov(edx, Operand(esp, 4 * kPointerSize));
   1205   __ mov(FieldOperand(eax, JSObject::kHeaderSize +
   1206                       Heap::kArgumentsCalleeIndex * kPointerSize),
   1207          edx);
   1208 
   1209   // Use the length (smi tagged) and set that as an in-object property too.
   1210   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
   1211   __ mov(FieldOperand(eax, JSObject::kHeaderSize +
   1212                       Heap::kArgumentsLengthIndex * kPointerSize),
   1213          ecx);
   1214 
   1215   // Set up the elements pointer in the allocated arguments object.
   1216   // If we allocated a parameter map, edi will point there, otherwise to the
   1217   // backing store.
   1218   __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
   1219   __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
   1220 
   1221   // eax = address of new object (tagged)
   1222   // ebx = mapped parameter count (tagged)
   1223   // ecx = argument count (tagged)
   1224   // edi = address of parameter map or backing store (tagged)
   1225   // esp[0] = mapped parameter count (tagged)
   1226   // esp[8] = parameter count (tagged)
   1227   // esp[12] = address of receiver argument
   1228   // Free a register.
   1229   __ push(eax);
   1230 
   1231   // Initialize parameter map. If there are no mapped arguments, we're done.
   1232   Label skip_parameter_map;
   1233   __ test(ebx, ebx);
   1234   __ j(zero, &skip_parameter_map);
   1235 
   1236   __ mov(FieldOperand(edi, FixedArray::kMapOffset),
   1237          Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
   1238   __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
   1239   __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
   1240   __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
   1241   __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
   1242   __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
   1243 
   1244   // Copy the parameter slots and the holes in the arguments.
   1245   // We need to fill in mapped_parameter_count slots. They index the context,
   1246   // where parameters are stored in reverse order, at
   1247   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
   1248   // The mapped parameter thus need to get indices
   1249   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
   1250   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
   1251   // We loop from right to left.
   1252   Label parameters_loop, parameters_test;
   1253   __ push(ecx);
   1254   __ mov(eax, Operand(esp, 2 * kPointerSize));
   1255   __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
   1256   __ add(ebx, Operand(esp, 4 * kPointerSize));
   1257   __ sub(ebx, eax);
   1258   __ mov(ecx, isolate()->factory()->the_hole_value());
   1259   __ mov(edx, edi);
   1260   __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
   1261   // eax = loop variable (tagged)
   1262   // ebx = mapping index (tagged)
   1263   // ecx = the hole value
   1264   // edx = address of parameter map (tagged)
   1265   // edi = address of backing store (tagged)
   1266   // esp[0] = argument count (tagged)
   1267   // esp[4] = address of new object (tagged)
   1268   // esp[8] = mapped parameter count (tagged)
   1269   // esp[16] = parameter count (tagged)
   1270   // esp[20] = address of receiver argument
   1271   __ jmp(&parameters_test, Label::kNear);
   1272 
   1273   __ bind(&parameters_loop);
   1274   __ sub(eax, Immediate(Smi::FromInt(1)));
   1275   __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
   1276   __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
   1277   __ add(ebx, Immediate(Smi::FromInt(1)));
   1278   __ bind(&parameters_test);
   1279   __ test(eax, eax);
   1280   __ j(not_zero, &parameters_loop, Label::kNear);
   1281   __ pop(ecx);
   1282 
   1283   __ bind(&skip_parameter_map);
   1284 
   1285   // ecx = argument count (tagged)
   1286   // edi = address of backing store (tagged)
   1287   // esp[0] = address of new object (tagged)
   1288   // esp[4] = mapped parameter count (tagged)
   1289   // esp[12] = parameter count (tagged)
   1290   // esp[16] = address of receiver argument
   1291   // Copy arguments header and remaining slots (if there are any).
   1292   __ mov(FieldOperand(edi, FixedArray::kMapOffset),
   1293          Immediate(isolate()->factory()->fixed_array_map()));
   1294   __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
   1295 
   1296   Label arguments_loop, arguments_test;
   1297   __ mov(ebx, Operand(esp, 1 * kPointerSize));
   1298   __ mov(edx, Operand(esp, 4 * kPointerSize));
   1299   __ sub(edx, ebx);  // Is there a smarter way to do negative scaling?
   1300   __ sub(edx, ebx);
   1301   __ jmp(&arguments_test, Label::kNear);
   1302 
   1303   __ bind(&arguments_loop);
   1304   __ sub(edx, Immediate(kPointerSize));
   1305   __ mov(eax, Operand(edx, 0));
   1306   __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
   1307   __ add(ebx, Immediate(Smi::FromInt(1)));
   1308 
   1309   __ bind(&arguments_test);
   1310   __ cmp(ebx, ecx);
   1311   __ j(less, &arguments_loop, Label::kNear);
   1312 
   1313   // Restore.
   1314   __ pop(eax);  // Address of arguments object.
   1315   __ pop(ebx);  // Parameter count.
   1316 
   1317   // Return and remove the on-stack parameters.
   1318   __ ret(3 * kPointerSize);
   1319 
   1320   // Do the runtime call to allocate the arguments object.
   1321   __ bind(&runtime);
   1322   __ pop(eax);  // Remove saved parameter count.
   1323   __ mov(Operand(esp, 1 * kPointerSize), ecx);  // Patch argument count.
   1324   __ TailCallRuntime(Runtime::kHiddenNewSloppyArguments, 3, 1);
   1325 }
   1326 
   1327 
   1328 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
   1329   // esp[0] : return address
   1330   // esp[4] : number of parameters
   1331   // esp[8] : receiver displacement
   1332   // esp[12] : function
   1333 
   1334   // Check if the calling frame is an arguments adaptor frame.
   1335   Label adaptor_frame, try_allocate, runtime;
   1336   __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   1337   __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
   1338   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1339   __ j(equal, &adaptor_frame, Label::kNear);
   1340 
   1341   // Get the length from the frame.
   1342   __ mov(ecx, Operand(esp, 1 * kPointerSize));
   1343   __ jmp(&try_allocate, Label::kNear);
   1344 
   1345   // Patch the arguments.length and the parameters pointer.
   1346   __ bind(&adaptor_frame);
   1347   __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1348   __ mov(Operand(esp, 1 * kPointerSize), ecx);
   1349   __ lea(edx, Operand(edx, ecx, times_2,
   1350                       StandardFrameConstants::kCallerSPOffset));
   1351   __ mov(Operand(esp, 2 * kPointerSize), edx);
   1352 
   1353   // Try the new space allocation. Start out with computing the size of
   1354   // the arguments object and the elements array.
   1355   Label add_arguments_object;
   1356   __ bind(&try_allocate);
   1357   __ test(ecx, ecx);
   1358   __ j(zero, &add_arguments_object, Label::kNear);
   1359   __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
   1360   __ bind(&add_arguments_object);
   1361   __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
   1362 
   1363   // Do the allocation of both objects in one go.
   1364   __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
   1365 
   1366   // Get the arguments boilerplate from the current native context.
   1367   __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   1368   __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
   1369   const int offset =
   1370       Context::SlotOffset(Context::STRICT_ARGUMENTS_BOILERPLATE_INDEX);
   1371   __ mov(edi, Operand(edi, offset));
   1372 
   1373   // Copy the JS object part.
   1374   for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
   1375     __ mov(ebx, FieldOperand(edi, i));
   1376     __ mov(FieldOperand(eax, i), ebx);
   1377   }
   1378 
   1379   // Get the length (smi tagged) and set that as an in-object property too.
   1380   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
   1381   __ mov(ecx, Operand(esp, 1 * kPointerSize));
   1382   __ mov(FieldOperand(eax, JSObject::kHeaderSize +
   1383                       Heap::kArgumentsLengthIndex * kPointerSize),
   1384          ecx);
   1385 
   1386   // If there are no actual arguments, we're done.
   1387   Label done;
   1388   __ test(ecx, ecx);
   1389   __ j(zero, &done, Label::kNear);
   1390 
   1391   // Get the parameters pointer from the stack.
   1392   __ mov(edx, Operand(esp, 2 * kPointerSize));
   1393 
   1394   // Set up the elements pointer in the allocated arguments object and
   1395   // initialize the header in the elements fixed array.
   1396   __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
   1397   __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
   1398   __ mov(FieldOperand(edi, FixedArray::kMapOffset),
   1399          Immediate(isolate()->factory()->fixed_array_map()));
   1400 
   1401   __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
   1402   // Untag the length for the loop below.
   1403   __ SmiUntag(ecx);
   1404 
   1405   // Copy the fixed array slots.
   1406   Label loop;
   1407   __ bind(&loop);
   1408   __ mov(ebx, Operand(edx, -1 * kPointerSize));  // Skip receiver.
   1409   __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
   1410   __ add(edi, Immediate(kPointerSize));
   1411   __ sub(edx, Immediate(kPointerSize));
   1412   __ dec(ecx);
   1413   __ j(not_zero, &loop);
   1414 
   1415   // Return and remove the on-stack parameters.
   1416   __ bind(&done);
   1417   __ ret(3 * kPointerSize);
   1418 
   1419   // Do the runtime call to allocate the arguments object.
   1420   __ bind(&runtime);
   1421   __ TailCallRuntime(Runtime::kHiddenNewStrictArguments, 3, 1);
   1422 }
   1423 
   1424 
   1425 void RegExpExecStub::Generate(MacroAssembler* masm) {
   1426   // Just jump directly to runtime if native RegExp is not selected at compile
   1427   // time or if regexp entry in generated code is turned off runtime switch or
   1428   // at compilation.
   1429 #ifdef V8_INTERPRETED_REGEXP
   1430   __ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1);
   1431 #else  // V8_INTERPRETED_REGEXP
   1432 
   1433   // Stack frame on entry.
   1434   //  esp[0]: return address
   1435   //  esp[4]: last_match_info (expected JSArray)
   1436   //  esp[8]: previous index
   1437   //  esp[12]: subject string
   1438   //  esp[16]: JSRegExp object
   1439 
   1440   static const int kLastMatchInfoOffset = 1 * kPointerSize;
   1441   static const int kPreviousIndexOffset = 2 * kPointerSize;
   1442   static const int kSubjectOffset = 3 * kPointerSize;
   1443   static const int kJSRegExpOffset = 4 * kPointerSize;
   1444 
   1445   Label runtime;
   1446   Factory* factory = isolate()->factory();
   1447 
   1448   // Ensure that a RegExp stack is allocated.
   1449   ExternalReference address_of_regexp_stack_memory_address =
   1450       ExternalReference::address_of_regexp_stack_memory_address(isolate());
   1451   ExternalReference address_of_regexp_stack_memory_size =
   1452       ExternalReference::address_of_regexp_stack_memory_size(isolate());
   1453   __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
   1454   __ test(ebx, ebx);
   1455   __ j(zero, &runtime);
   1456 
   1457   // Check that the first argument is a JSRegExp object.
   1458   __ mov(eax, Operand(esp, kJSRegExpOffset));
   1459   STATIC_ASSERT(kSmiTag == 0);
   1460   __ JumpIfSmi(eax, &runtime);
   1461   __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
   1462   __ j(not_equal, &runtime);
   1463 
   1464   // Check that the RegExp has been compiled (data contains a fixed array).
   1465   __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
   1466   if (FLAG_debug_code) {
   1467     __ test(ecx, Immediate(kSmiTagMask));
   1468     __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
   1469     __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
   1470     __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
   1471   }
   1472 
   1473   // ecx: RegExp data (FixedArray)
   1474   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
   1475   __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
   1476   __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
   1477   __ j(not_equal, &runtime);
   1478 
   1479   // ecx: RegExp data (FixedArray)
   1480   // Check that the number of captures fit in the static offsets vector buffer.
   1481   __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
   1482   // Check (number_of_captures + 1) * 2 <= offsets vector size
   1483   // Or          number_of_captures * 2 <= offsets vector size - 2
   1484   // Multiplying by 2 comes for free since edx is smi-tagged.
   1485   STATIC_ASSERT(kSmiTag == 0);
   1486   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   1487   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
   1488   __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
   1489   __ j(above, &runtime);
   1490 
   1491   // Reset offset for possibly sliced string.
   1492   __ Move(edi, Immediate(0));
   1493   __ mov(eax, Operand(esp, kSubjectOffset));
   1494   __ JumpIfSmi(eax, &runtime);
   1495   __ mov(edx, eax);  // Make a copy of the original subject string.
   1496   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   1497   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   1498 
   1499   // eax: subject string
   1500   // edx: subject string
   1501   // ebx: subject string instance type
   1502   // ecx: RegExp data (FixedArray)
   1503   // Handle subject string according to its encoding and representation:
   1504   // (1) Sequential two byte?  If yes, go to (9).
   1505   // (2) Sequential one byte?  If yes, go to (6).
   1506   // (3) Anything but sequential or cons?  If yes, go to (7).
   1507   // (4) Cons string.  If the string is flat, replace subject with first string.
   1508   //     Otherwise bailout.
   1509   // (5a) Is subject sequential two byte?  If yes, go to (9).
   1510   // (5b) Is subject external?  If yes, go to (8).
   1511   // (6) One byte sequential.  Load regexp code for one byte.
   1512   // (E) Carry on.
   1513   /// [...]
   1514 
   1515   // Deferred code at the end of the stub:
   1516   // (7) Not a long external string?  If yes, go to (10).
   1517   // (8) External string.  Make it, offset-wise, look like a sequential string.
   1518   // (8a) Is the external string one byte?  If yes, go to (6).
   1519   // (9) Two byte sequential.  Load regexp code for one byte. Go to (E).
   1520   // (10) Short external string or not a string?  If yes, bail out to runtime.
   1521   // (11) Sliced string.  Replace subject with parent. Go to (5a).
   1522 
   1523   Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
   1524         external_string /* 8 */, check_underlying /* 5a */,
   1525         not_seq_nor_cons /* 7 */, check_code /* E */,
   1526         not_long_external /* 10 */;
   1527 
   1528   // (1) Sequential two byte?  If yes, go to (9).
   1529   __ and_(ebx, kIsNotStringMask |
   1530                kStringRepresentationMask |
   1531                kStringEncodingMask |
   1532                kShortExternalStringMask);
   1533   STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
   1534   __ j(zero, &seq_two_byte_string);  // Go to (9).
   1535 
   1536   // (2) Sequential one byte?  If yes, go to (6).
   1537   // Any other sequential string must be one byte.
   1538   __ and_(ebx, Immediate(kIsNotStringMask |
   1539                          kStringRepresentationMask |
   1540                          kShortExternalStringMask));
   1541   __ j(zero, &seq_one_byte_string, Label::kNear);  // Go to (6).
   1542 
   1543   // (3) Anything but sequential or cons?  If yes, go to (7).
   1544   // We check whether the subject string is a cons, since sequential strings
   1545   // have already been covered.
   1546   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
   1547   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
   1548   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
   1549   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
   1550   __ cmp(ebx, Immediate(kExternalStringTag));
   1551   __ j(greater_equal, &not_seq_nor_cons);  // Go to (7).
   1552 
   1553   // (4) Cons string.  Check that it's flat.
   1554   // Replace subject with first string and reload instance type.
   1555   __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
   1556   __ j(not_equal, &runtime);
   1557   __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
   1558   __ bind(&check_underlying);
   1559   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   1560   __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   1561 
   1562   // (5a) Is subject sequential two byte?  If yes, go to (9).
   1563   __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
   1564   STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
   1565   __ j(zero, &seq_two_byte_string);  // Go to (9).
   1566   // (5b) Is subject external?  If yes, go to (8).
   1567   __ test_b(ebx, kStringRepresentationMask);
   1568   // The underlying external string is never a short external string.
   1569   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
   1570   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
   1571   __ j(not_zero, &external_string);  // Go to (8).
   1572 
   1573   // eax: sequential subject string (or look-alike, external string)
   1574   // edx: original subject string
   1575   // ecx: RegExp data (FixedArray)
   1576   // (6) One byte sequential.  Load regexp code for one byte.
   1577   __ bind(&seq_one_byte_string);
   1578   // Load previous index and check range before edx is overwritten.  We have
   1579   // to use edx instead of eax here because it might have been only made to
   1580   // look like a sequential string when it actually is an external string.
   1581   __ mov(ebx, Operand(esp, kPreviousIndexOffset));
   1582   __ JumpIfNotSmi(ebx, &runtime);
   1583   __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
   1584   __ j(above_equal, &runtime);
   1585   __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset));
   1586   __ Move(ecx, Immediate(1));  // Type is one byte.
   1587 
   1588   // (E) Carry on.  String handling is done.
   1589   __ bind(&check_code);
   1590   // edx: irregexp code
   1591   // Check that the irregexp code has been generated for the actual string
   1592   // encoding. If it has, the field contains a code object otherwise it contains
   1593   // a smi (code flushing support).
   1594   __ JumpIfSmi(edx, &runtime);
   1595 
   1596   // eax: subject string
   1597   // ebx: previous index (smi)
   1598   // edx: code
   1599   // ecx: encoding of subject string (1 if ASCII, 0 if two_byte);
   1600   // All checks done. Now push arguments for native regexp code.
   1601   Counters* counters = isolate()->counters();
   1602   __ IncrementCounter(counters->regexp_entry_native(), 1);
   1603 
   1604   // Isolates: note we add an additional parameter here (isolate pointer).
   1605   static const int kRegExpExecuteArguments = 9;
   1606   __ EnterApiExitFrame(kRegExpExecuteArguments);
   1607 
   1608   // Argument 9: Pass current isolate address.
   1609   __ mov(Operand(esp, 8 * kPointerSize),
   1610       Immediate(ExternalReference::isolate_address(isolate())));
   1611 
   1612   // Argument 8: Indicate that this is a direct call from JavaScript.
   1613   __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
   1614 
   1615   // Argument 7: Start (high end) of backtracking stack memory area.
   1616   __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
   1617   __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
   1618   __ mov(Operand(esp, 6 * kPointerSize), esi);
   1619 
   1620   // Argument 6: Set the number of capture registers to zero to force global
   1621   // regexps to behave as non-global.  This does not affect non-global regexps.
   1622   __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
   1623 
   1624   // Argument 5: static offsets vector buffer.
   1625   __ mov(Operand(esp, 4 * kPointerSize),
   1626          Immediate(ExternalReference::address_of_static_offsets_vector(
   1627              isolate())));
   1628 
   1629   // Argument 2: Previous index.
   1630   __ SmiUntag(ebx);
   1631   __ mov(Operand(esp, 1 * kPointerSize), ebx);
   1632 
   1633   // Argument 1: Original subject string.
   1634   // The original subject is in the previous stack frame. Therefore we have to
   1635   // use ebp, which points exactly to one pointer size below the previous esp.
   1636   // (Because creating a new stack frame pushes the previous ebp onto the stack
   1637   // and thereby moves up esp by one kPointerSize.)
   1638   __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
   1639   __ mov(Operand(esp, 0 * kPointerSize), esi);
   1640 
   1641   // esi: original subject string
   1642   // eax: underlying subject string
   1643   // ebx: previous index
   1644   // ecx: encoding of subject string (1 if ASCII 0 if two_byte);
   1645   // edx: code
   1646   // Argument 4: End of string data
   1647   // Argument 3: Start of string data
   1648   // Prepare start and end index of the input.
   1649   // Load the length from the original sliced string if that is the case.
   1650   __ mov(esi, FieldOperand(esi, String::kLengthOffset));
   1651   __ add(esi, edi);  // Calculate input end wrt offset.
   1652   __ SmiUntag(edi);
   1653   __ add(ebx, edi);  // Calculate input start wrt offset.
   1654 
   1655   // ebx: start index of the input string
   1656   // esi: end index of the input string
   1657   Label setup_two_byte, setup_rest;
   1658   __ test(ecx, ecx);
   1659   __ j(zero, &setup_two_byte, Label::kNear);
   1660   __ SmiUntag(esi);
   1661   __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
   1662   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
   1663   __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
   1664   __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
   1665   __ jmp(&setup_rest, Label::kNear);
   1666 
   1667   __ bind(&setup_two_byte);
   1668   STATIC_ASSERT(kSmiTag == 0);
   1669   STATIC_ASSERT(kSmiTagSize == 1);  // esi is smi (powered by 2).
   1670   __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
   1671   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
   1672   __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
   1673   __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
   1674 
   1675   __ bind(&setup_rest);
   1676 
   1677   // Locate the code entry and call it.
   1678   __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
   1679   __ call(edx);
   1680 
   1681   // Drop arguments and come back to JS mode.
   1682   __ LeaveApiExitFrame(true);
   1683 
   1684   // Check the result.
   1685   Label success;
   1686   __ cmp(eax, 1);
   1687   // We expect exactly one result since we force the called regexp to behave
   1688   // as non-global.
   1689   __ j(equal, &success);
   1690   Label failure;
   1691   __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
   1692   __ j(equal, &failure);
   1693   __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
   1694   // If not exception it can only be retry. Handle that in the runtime system.
   1695   __ j(not_equal, &runtime);
   1696   // Result must now be exception. If there is no pending exception already a
   1697   // stack overflow (on the backtrack stack) was detected in RegExp code but
   1698   // haven't created the exception yet. Handle that in the runtime system.
   1699   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
   1700   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
   1701                                       isolate());
   1702   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   1703   __ mov(eax, Operand::StaticVariable(pending_exception));
   1704   __ cmp(edx, eax);
   1705   __ j(equal, &runtime);
   1706   // For exception, throw the exception again.
   1707 
   1708   // Clear the pending exception variable.
   1709   __ mov(Operand::StaticVariable(pending_exception), edx);
   1710 
   1711   // Special handling of termination exceptions which are uncatchable
   1712   // by javascript code.
   1713   __ cmp(eax, factory->termination_exception());
   1714   Label throw_termination_exception;
   1715   __ j(equal, &throw_termination_exception, Label::kNear);
   1716 
   1717   // Handle normal exception by following handler chain.
   1718   __ Throw(eax);
   1719 
   1720   __ bind(&throw_termination_exception);
   1721   __ ThrowUncatchable(eax);
   1722 
   1723   __ bind(&failure);
   1724   // For failure to match, return null.
   1725   __ mov(eax, factory->null_value());
   1726   __ ret(4 * kPointerSize);
   1727 
   1728   // Load RegExp data.
   1729   __ bind(&success);
   1730   __ mov(eax, Operand(esp, kJSRegExpOffset));
   1731   __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
   1732   __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
   1733   // Calculate number of capture registers (number_of_captures + 1) * 2.
   1734   STATIC_ASSERT(kSmiTag == 0);
   1735   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   1736   __ add(edx, Immediate(2));  // edx was a smi.
   1737 
   1738   // edx: Number of capture registers
   1739   // Load last_match_info which is still known to be a fast case JSArray.
   1740   // Check that the fourth object is a JSArray object.
   1741   __ mov(eax, Operand(esp, kLastMatchInfoOffset));
   1742   __ JumpIfSmi(eax, &runtime);
   1743   __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
   1744   __ j(not_equal, &runtime);
   1745   // Check that the JSArray is in fast case.
   1746   __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
   1747   __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
   1748   __ cmp(eax, factory->fixed_array_map());
   1749   __ j(not_equal, &runtime);
   1750   // Check that the last match info has space for the capture registers and the
   1751   // additional information.
   1752   __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
   1753   __ SmiUntag(eax);
   1754   __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
   1755   __ cmp(edx, eax);
   1756   __ j(greater, &runtime);
   1757 
   1758   // ebx: last_match_info backing store (FixedArray)
   1759   // edx: number of capture registers
   1760   // Store the capture count.
   1761   __ SmiTag(edx);  // Number of capture registers to smi.
   1762   __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
   1763   __ SmiUntag(edx);  // Number of capture registers back from smi.
   1764   // Store last subject and last input.
   1765   __ mov(eax, Operand(esp, kSubjectOffset));
   1766   __ mov(ecx, eax);
   1767   __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
   1768   __ RecordWriteField(ebx,
   1769                       RegExpImpl::kLastSubjectOffset,
   1770                       eax,
   1771                       edi,
   1772                       kDontSaveFPRegs);
   1773   __ mov(eax, ecx);
   1774   __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
   1775   __ RecordWriteField(ebx,
   1776                       RegExpImpl::kLastInputOffset,
   1777                       eax,
   1778                       edi,
   1779                       kDontSaveFPRegs);
   1780 
   1781   // Get the static offsets vector filled by the native regexp code.
   1782   ExternalReference address_of_static_offsets_vector =
   1783       ExternalReference::address_of_static_offsets_vector(isolate());
   1784   __ mov(ecx, Immediate(address_of_static_offsets_vector));
   1785 
   1786   // ebx: last_match_info backing store (FixedArray)
   1787   // ecx: offsets vector
   1788   // edx: number of capture registers
   1789   Label next_capture, done;
   1790   // Capture register counter starts from number of capture registers and
   1791   // counts down until wraping after zero.
   1792   __ bind(&next_capture);
   1793   __ sub(edx, Immediate(1));
   1794   __ j(negative, &done, Label::kNear);
   1795   // Read the value from the static offsets vector buffer.
   1796   __ mov(edi, Operand(ecx, edx, times_int_size, 0));
   1797   __ SmiTag(edi);
   1798   // Store the smi value in the last match info.
   1799   __ mov(FieldOperand(ebx,
   1800                       edx,
   1801                       times_pointer_size,
   1802                       RegExpImpl::kFirstCaptureOffset),
   1803                       edi);
   1804   __ jmp(&next_capture);
   1805   __ bind(&done);
   1806 
   1807   // Return last match info.
   1808   __ mov(eax, Operand(esp, kLastMatchInfoOffset));
   1809   __ ret(4 * kPointerSize);
   1810 
   1811   // Do the runtime call to execute the regexp.
   1812   __ bind(&runtime);
   1813   __ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1);
   1814 
   1815   // Deferred code for string handling.
   1816   // (7) Not a long external string?  If yes, go to (10).
   1817   __ bind(&not_seq_nor_cons);
   1818   // Compare flags are still set from (3).
   1819   __ j(greater, &not_long_external, Label::kNear);  // Go to (10).
   1820 
   1821   // (8) External string.  Short external strings have been ruled out.
   1822   __ bind(&external_string);
   1823   // Reload instance type.
   1824   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   1825   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   1826   if (FLAG_debug_code) {
   1827     // Assert that we do not have a cons or slice (indirect strings) here.
   1828     // Sequential strings have already been ruled out.
   1829     __ test_b(ebx, kIsIndirectStringMask);
   1830     __ Assert(zero, kExternalStringExpectedButNotFound);
   1831   }
   1832   __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
   1833   // Move the pointer so that offset-wise, it looks like a sequential string.
   1834   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   1835   __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   1836   STATIC_ASSERT(kTwoByteStringTag == 0);
   1837   // (8a) Is the external string one byte?  If yes, go to (6).
   1838   __ test_b(ebx, kStringEncodingMask);
   1839   __ j(not_zero, &seq_one_byte_string);  // Goto (6).
   1840 
   1841   // eax: sequential subject string (or look-alike, external string)
   1842   // edx: original subject string
   1843   // ecx: RegExp data (FixedArray)
   1844   // (9) Two byte sequential.  Load regexp code for one byte. Go to (E).
   1845   __ bind(&seq_two_byte_string);
   1846   // Load previous index and check range before edx is overwritten.  We have
   1847   // to use edx instead of eax here because it might have been only made to
   1848   // look like a sequential string when it actually is an external string.
   1849   __ mov(ebx, Operand(esp, kPreviousIndexOffset));
   1850   __ JumpIfNotSmi(ebx, &runtime);
   1851   __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
   1852   __ j(above_equal, &runtime);
   1853   __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
   1854   __ Move(ecx, Immediate(0));  // Type is two byte.
   1855   __ jmp(&check_code);  // Go to (E).
   1856 
   1857   // (10) Not a string or a short external string?  If yes, bail out to runtime.
   1858   __ bind(&not_long_external);
   1859   // Catch non-string subject or short external string.
   1860   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
   1861   __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
   1862   __ j(not_zero, &runtime);
   1863 
   1864   // (11) Sliced string.  Replace subject with parent.  Go to (5a).
   1865   // Load offset into edi and replace subject string with parent.
   1866   __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
   1867   __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
   1868   __ jmp(&check_underlying);  // Go to (5a).
   1869 #endif  // V8_INTERPRETED_REGEXP
   1870 }
   1871 
   1872 
   1873 static int NegativeComparisonResult(Condition cc) {
   1874   ASSERT(cc != equal);
   1875   ASSERT((cc == less) || (cc == less_equal)
   1876       || (cc == greater) || (cc == greater_equal));
   1877   return (cc == greater || cc == greater_equal) ? LESS : GREATER;
   1878 }
   1879 
   1880 
   1881 static void CheckInputType(MacroAssembler* masm,
   1882                            Register input,
   1883                            CompareIC::State expected,
   1884                            Label* fail) {
   1885   Label ok;
   1886   if (expected == CompareIC::SMI) {
   1887     __ JumpIfNotSmi(input, fail);
   1888   } else if (expected == CompareIC::NUMBER) {
   1889     __ JumpIfSmi(input, &ok);
   1890     __ cmp(FieldOperand(input, HeapObject::kMapOffset),
   1891            Immediate(masm->isolate()->factory()->heap_number_map()));
   1892     __ j(not_equal, fail);
   1893   }
   1894   // We could be strict about internalized/non-internalized here, but as long as
   1895   // hydrogen doesn't care, the stub doesn't have to care either.
   1896   __ bind(&ok);
   1897 }
   1898 
   1899 
   1900 static void BranchIfNotInternalizedString(MacroAssembler* masm,
   1901                                           Label* label,
   1902                                           Register object,
   1903                                           Register scratch) {
   1904   __ JumpIfSmi(object, label);
   1905   __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
   1906   __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
   1907   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   1908   __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
   1909   __ j(not_zero, label);
   1910 }
   1911 
   1912 
   1913 void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
   1914   Label check_unequal_objects;
   1915   Condition cc = GetCondition();
   1916 
   1917   Label miss;
   1918   CheckInputType(masm, edx, left_, &miss);
   1919   CheckInputType(masm, eax, right_, &miss);
   1920 
   1921   // Compare two smis.
   1922   Label non_smi, smi_done;
   1923   __ mov(ecx, edx);
   1924   __ or_(ecx, eax);
   1925   __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
   1926   __ sub(edx, eax);  // Return on the result of the subtraction.
   1927   __ j(no_overflow, &smi_done, Label::kNear);
   1928   __ not_(edx);  // Correct sign in case of overflow. edx is never 0 here.
   1929   __ bind(&smi_done);
   1930   __ mov(eax, edx);
   1931   __ ret(0);
   1932   __ bind(&non_smi);
   1933 
   1934   // NOTICE! This code is only reached after a smi-fast-case check, so
   1935   // it is certain that at least one operand isn't a smi.
   1936 
   1937   // Identical objects can be compared fast, but there are some tricky cases
   1938   // for NaN and undefined.
   1939   Label generic_heap_number_comparison;
   1940   {
   1941     Label not_identical;
   1942     __ cmp(eax, edx);
   1943     __ j(not_equal, &not_identical);
   1944 
   1945     if (cc != equal) {
   1946       // Check for undefined.  undefined OP undefined is false even though
   1947       // undefined == undefined.
   1948       Label check_for_nan;
   1949       __ cmp(edx, isolate()->factory()->undefined_value());
   1950       __ j(not_equal, &check_for_nan, Label::kNear);
   1951       __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
   1952       __ ret(0);
   1953       __ bind(&check_for_nan);
   1954     }
   1955 
   1956     // Test for NaN. Compare heap numbers in a general way,
   1957     // to hanlde NaNs correctly.
   1958     __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
   1959            Immediate(isolate()->factory()->heap_number_map()));
   1960     __ j(equal, &generic_heap_number_comparison, Label::kNear);
   1961     if (cc != equal) {
   1962       // Call runtime on identical JSObjects.  Otherwise return equal.
   1963       __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   1964       __ j(above_equal, &not_identical);
   1965     }
   1966     __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   1967     __ ret(0);
   1968 
   1969 
   1970     __ bind(&not_identical);
   1971   }
   1972 
   1973   // Strict equality can quickly decide whether objects are equal.
   1974   // Non-strict object equality is slower, so it is handled later in the stub.
   1975   if (cc == equal && strict()) {
   1976     Label slow;  // Fallthrough label.
   1977     Label not_smis;
   1978     // If we're doing a strict equality comparison, we don't have to do
   1979     // type conversion, so we generate code to do fast comparison for objects
   1980     // and oddballs. Non-smi numbers and strings still go through the usual
   1981     // slow-case code.
   1982     // If either is a Smi (we know that not both are), then they can only
   1983     // be equal if the other is a HeapNumber. If so, use the slow case.
   1984     STATIC_ASSERT(kSmiTag == 0);
   1985     ASSERT_EQ(0, Smi::FromInt(0));
   1986     __ mov(ecx, Immediate(kSmiTagMask));
   1987     __ and_(ecx, eax);
   1988     __ test(ecx, edx);
   1989     __ j(not_zero, &not_smis, Label::kNear);
   1990     // One operand is a smi.
   1991 
   1992     // Check whether the non-smi is a heap number.
   1993     STATIC_ASSERT(kSmiTagMask == 1);
   1994     // ecx still holds eax & kSmiTag, which is either zero or one.
   1995     __ sub(ecx, Immediate(0x01));
   1996     __ mov(ebx, edx);
   1997     __ xor_(ebx, eax);
   1998     __ and_(ebx, ecx);  // ebx holds either 0 or eax ^ edx.
   1999     __ xor_(ebx, eax);
   2000     // if eax was smi, ebx is now edx, else eax.
   2001 
   2002     // Check if the non-smi operand is a heap number.
   2003     __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
   2004            Immediate(isolate()->factory()->heap_number_map()));
   2005     // If heap number, handle it in the slow case.
   2006     __ j(equal, &slow, Label::kNear);
   2007     // Return non-equal (ebx is not zero)
   2008     __ mov(eax, ebx);
   2009     __ ret(0);
   2010 
   2011     __ bind(&not_smis);
   2012     // If either operand is a JSObject or an oddball value, then they are not
   2013     // equal since their pointers are different
   2014     // There is no test for undetectability in strict equality.
   2015 
   2016     // Get the type of the first operand.
   2017     // If the first object is a JS object, we have done pointer comparison.
   2018     Label first_non_object;
   2019     STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
   2020     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   2021     __ j(below, &first_non_object, Label::kNear);
   2022 
   2023     // Return non-zero (eax is not zero)
   2024     Label return_not_equal;
   2025     STATIC_ASSERT(kHeapObjectTag != 0);
   2026     __ bind(&return_not_equal);
   2027     __ ret(0);
   2028 
   2029     __ bind(&first_non_object);
   2030     // Check for oddballs: true, false, null, undefined.
   2031     __ CmpInstanceType(ecx, ODDBALL_TYPE);
   2032     __ j(equal, &return_not_equal);
   2033 
   2034     __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
   2035     __ j(above_equal, &return_not_equal);
   2036 
   2037     // Check for oddballs: true, false, null, undefined.
   2038     __ CmpInstanceType(ecx, ODDBALL_TYPE);
   2039     __ j(equal, &return_not_equal);
   2040 
   2041     // Fall through to the general case.
   2042     __ bind(&slow);
   2043   }
   2044 
   2045   // Generate the number comparison code.
   2046   Label non_number_comparison;
   2047   Label unordered;
   2048   __ bind(&generic_heap_number_comparison);
   2049 
   2050   FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
   2051   __ ucomisd(xmm0, xmm1);
   2052   // Don't base result on EFLAGS when a NaN is involved.
   2053   __ j(parity_even, &unordered, Label::kNear);
   2054 
   2055   __ mov(eax, 0);  // equal
   2056   __ mov(ecx, Immediate(Smi::FromInt(1)));
   2057   __ cmov(above, eax, ecx);
   2058   __ mov(ecx, Immediate(Smi::FromInt(-1)));
   2059   __ cmov(below, eax, ecx);
   2060   __ ret(0);
   2061 
   2062   // If one of the numbers was NaN, then the result is always false.
   2063   // The cc is never not-equal.
   2064   __ bind(&unordered);
   2065   ASSERT(cc != not_equal);
   2066   if (cc == less || cc == less_equal) {
   2067     __ mov(eax, Immediate(Smi::FromInt(1)));
   2068   } else {
   2069     __ mov(eax, Immediate(Smi::FromInt(-1)));
   2070   }
   2071   __ ret(0);
   2072 
   2073   // The number comparison code did not provide a valid result.
   2074   __ bind(&non_number_comparison);
   2075 
   2076   // Fast negative check for internalized-to-internalized equality.
   2077   Label check_for_strings;
   2078   if (cc == equal) {
   2079     BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
   2080     BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
   2081 
   2082     // We've already checked for object identity, so if both operands
   2083     // are internalized they aren't equal. Register eax already holds a
   2084     // non-zero value, which indicates not equal, so just return.
   2085     __ ret(0);
   2086   }
   2087 
   2088   __ bind(&check_for_strings);
   2089 
   2090   __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx,
   2091                                          &check_unequal_objects);
   2092 
   2093   // Inline comparison of ASCII strings.
   2094   if (cc == equal) {
   2095     StringCompareStub::GenerateFlatAsciiStringEquals(masm,
   2096                                                      edx,
   2097                                                      eax,
   2098                                                      ecx,
   2099                                                      ebx);
   2100   } else {
   2101     StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
   2102                                                        edx,
   2103                                                        eax,
   2104                                                        ecx,
   2105                                                        ebx,
   2106                                                        edi);
   2107   }
   2108 #ifdef DEBUG
   2109   __ Abort(kUnexpectedFallThroughFromStringComparison);
   2110 #endif
   2111 
   2112   __ bind(&check_unequal_objects);
   2113   if (cc == equal && !strict()) {
   2114     // Non-strict equality.  Objects are unequal if
   2115     // they are both JSObjects and not undetectable,
   2116     // and their pointers are different.
   2117     Label not_both_objects;
   2118     Label return_unequal;
   2119     // At most one is a smi, so we can test for smi by adding the two.
   2120     // A smi plus a heap object has the low bit set, a heap object plus
   2121     // a heap object has the low bit clear.
   2122     STATIC_ASSERT(kSmiTag == 0);
   2123     STATIC_ASSERT(kSmiTagMask == 1);
   2124     __ lea(ecx, Operand(eax, edx, times_1, 0));
   2125     __ test(ecx, Immediate(kSmiTagMask));
   2126     __ j(not_zero, &not_both_objects, Label::kNear);
   2127     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   2128     __ j(below, &not_both_objects, Label::kNear);
   2129     __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
   2130     __ j(below, &not_both_objects, Label::kNear);
   2131     // We do not bail out after this point.  Both are JSObjects, and
   2132     // they are equal if and only if both are undetectable.
   2133     // The and of the undetectable flags is 1 if and only if they are equal.
   2134     __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
   2135               1 << Map::kIsUndetectable);
   2136     __ j(zero, &return_unequal, Label::kNear);
   2137     __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
   2138               1 << Map::kIsUndetectable);
   2139     __ j(zero, &return_unequal, Label::kNear);
   2140     // The objects are both undetectable, so they both compare as the value
   2141     // undefined, and are equal.
   2142     __ Move(eax, Immediate(EQUAL));
   2143     __ bind(&return_unequal);
   2144     // Return non-equal by returning the non-zero object pointer in eax,
   2145     // or return equal if we fell through to here.
   2146     __ ret(0);  // rax, rdx were pushed
   2147     __ bind(&not_both_objects);
   2148   }
   2149 
   2150   // Push arguments below the return address.
   2151   __ pop(ecx);
   2152   __ push(edx);
   2153   __ push(eax);
   2154 
   2155   // Figure out which native to call and setup the arguments.
   2156   Builtins::JavaScript builtin;
   2157   if (cc == equal) {
   2158     builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
   2159   } else {
   2160     builtin = Builtins::COMPARE;
   2161     __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
   2162   }
   2163 
   2164   // Restore return address on the stack.
   2165   __ push(ecx);
   2166 
   2167   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
   2168   // tagged as a small integer.
   2169   __ InvokeBuiltin(builtin, JUMP_FUNCTION);
   2170 
   2171   __ bind(&miss);
   2172   GenerateMiss(masm);
   2173 }
   2174 
   2175 
   2176 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   2177   // Cache the called function in a feedback vector slot.  Cache states
   2178   // are uninitialized, monomorphic (indicated by a JSFunction), and
   2179   // megamorphic.
   2180   // eax : number of arguments to the construct function
   2181   // ebx : Feedback vector
   2182   // edx : slot in feedback vector (Smi)
   2183   // edi : the function to call
   2184   Isolate* isolate = masm->isolate();
   2185   Label initialize, done, miss, megamorphic, not_array_function;
   2186 
   2187   // Load the cache state into ecx.
   2188   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   2189                            FixedArray::kHeaderSize));
   2190 
   2191   // A monomorphic cache hit or an already megamorphic state: invoke the
   2192   // function without changing the state.
   2193   __ cmp(ecx, edi);
   2194   __ j(equal, &done, Label::kFar);
   2195   __ cmp(ecx, Immediate(TypeFeedbackInfo::MegamorphicSentinel(isolate)));
   2196   __ j(equal, &done, Label::kFar);
   2197 
   2198   if (!FLAG_pretenuring_call_new) {
   2199     // If we came here, we need to see if we are the array function.
   2200     // If we didn't have a matching function, and we didn't find the megamorph
   2201     // sentinel, then we have in the slot either some other function or an
   2202     // AllocationSite. Do a map check on the object in ecx.
   2203     Handle<Map> allocation_site_map = isolate->factory()->allocation_site_map();
   2204     __ cmp(FieldOperand(ecx, 0), Immediate(allocation_site_map));
   2205     __ j(not_equal, &miss);
   2206 
   2207     // Make sure the function is the Array() function
   2208     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   2209     __ cmp(edi, ecx);
   2210     __ j(not_equal, &megamorphic);
   2211     __ jmp(&done, Label::kFar);
   2212   }
   2213 
   2214   __ bind(&miss);
   2215 
   2216   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   2217   // megamorphic.
   2218   __ cmp(ecx, Immediate(TypeFeedbackInfo::UninitializedSentinel(isolate)));
   2219   __ j(equal, &initialize);
   2220   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   2221   // write-barrier is needed.
   2222   __ bind(&megamorphic);
   2223   __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
   2224                       FixedArray::kHeaderSize),
   2225          Immediate(TypeFeedbackInfo::MegamorphicSentinel(isolate)));
   2226   __ jmp(&done, Label::kFar);
   2227 
   2228   // An uninitialized cache is patched with the function or sentinel to
   2229   // indicate the ElementsKind if function is the Array constructor.
   2230   __ bind(&initialize);
   2231   if (!FLAG_pretenuring_call_new) {
   2232     // Make sure the function is the Array() function
   2233     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   2234     __ cmp(edi, ecx);
   2235     __ j(not_equal, &not_array_function);
   2236 
   2237     // The target function is the Array constructor,
   2238     // Create an AllocationSite if we don't already have it, store it in the
   2239     // slot.
   2240     {
   2241       FrameScope scope(masm, StackFrame::INTERNAL);
   2242 
   2243       // Arguments register must be smi-tagged to call out.
   2244       __ SmiTag(eax);
   2245       __ push(eax);
   2246       __ push(edi);
   2247       __ push(edx);
   2248       __ push(ebx);
   2249 
   2250       CreateAllocationSiteStub create_stub(isolate);
   2251       __ CallStub(&create_stub);
   2252 
   2253       __ pop(ebx);
   2254       __ pop(edx);
   2255       __ pop(edi);
   2256       __ pop(eax);
   2257       __ SmiUntag(eax);
   2258     }
   2259     __ jmp(&done);
   2260 
   2261     __ bind(&not_array_function);
   2262   }
   2263 
   2264   __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
   2265                       FixedArray::kHeaderSize),
   2266          edi);
   2267   // We won't need edx or ebx anymore, just save edi
   2268   __ push(edi);
   2269   __ push(ebx);
   2270   __ push(edx);
   2271   __ RecordWriteArray(ebx, edi, edx, kDontSaveFPRegs,
   2272                       EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
   2273   __ pop(edx);
   2274   __ pop(ebx);
   2275   __ pop(edi);
   2276 
   2277   __ bind(&done);
   2278 }
   2279 
   2280 
   2281 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
   2282   // Do not transform the receiver for strict mode functions.
   2283   __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   2284   __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
   2285             1 << SharedFunctionInfo::kStrictModeBitWithinByte);
   2286   __ j(not_equal, cont);
   2287 
   2288   // Do not transform the receiver for natives (shared already in ecx).
   2289   __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
   2290             1 << SharedFunctionInfo::kNativeBitWithinByte);
   2291   __ j(not_equal, cont);
   2292 }
   2293 
   2294 
   2295 static void EmitSlowCase(Isolate* isolate,
   2296                          MacroAssembler* masm,
   2297                          int argc,
   2298                          Label* non_function) {
   2299   // Check for function proxy.
   2300   __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
   2301   __ j(not_equal, non_function);
   2302   __ pop(ecx);
   2303   __ push(edi);  // put proxy as additional argument under return address
   2304   __ push(ecx);
   2305   __ Move(eax, Immediate(argc + 1));
   2306   __ Move(ebx, Immediate(0));
   2307   __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
   2308   {
   2309     Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
   2310     __ jmp(adaptor, RelocInfo::CODE_TARGET);
   2311   }
   2312 
   2313   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
   2314   // of the original receiver from the call site).
   2315   __ bind(non_function);
   2316   __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
   2317   __ Move(eax, Immediate(argc));
   2318   __ Move(ebx, Immediate(0));
   2319   __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
   2320   Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
   2321   __ jmp(adaptor, RelocInfo::CODE_TARGET);
   2322 }
   2323 
   2324 
   2325 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
   2326   // Wrap the receiver and patch it back onto the stack.
   2327   { FrameScope frame_scope(masm, StackFrame::INTERNAL);
   2328     __ push(edi);
   2329     __ push(eax);
   2330     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   2331     __ pop(edi);
   2332   }
   2333   __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
   2334   __ jmp(cont);
   2335 }
   2336 
   2337 
   2338 static void CallFunctionNoFeedback(MacroAssembler* masm,
   2339                                    int argc, bool needs_checks,
   2340                                    bool call_as_method) {
   2341   // edi : the function to call
   2342   Label slow, non_function, wrap, cont;
   2343 
   2344   if (needs_checks) {
   2345     // Check that the function really is a JavaScript function.
   2346     __ JumpIfSmi(edi, &non_function);
   2347 
   2348     // Goto slow case if we do not have a function.
   2349     __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   2350     __ j(not_equal, &slow);
   2351   }
   2352 
   2353   // Fast-case: Just invoke the function.
   2354   ParameterCount actual(argc);
   2355 
   2356   if (call_as_method) {
   2357     if (needs_checks) {
   2358       EmitContinueIfStrictOrNative(masm, &cont);
   2359     }
   2360 
   2361     // Load the receiver from the stack.
   2362     __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
   2363 
   2364     if (call_as_method) {
   2365       __ JumpIfSmi(eax, &wrap);
   2366 
   2367       __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   2368       __ j(below, &wrap);
   2369     } else {
   2370       __ jmp(&wrap);
   2371     }
   2372 
   2373     __ bind(&cont);
   2374   }
   2375 
   2376   __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
   2377 
   2378   if (needs_checks) {
   2379     // Slow-case: Non-function called.
   2380     __ bind(&slow);
   2381     // (non_function is bound in EmitSlowCase)
   2382     EmitSlowCase(masm->isolate(), masm, argc, &non_function);
   2383   }
   2384 
   2385   if (call_as_method) {
   2386     __ bind(&wrap);
   2387     EmitWrapCase(masm, argc, &cont);
   2388   }
   2389 }
   2390 
   2391 
   2392 void CallFunctionStub::Generate(MacroAssembler* masm) {
   2393   CallFunctionNoFeedback(masm, argc_, NeedsChecks(), CallAsMethod());
   2394 }
   2395 
   2396 
   2397 void CallConstructStub::Generate(MacroAssembler* masm) {
   2398   // eax : number of arguments
   2399   // ebx : feedback vector
   2400   // edx : (only if ebx is not the megamorphic symbol) slot in feedback
   2401   //       vector (Smi)
   2402   // edi : constructor function
   2403   Label slow, non_function_call;
   2404 
   2405   // Check that function is not a smi.
   2406   __ JumpIfSmi(edi, &non_function_call);
   2407   // Check that function is a JSFunction.
   2408   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   2409   __ j(not_equal, &slow);
   2410 
   2411   if (RecordCallTarget()) {
   2412     GenerateRecordCallTarget(masm);
   2413 
   2414     if (FLAG_pretenuring_call_new) {
   2415       // Put the AllocationSite from the feedback vector into ebx.
   2416       // By adding kPointerSize we encode that we know the AllocationSite
   2417       // entry is at the feedback vector slot given by edx + 1.
   2418       __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
   2419                                FixedArray::kHeaderSize + kPointerSize));
   2420     } else {
   2421       Label feedback_register_initialized;
   2422       // Put the AllocationSite from the feedback vector into ebx, or undefined.
   2423       __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
   2424                                FixedArray::kHeaderSize));
   2425       Handle<Map> allocation_site_map =
   2426           isolate()->factory()->allocation_site_map();
   2427       __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
   2428       __ j(equal, &feedback_register_initialized);
   2429       __ mov(ebx, isolate()->factory()->undefined_value());
   2430       __ bind(&feedback_register_initialized);
   2431     }
   2432 
   2433     __ AssertUndefinedOrAllocationSite(ebx);
   2434   }
   2435 
   2436   // Jump to the function-specific construct stub.
   2437   Register jmp_reg = ecx;
   2438   __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   2439   __ mov(jmp_reg, FieldOperand(jmp_reg,
   2440                                SharedFunctionInfo::kConstructStubOffset));
   2441   __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
   2442   __ jmp(jmp_reg);
   2443 
   2444   // edi: called object
   2445   // eax: number of arguments
   2446   // ecx: object map
   2447   Label do_call;
   2448   __ bind(&slow);
   2449   __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
   2450   __ j(not_equal, &non_function_call);
   2451   __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
   2452   __ jmp(&do_call);
   2453 
   2454   __ bind(&non_function_call);
   2455   __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
   2456   __ bind(&do_call);
   2457   // Set expected number of arguments to zero (not changing eax).
   2458   __ Move(ebx, Immediate(0));
   2459   Handle<Code> arguments_adaptor =
   2460       isolate()->builtins()->ArgumentsAdaptorTrampoline();
   2461   __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
   2462 }
   2463 
   2464 
   2465 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
   2466   __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   2467   __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
   2468   __ mov(vector, FieldOperand(vector,
   2469                               SharedFunctionInfo::kFeedbackVectorOffset));
   2470 }
   2471 
   2472 
   2473 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
   2474   // edi - function
   2475   // edx - slot id
   2476   Label miss;
   2477   int argc = state_.arg_count();
   2478   ParameterCount actual(argc);
   2479 
   2480   EmitLoadTypeFeedbackVector(masm, ebx);
   2481 
   2482   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   2483   __ cmp(edi, ecx);
   2484   __ j(not_equal, &miss);
   2485 
   2486   __ mov(eax, arg_count());
   2487   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   2488                            FixedArray::kHeaderSize));
   2489 
   2490   // Verify that ecx contains an AllocationSite
   2491   Factory* factory = masm->isolate()->factory();
   2492   __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
   2493          factory->allocation_site_map());
   2494   __ j(not_equal, &miss);
   2495 
   2496   __ mov(ebx, ecx);
   2497   ArrayConstructorStub stub(masm->isolate(), arg_count());
   2498   __ TailCallStub(&stub);
   2499 
   2500   __ bind(&miss);
   2501   GenerateMiss(masm, IC::kCallIC_Customization_Miss);
   2502 
   2503   // The slow case, we need this no matter what to complete a call after a miss.
   2504   CallFunctionNoFeedback(masm,
   2505                          arg_count(),
   2506                          true,
   2507                          CallAsMethod());
   2508 
   2509   // Unreachable.
   2510   __ int3();
   2511 }
   2512 
   2513 
   2514 void CallICStub::Generate(MacroAssembler* masm) {
   2515   // edi - function
   2516   // edx - slot id
   2517   Isolate* isolate = masm->isolate();
   2518   Label extra_checks_or_miss, slow_start;
   2519   Label slow, non_function, wrap, cont;
   2520   Label have_js_function;
   2521   int argc = state_.arg_count();
   2522   ParameterCount actual(argc);
   2523 
   2524   EmitLoadTypeFeedbackVector(masm, ebx);
   2525 
   2526   // The checks. First, does edi match the recorded monomorphic target?
   2527   __ cmp(edi, FieldOperand(ebx, edx, times_half_pointer_size,
   2528                            FixedArray::kHeaderSize));
   2529   __ j(not_equal, &extra_checks_or_miss);
   2530 
   2531   __ bind(&have_js_function);
   2532   if (state_.CallAsMethod()) {
   2533     EmitContinueIfStrictOrNative(masm, &cont);
   2534 
   2535     // Load the receiver from the stack.
   2536     __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
   2537 
   2538     __ JumpIfSmi(eax, &wrap);
   2539 
   2540     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   2541     __ j(below, &wrap);
   2542 
   2543     __ bind(&cont);
   2544   }
   2545 
   2546   __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
   2547 
   2548   __ bind(&slow);
   2549   EmitSlowCase(isolate, masm, argc, &non_function);
   2550 
   2551   if (state_.CallAsMethod()) {
   2552     __ bind(&wrap);
   2553     EmitWrapCase(masm, argc, &cont);
   2554   }
   2555 
   2556   __ bind(&extra_checks_or_miss);
   2557   Label miss;
   2558 
   2559   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   2560                            FixedArray::kHeaderSize));
   2561   __ cmp(ecx, Immediate(TypeFeedbackInfo::MegamorphicSentinel(isolate)));
   2562   __ j(equal, &slow_start);
   2563   __ cmp(ecx, Immediate(TypeFeedbackInfo::UninitializedSentinel(isolate)));
   2564   __ j(equal, &miss);
   2565 
   2566   if (!FLAG_trace_ic) {
   2567     // We are going megamorphic. If the feedback is a JSFunction, it is fine
   2568     // to handle it here. More complex cases are dealt with in the runtime.
   2569     __ AssertNotSmi(ecx);
   2570     __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
   2571     __ j(not_equal, &miss);
   2572     __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
   2573                         FixedArray::kHeaderSize),
   2574            Immediate(TypeFeedbackInfo::MegamorphicSentinel(isolate)));
   2575     __ jmp(&slow_start);
   2576   }
   2577 
   2578   // We are here because tracing is on or we are going monomorphic.
   2579   __ bind(&miss);
   2580   GenerateMiss(masm, IC::kCallIC_Miss);
   2581 
   2582   // the slow case
   2583   __ bind(&slow_start);
   2584 
   2585   // Check that the function really is a JavaScript function.
   2586   __ JumpIfSmi(edi, &non_function);
   2587 
   2588   // Goto slow case if we do not have a function.
   2589   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   2590   __ j(not_equal, &slow);
   2591   __ jmp(&have_js_function);
   2592 
   2593   // Unreachable
   2594   __ int3();
   2595 }
   2596 
   2597 
   2598 void CallICStub::GenerateMiss(MacroAssembler* masm, IC::UtilityId id) {
   2599   // Get the receiver of the function from the stack; 1 ~ return address.
   2600   __ mov(ecx, Operand(esp, (state_.arg_count() + 1) * kPointerSize));
   2601 
   2602   {
   2603     FrameScope scope(masm, StackFrame::INTERNAL);
   2604 
   2605     // Push the receiver and the function and feedback info.
   2606     __ push(ecx);
   2607     __ push(edi);
   2608     __ push(ebx);
   2609     __ push(edx);
   2610 
   2611     // Call the entry.
   2612     ExternalReference miss = ExternalReference(IC_Utility(id),
   2613                                                masm->isolate());
   2614     __ CallExternalReference(miss, 4);
   2615 
   2616     // Move result to edi and exit the internal frame.
   2617     __ mov(edi, eax);
   2618   }
   2619 }
   2620 
   2621 
   2622 bool CEntryStub::NeedsImmovableCode() {
   2623   return false;
   2624 }
   2625 
   2626 
   2627 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   2628   CEntryStub::GenerateAheadOfTime(isolate);
   2629   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
   2630   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
   2631   // It is important that the store buffer overflow stubs are generated first.
   2632   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
   2633   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
   2634   BinaryOpICStub::GenerateAheadOfTime(isolate);
   2635   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
   2636 }
   2637 
   2638 
   2639 void CodeStub::GenerateFPStubs(Isolate* isolate) {
   2640   CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
   2641   // Stubs might already be in the snapshot, detect that and don't regenerate,
   2642   // which would lead to code stub initialization state being messed up.
   2643   Code* save_doubles_code;
   2644   if (!save_doubles.FindCodeInCache(&save_doubles_code)) {
   2645     save_doubles_code = *(save_doubles.GetCode());
   2646   }
   2647   isolate->set_fp_stubs_generated(true);
   2648 }
   2649 
   2650 
   2651 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
   2652   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
   2653   stub.GetCode();
   2654 }
   2655 
   2656 
   2657 void CEntryStub::Generate(MacroAssembler* masm) {
   2658   // eax: number of arguments including receiver
   2659   // ebx: pointer to C function  (C callee-saved)
   2660   // ebp: frame pointer  (restored after C call)
   2661   // esp: stack pointer  (restored after C call)
   2662   // esi: current context (C callee-saved)
   2663   // edi: JS function of the caller (C callee-saved)
   2664 
   2665   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   2666 
   2667   // Enter the exit frame that transitions from JavaScript to C++.
   2668   __ EnterExitFrame(save_doubles_ == kSaveFPRegs);
   2669 
   2670   // ebx: pointer to C function  (C callee-saved)
   2671   // ebp: frame pointer  (restored after C call)
   2672   // esp: stack pointer  (restored after C call)
   2673   // edi: number of arguments including receiver  (C callee-saved)
   2674   // esi: pointer to the first argument (C callee-saved)
   2675 
   2676   // Result returned in eax, or eax+edx if result_size_ is 2.
   2677 
   2678   // Check stack alignment.
   2679   if (FLAG_debug_code) {
   2680     __ CheckStackAlignment();
   2681   }
   2682 
   2683   // Call C function.
   2684   __ mov(Operand(esp, 0 * kPointerSize), edi);  // argc.
   2685   __ mov(Operand(esp, 1 * kPointerSize), esi);  // argv.
   2686   __ mov(Operand(esp, 2 * kPointerSize),
   2687          Immediate(ExternalReference::isolate_address(isolate())));
   2688   __ call(ebx);
   2689   // Result is in eax or edx:eax - do not destroy these registers!
   2690 
   2691   // Runtime functions should not return 'the hole'.  Allowing it to escape may
   2692   // lead to crashes in the IC code later.
   2693   if (FLAG_debug_code) {
   2694     Label okay;
   2695     __ cmp(eax, isolate()->factory()->the_hole_value());
   2696     __ j(not_equal, &okay, Label::kNear);
   2697     __ int3();
   2698     __ bind(&okay);
   2699   }
   2700 
   2701   // Check result for exception sentinel.
   2702   Label exception_returned;
   2703   __ cmp(eax, isolate()->factory()->exception());
   2704   __ j(equal, &exception_returned);
   2705 
   2706   ExternalReference pending_exception_address(
   2707       Isolate::kPendingExceptionAddress, isolate());
   2708 
   2709   // Check that there is no pending exception, otherwise we
   2710   // should have returned the exception sentinel.
   2711   if (FLAG_debug_code) {
   2712     __ push(edx);
   2713     __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   2714     Label okay;
   2715     __ cmp(edx, Operand::StaticVariable(pending_exception_address));
   2716     // Cannot use check here as it attempts to generate call into runtime.
   2717     __ j(equal, &okay, Label::kNear);
   2718     __ int3();
   2719     __ bind(&okay);
   2720     __ pop(edx);
   2721   }
   2722 
   2723   // Exit the JavaScript to C++ exit frame.
   2724   __ LeaveExitFrame(save_doubles_ == kSaveFPRegs);
   2725   __ ret(0);
   2726 
   2727   // Handling of exception.
   2728   __ bind(&exception_returned);
   2729 
   2730   // Retrieve the pending exception.
   2731   __ mov(eax, Operand::StaticVariable(pending_exception_address));
   2732 
   2733   // Clear the pending exception.
   2734   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   2735   __ mov(Operand::StaticVariable(pending_exception_address), edx);
   2736 
   2737   // Special handling of termination exceptions which are uncatchable
   2738   // by javascript code.
   2739   Label throw_termination_exception;
   2740   __ cmp(eax, isolate()->factory()->termination_exception());
   2741   __ j(equal, &throw_termination_exception);
   2742 
   2743   // Handle normal exception.
   2744   __ Throw(eax);
   2745 
   2746   __ bind(&throw_termination_exception);
   2747   __ ThrowUncatchable(eax);
   2748 }
   2749 
   2750 
   2751 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
   2752   Label invoke, handler_entry, exit;
   2753   Label not_outermost_js, not_outermost_js_2;
   2754 
   2755   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   2756 
   2757   // Set up frame.
   2758   __ push(ebp);
   2759   __ mov(ebp, esp);
   2760 
   2761   // Push marker in two places.
   2762   int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
   2763   __ push(Immediate(Smi::FromInt(marker)));  // context slot
   2764   __ push(Immediate(Smi::FromInt(marker)));  // function slot
   2765   // Save callee-saved registers (C calling conventions).
   2766   __ push(edi);
   2767   __ push(esi);
   2768   __ push(ebx);
   2769 
   2770   // Save copies of the top frame descriptor on the stack.
   2771   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
   2772   __ push(Operand::StaticVariable(c_entry_fp));
   2773 
   2774   // If this is the outermost JS call, set js_entry_sp value.
   2775   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
   2776   __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
   2777   __ j(not_equal, &not_outermost_js, Label::kNear);
   2778   __ mov(Operand::StaticVariable(js_entry_sp), ebp);
   2779   __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   2780   __ jmp(&invoke, Label::kNear);
   2781   __ bind(&not_outermost_js);
   2782   __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
   2783 
   2784   // Jump to a faked try block that does the invoke, with a faked catch
   2785   // block that sets the pending exception.
   2786   __ jmp(&invoke);
   2787   __ bind(&handler_entry);
   2788   handler_offset_ = handler_entry.pos();
   2789   // Caught exception: Store result (exception) in the pending exception
   2790   // field in the JSEnv and return a failure sentinel.
   2791   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
   2792                                       isolate());
   2793   __ mov(Operand::StaticVariable(pending_exception), eax);
   2794   __ mov(eax, Immediate(isolate()->factory()->exception()));
   2795   __ jmp(&exit);
   2796 
   2797   // Invoke: Link this frame into the handler chain.  There's only one
   2798   // handler block in this code object, so its index is 0.
   2799   __ bind(&invoke);
   2800   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
   2801 
   2802   // Clear any pending exceptions.
   2803   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   2804   __ mov(Operand::StaticVariable(pending_exception), edx);
   2805 
   2806   // Fake a receiver (NULL).
   2807   __ push(Immediate(0));  // receiver
   2808 
   2809   // Invoke the function by calling through JS entry trampoline builtin and
   2810   // pop the faked function when we return. Notice that we cannot store a
   2811   // reference to the trampoline code directly in this stub, because the
   2812   // builtin stubs may not have been generated yet.
   2813   if (is_construct) {
   2814     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   2815                                       isolate());
   2816     __ mov(edx, Immediate(construct_entry));
   2817   } else {
   2818     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
   2819     __ mov(edx, Immediate(entry));
   2820   }
   2821   __ mov(edx, Operand(edx, 0));  // deref address
   2822   __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
   2823   __ call(edx);
   2824 
   2825   // Unlink this frame from the handler chain.
   2826   __ PopTryHandler();
   2827 
   2828   __ bind(&exit);
   2829   // Check if the current stack frame is marked as the outermost JS frame.
   2830   __ pop(ebx);
   2831   __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   2832   __ j(not_equal, &not_outermost_js_2);
   2833   __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
   2834   __ bind(&not_outermost_js_2);
   2835 
   2836   // Restore the top frame descriptor from the stack.
   2837   __ pop(Operand::StaticVariable(ExternalReference(
   2838       Isolate::kCEntryFPAddress, isolate())));
   2839 
   2840   // Restore callee-saved registers (C calling conventions).
   2841   __ pop(ebx);
   2842   __ pop(esi);
   2843   __ pop(edi);
   2844   __ add(esp, Immediate(2 * kPointerSize));  // remove markers
   2845 
   2846   // Restore frame pointer and return.
   2847   __ pop(ebp);
   2848   __ ret(0);
   2849 }
   2850 
   2851 
   2852 // Generate stub code for instanceof.
   2853 // This code can patch a call site inlined cache of the instance of check,
   2854 // which looks like this.
   2855 //
   2856 //   81 ff XX XX XX XX   cmp    edi, <the hole, patched to a map>
   2857 //   75 0a               jne    <some near label>
   2858 //   b8 XX XX XX XX      mov    eax, <the hole, patched to either true or false>
   2859 //
   2860 // If call site patching is requested the stack will have the delta from the
   2861 // return address to the cmp instruction just below the return address. This
   2862 // also means that call site patching can only take place with arguments in
   2863 // registers. TOS looks like this when call site patching is requested
   2864 //
   2865 //   esp[0] : return address
   2866 //   esp[4] : delta from return address to cmp instruction
   2867 //
   2868 void InstanceofStub::Generate(MacroAssembler* masm) {
   2869   // Call site inlining and patching implies arguments in registers.
   2870   ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
   2871 
   2872   // Fixed register usage throughout the stub.
   2873   Register object = eax;  // Object (lhs).
   2874   Register map = ebx;  // Map of the object.
   2875   Register function = edx;  // Function (rhs).
   2876   Register prototype = edi;  // Prototype of the function.
   2877   Register scratch = ecx;
   2878 
   2879   // Constants describing the call site code to patch.
   2880   static const int kDeltaToCmpImmediate = 2;
   2881   static const int kDeltaToMov = 8;
   2882   static const int kDeltaToMovImmediate = 9;
   2883   static const int8_t kCmpEdiOperandByte1 = BitCast<int8_t, uint8_t>(0x3b);
   2884   static const int8_t kCmpEdiOperandByte2 = BitCast<int8_t, uint8_t>(0x3d);
   2885   static const int8_t kMovEaxImmediateByte = BitCast<int8_t, uint8_t>(0xb8);
   2886 
   2887   ASSERT_EQ(object.code(), InstanceofStub::left().code());
   2888   ASSERT_EQ(function.code(), InstanceofStub::right().code());
   2889 
   2890   // Get the object and function - they are always both needed.
   2891   Label slow, not_js_object;
   2892   if (!HasArgsInRegisters()) {
   2893     __ mov(object, Operand(esp, 2 * kPointerSize));
   2894     __ mov(function, Operand(esp, 1 * kPointerSize));
   2895   }
   2896 
   2897   // Check that the left hand is a JS object.
   2898   __ JumpIfSmi(object, &not_js_object);
   2899   __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
   2900 
   2901   // If there is a call site cache don't look in the global cache, but do the
   2902   // real lookup and update the call site cache.
   2903   if (!HasCallSiteInlineCheck()) {
   2904     // Look up the function and the map in the instanceof cache.
   2905     Label miss;
   2906     __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
   2907     __ j(not_equal, &miss, Label::kNear);
   2908     __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
   2909     __ j(not_equal, &miss, Label::kNear);
   2910     __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
   2911     __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2912     __ bind(&miss);
   2913   }
   2914 
   2915   // Get the prototype of the function.
   2916   __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
   2917 
   2918   // Check that the function prototype is a JS object.
   2919   __ JumpIfSmi(prototype, &slow);
   2920   __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
   2921 
   2922   // Update the global instanceof or call site inlined cache with the current
   2923   // map and function. The cached answer will be set when it is known below.
   2924   if (!HasCallSiteInlineCheck()) {
   2925     __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
   2926     __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
   2927   } else {
   2928     // The constants for the code patching are based on no push instructions
   2929     // at the call site.
   2930     ASSERT(HasArgsInRegisters());
   2931     // Get return address and delta to inlined map check.
   2932     __ mov(scratch, Operand(esp, 0 * kPointerSize));
   2933     __ sub(scratch, Operand(esp, 1 * kPointerSize));
   2934     if (FLAG_debug_code) {
   2935       __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
   2936       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
   2937       __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
   2938       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
   2939     }
   2940     __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
   2941     __ mov(Operand(scratch, 0), map);
   2942   }
   2943 
   2944   // Loop through the prototype chain of the object looking for the function
   2945   // prototype.
   2946   __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
   2947   Label loop, is_instance, is_not_instance;
   2948   __ bind(&loop);
   2949   __ cmp(scratch, prototype);
   2950   __ j(equal, &is_instance, Label::kNear);
   2951   Factory* factory = isolate()->factory();
   2952   __ cmp(scratch, Immediate(factory->null_value()));
   2953   __ j(equal, &is_not_instance, Label::kNear);
   2954   __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
   2955   __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
   2956   __ jmp(&loop);
   2957 
   2958   __ bind(&is_instance);
   2959   if (!HasCallSiteInlineCheck()) {
   2960     __ mov(eax, Immediate(0));
   2961     __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
   2962   } else {
   2963     // Get return address and delta to inlined map check.
   2964     __ mov(eax, factory->true_value());
   2965     __ mov(scratch, Operand(esp, 0 * kPointerSize));
   2966     __ sub(scratch, Operand(esp, 1 * kPointerSize));
   2967     if (FLAG_debug_code) {
   2968       __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
   2969       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
   2970     }
   2971     __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
   2972     if (!ReturnTrueFalseObject()) {
   2973       __ Move(eax, Immediate(0));
   2974     }
   2975   }
   2976   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2977 
   2978   __ bind(&is_not_instance);
   2979   if (!HasCallSiteInlineCheck()) {
   2980     __ mov(eax, Immediate(Smi::FromInt(1)));
   2981     __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
   2982   } else {
   2983     // Get return address and delta to inlined map check.
   2984     __ mov(eax, factory->false_value());
   2985     __ mov(scratch, Operand(esp, 0 * kPointerSize));
   2986     __ sub(scratch, Operand(esp, 1 * kPointerSize));
   2987     if (FLAG_debug_code) {
   2988       __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
   2989       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
   2990     }
   2991     __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
   2992     if (!ReturnTrueFalseObject()) {
   2993       __ Move(eax, Immediate(Smi::FromInt(1)));
   2994     }
   2995   }
   2996   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2997 
   2998   Label object_not_null, object_not_null_or_smi;
   2999   __ bind(&not_js_object);
   3000   // Before null, smi and string value checks, check that the rhs is a function
   3001   // as for a non-function rhs an exception needs to be thrown.
   3002   __ JumpIfSmi(function, &slow, Label::kNear);
   3003   __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
   3004   __ j(not_equal, &slow, Label::kNear);
   3005 
   3006   // Null is not instance of anything.
   3007   __ cmp(object, factory->null_value());
   3008   __ j(not_equal, &object_not_null, Label::kNear);
   3009   __ Move(eax, Immediate(Smi::FromInt(1)));
   3010   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   3011 
   3012   __ bind(&object_not_null);
   3013   // Smi values is not instance of anything.
   3014   __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
   3015   __ Move(eax, Immediate(Smi::FromInt(1)));
   3016   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   3017 
   3018   __ bind(&object_not_null_or_smi);
   3019   // String values is not instance of anything.
   3020   Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
   3021   __ j(NegateCondition(is_string), &slow, Label::kNear);
   3022   __ Move(eax, Immediate(Smi::FromInt(1)));
   3023   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   3024 
   3025   // Slow-case: Go through the JavaScript implementation.
   3026   __ bind(&slow);
   3027   if (!ReturnTrueFalseObject()) {
   3028     // Tail call the builtin which returns 0 or 1.
   3029     if (HasArgsInRegisters()) {
   3030       // Push arguments below return address.
   3031       __ pop(scratch);
   3032       __ push(object);
   3033       __ push(function);
   3034       __ push(scratch);
   3035     }
   3036     __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
   3037   } else {
   3038     // Call the builtin and convert 0/1 to true/false.
   3039     {
   3040       FrameScope scope(masm, StackFrame::INTERNAL);
   3041       __ push(object);
   3042       __ push(function);
   3043       __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
   3044     }
   3045     Label true_value, done;
   3046     __ test(eax, eax);
   3047     __ j(zero, &true_value, Label::kNear);
   3048     __ mov(eax, factory->false_value());
   3049     __ jmp(&done, Label::kNear);
   3050     __ bind(&true_value);
   3051     __ mov(eax, factory->true_value());
   3052     __ bind(&done);
   3053     __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   3054   }
   3055 }
   3056 
   3057 
   3058 Register InstanceofStub::left() { return eax; }
   3059 
   3060 
   3061 Register InstanceofStub::right() { return edx; }
   3062 
   3063 
   3064 // -------------------------------------------------------------------------
   3065 // StringCharCodeAtGenerator
   3066 
   3067 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   3068   // If the receiver is a smi trigger the non-string case.
   3069   STATIC_ASSERT(kSmiTag == 0);
   3070   __ JumpIfSmi(object_, receiver_not_string_);
   3071 
   3072   // Fetch the instance type of the receiver into result register.
   3073   __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
   3074   __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   3075   // If the receiver is not a string trigger the non-string case.
   3076   __ test(result_, Immediate(kIsNotStringMask));
   3077   __ j(not_zero, receiver_not_string_);
   3078 
   3079   // If the index is non-smi trigger the non-smi case.
   3080   STATIC_ASSERT(kSmiTag == 0);
   3081   __ JumpIfNotSmi(index_, &index_not_smi_);
   3082   __ bind(&got_smi_index_);
   3083 
   3084   // Check for index out of range.
   3085   __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
   3086   __ j(above_equal, index_out_of_range_);
   3087 
   3088   __ SmiUntag(index_);
   3089 
   3090   Factory* factory = masm->isolate()->factory();
   3091   StringCharLoadGenerator::Generate(
   3092       masm, factory, object_, index_, result_, &call_runtime_);
   3093 
   3094   __ SmiTag(result_);
   3095   __ bind(&exit_);
   3096 }
   3097 
   3098 
   3099 void StringCharCodeAtGenerator::GenerateSlow(
   3100     MacroAssembler* masm,
   3101     const RuntimeCallHelper& call_helper) {
   3102   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   3103 
   3104   // Index is not a smi.
   3105   __ bind(&index_not_smi_);
   3106   // If index is a heap number, try converting it to an integer.
   3107   __ CheckMap(index_,
   3108               masm->isolate()->factory()->heap_number_map(),
   3109               index_not_number_,
   3110               DONT_DO_SMI_CHECK);
   3111   call_helper.BeforeCall(masm);
   3112   __ push(object_);
   3113   __ push(index_);  // Consumed by runtime conversion function.
   3114   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
   3115     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
   3116   } else {
   3117     ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
   3118     // NumberToSmi discards numbers that are not exact integers.
   3119     __ CallRuntime(Runtime::kHiddenNumberToSmi, 1);
   3120   }
   3121   if (!index_.is(eax)) {
   3122     // Save the conversion result before the pop instructions below
   3123     // have a chance to overwrite it.
   3124     __ mov(index_, eax);
   3125   }
   3126   __ pop(object_);
   3127   // Reload the instance type.
   3128   __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
   3129   __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   3130   call_helper.AfterCall(masm);
   3131   // If index is still not a smi, it must be out of range.
   3132   STATIC_ASSERT(kSmiTag == 0);
   3133   __ JumpIfNotSmi(index_, index_out_of_range_);
   3134   // Otherwise, return to the fast path.
   3135   __ jmp(&got_smi_index_);
   3136 
   3137   // Call runtime. We get here when the receiver is a string and the
   3138   // index is a number, but the code of getting the actual character
   3139   // is too complex (e.g., when the string needs to be flattened).
   3140   __ bind(&call_runtime_);
   3141   call_helper.BeforeCall(masm);
   3142   __ push(object_);
   3143   __ SmiTag(index_);
   3144   __ push(index_);
   3145   __ CallRuntime(Runtime::kHiddenStringCharCodeAt, 2);
   3146   if (!result_.is(eax)) {
   3147     __ mov(result_, eax);
   3148   }
   3149   call_helper.AfterCall(masm);
   3150   __ jmp(&exit_);
   3151 
   3152   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   3153 }
   3154 
   3155 
   3156 // -------------------------------------------------------------------------
   3157 // StringCharFromCodeGenerator
   3158 
   3159 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
   3160   // Fast case of Heap::LookupSingleCharacterStringFromCode.
   3161   STATIC_ASSERT(kSmiTag == 0);
   3162   STATIC_ASSERT(kSmiShiftSize == 0);
   3163   ASSERT(IsPowerOf2(String::kMaxOneByteCharCode + 1));
   3164   __ test(code_,
   3165           Immediate(kSmiTagMask |
   3166                     ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
   3167   __ j(not_zero, &slow_case_);
   3168 
   3169   Factory* factory = masm->isolate()->factory();
   3170   __ Move(result_, Immediate(factory->single_character_string_cache()));
   3171   STATIC_ASSERT(kSmiTag == 0);
   3172   STATIC_ASSERT(kSmiTagSize == 1);
   3173   STATIC_ASSERT(kSmiShiftSize == 0);
   3174   // At this point code register contains smi tagged ASCII char code.
   3175   __ mov(result_, FieldOperand(result_,
   3176                                code_, times_half_pointer_size,
   3177                                FixedArray::kHeaderSize));
   3178   __ cmp(result_, factory->undefined_value());
   3179   __ j(equal, &slow_case_);
   3180   __ bind(&exit_);
   3181 }
   3182 
   3183 
   3184 void StringCharFromCodeGenerator::GenerateSlow(
   3185     MacroAssembler* masm,
   3186     const RuntimeCallHelper& call_helper) {
   3187   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
   3188 
   3189   __ bind(&slow_case_);
   3190   call_helper.BeforeCall(masm);
   3191   __ push(code_);
   3192   __ CallRuntime(Runtime::kCharFromCode, 1);
   3193   if (!result_.is(eax)) {
   3194     __ mov(result_, eax);
   3195   }
   3196   call_helper.AfterCall(masm);
   3197   __ jmp(&exit_);
   3198 
   3199   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
   3200 }
   3201 
   3202 
   3203 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
   3204                                           Register dest,
   3205                                           Register src,
   3206                                           Register count,
   3207                                           Register scratch,
   3208                                           String::Encoding encoding) {
   3209   ASSERT(!scratch.is(dest));
   3210   ASSERT(!scratch.is(src));
   3211   ASSERT(!scratch.is(count));
   3212 
   3213   // Nothing to do for zero characters.
   3214   Label done;
   3215   __ test(count, count);
   3216   __ j(zero, &done);
   3217 
   3218   // Make count the number of bytes to copy.
   3219   if (encoding == String::TWO_BYTE_ENCODING) {
   3220     __ shl(count, 1);
   3221   }
   3222 
   3223   Label loop;
   3224   __ bind(&loop);
   3225   __ mov_b(scratch, Operand(src, 0));
   3226   __ mov_b(Operand(dest, 0), scratch);
   3227   __ inc(src);
   3228   __ inc(dest);
   3229   __ dec(count);
   3230   __ j(not_zero, &loop);
   3231 
   3232   __ bind(&done);
   3233 }
   3234 
   3235 
   3236 void StringHelper::GenerateHashInit(MacroAssembler* masm,
   3237                                     Register hash,
   3238                                     Register character,
   3239                                     Register scratch) {
   3240   // hash = (seed + character) + ((seed + character) << 10);
   3241   if (masm->serializer_enabled()) {
   3242     __ LoadRoot(scratch, Heap::kHashSeedRootIndex);
   3243     __ SmiUntag(scratch);
   3244     __ add(scratch, character);
   3245     __ mov(hash, scratch);
   3246     __ shl(scratch, 10);
   3247     __ add(hash, scratch);
   3248   } else {
   3249     int32_t seed = masm->isolate()->heap()->HashSeed();
   3250     __ lea(scratch, Operand(character, seed));
   3251     __ shl(scratch, 10);
   3252     __ lea(hash, Operand(scratch, character, times_1, seed));
   3253   }
   3254   // hash ^= hash >> 6;
   3255   __ mov(scratch, hash);
   3256   __ shr(scratch, 6);
   3257   __ xor_(hash, scratch);
   3258 }
   3259 
   3260 
   3261 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
   3262                                             Register hash,
   3263                                             Register character,
   3264                                             Register scratch) {
   3265   // hash += character;
   3266   __ add(hash, character);
   3267   // hash += hash << 10;
   3268   __ mov(scratch, hash);
   3269   __ shl(scratch, 10);
   3270   __ add(hash, scratch);
   3271   // hash ^= hash >> 6;
   3272   __ mov(scratch, hash);
   3273   __ shr(scratch, 6);
   3274   __ xor_(hash, scratch);
   3275 }
   3276 
   3277 
   3278 void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
   3279                                        Register hash,
   3280                                        Register scratch) {
   3281   // hash += hash << 3;
   3282   __ mov(scratch, hash);
   3283   __ shl(scratch, 3);
   3284   __ add(hash, scratch);
   3285   // hash ^= hash >> 11;
   3286   __ mov(scratch, hash);
   3287   __ shr(scratch, 11);
   3288   __ xor_(hash, scratch);
   3289   // hash += hash << 15;
   3290   __ mov(scratch, hash);
   3291   __ shl(scratch, 15);
   3292   __ add(hash, scratch);
   3293 
   3294   __ and_(hash, String::kHashBitMask);
   3295 
   3296   // if (hash == 0) hash = 27;
   3297   Label hash_not_zero;
   3298   __ j(not_zero, &hash_not_zero, Label::kNear);
   3299   __ mov(hash, Immediate(StringHasher::kZeroHash));
   3300   __ bind(&hash_not_zero);
   3301 }
   3302 
   3303 
   3304 void SubStringStub::Generate(MacroAssembler* masm) {
   3305   Label runtime;
   3306 
   3307   // Stack frame on entry.
   3308   //  esp[0]: return address
   3309   //  esp[4]: to
   3310   //  esp[8]: from
   3311   //  esp[12]: string
   3312 
   3313   // Make sure first argument is a string.
   3314   __ mov(eax, Operand(esp, 3 * kPointerSize));
   3315   STATIC_ASSERT(kSmiTag == 0);
   3316   __ JumpIfSmi(eax, &runtime);
   3317   Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
   3318   __ j(NegateCondition(is_string), &runtime);
   3319 
   3320   // eax: string
   3321   // ebx: instance type
   3322 
   3323   // Calculate length of sub string using the smi values.
   3324   __ mov(ecx, Operand(esp, 1 * kPointerSize));  // To index.
   3325   __ JumpIfNotSmi(ecx, &runtime);
   3326   __ mov(edx, Operand(esp, 2 * kPointerSize));  // From index.
   3327   __ JumpIfNotSmi(edx, &runtime);
   3328   __ sub(ecx, edx);
   3329   __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
   3330   Label not_original_string;
   3331   // Shorter than original string's length: an actual substring.
   3332   __ j(below, &not_original_string, Label::kNear);
   3333   // Longer than original string's length or negative: unsafe arguments.
   3334   __ j(above, &runtime);
   3335   // Return original string.
   3336   Counters* counters = isolate()->counters();
   3337   __ IncrementCounter(counters->sub_string_native(), 1);
   3338   __ ret(3 * kPointerSize);
   3339   __ bind(&not_original_string);
   3340 
   3341   Label single_char;
   3342   __ cmp(ecx, Immediate(Smi::FromInt(1)));
   3343   __ j(equal, &single_char);
   3344 
   3345   // eax: string
   3346   // ebx: instance type
   3347   // ecx: sub string length (smi)
   3348   // edx: from index (smi)
   3349   // Deal with different string types: update the index if necessary
   3350   // and put the underlying string into edi.
   3351   Label underlying_unpacked, sliced_string, seq_or_external_string;
   3352   // If the string is not indirect, it can only be sequential or external.
   3353   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   3354   STATIC_ASSERT(kIsIndirectStringMask != 0);
   3355   __ test(ebx, Immediate(kIsIndirectStringMask));
   3356   __ j(zero, &seq_or_external_string, Label::kNear);
   3357 
   3358   Factory* factory = isolate()->factory();
   3359   __ test(ebx, Immediate(kSlicedNotConsMask));
   3360   __ j(not_zero, &sliced_string, Label::kNear);
   3361   // Cons string.  Check whether it is flat, then fetch first part.
   3362   // Flat cons strings have an empty second part.
   3363   __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
   3364          factory->empty_string());
   3365   __ j(not_equal, &runtime);
   3366   __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
   3367   // Update instance type.
   3368   __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
   3369   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   3370   __ jmp(&underlying_unpacked, Label::kNear);
   3371 
   3372   __ bind(&sliced_string);
   3373   // Sliced string.  Fetch parent and adjust start index by offset.
   3374   __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
   3375   __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
   3376   // Update instance type.
   3377   __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
   3378   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   3379   __ jmp(&underlying_unpacked, Label::kNear);
   3380 
   3381   __ bind(&seq_or_external_string);
   3382   // Sequential or external string.  Just move string to the expected register.
   3383   __ mov(edi, eax);
   3384 
   3385   __ bind(&underlying_unpacked);
   3386 
   3387   if (FLAG_string_slices) {
   3388     Label copy_routine;
   3389     // edi: underlying subject string
   3390     // ebx: instance type of underlying subject string
   3391     // edx: adjusted start index (smi)
   3392     // ecx: length (smi)
   3393     __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
   3394     // Short slice.  Copy instead of slicing.
   3395     __ j(less, &copy_routine);
   3396     // Allocate new sliced string.  At this point we do not reload the instance
   3397     // type including the string encoding because we simply rely on the info
   3398     // provided by the original string.  It does not matter if the original
   3399     // string's encoding is wrong because we always have to recheck encoding of
   3400     // the newly created string's parent anyways due to externalized strings.
   3401     Label two_byte_slice, set_slice_header;
   3402     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
   3403     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   3404     __ test(ebx, Immediate(kStringEncodingMask));
   3405     __ j(zero, &two_byte_slice, Label::kNear);
   3406     __ AllocateAsciiSlicedString(eax, ebx, no_reg, &runtime);
   3407     __ jmp(&set_slice_header, Label::kNear);
   3408     __ bind(&two_byte_slice);
   3409     __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
   3410     __ bind(&set_slice_header);
   3411     __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
   3412     __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
   3413            Immediate(String::kEmptyHashField));
   3414     __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
   3415     __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
   3416     __ IncrementCounter(counters->sub_string_native(), 1);
   3417     __ ret(3 * kPointerSize);
   3418 
   3419     __ bind(&copy_routine);
   3420   }
   3421 
   3422   // edi: underlying subject string
   3423   // ebx: instance type of underlying subject string
   3424   // edx: adjusted start index (smi)
   3425   // ecx: length (smi)
   3426   // The subject string can only be external or sequential string of either
   3427   // encoding at this point.
   3428   Label two_byte_sequential, runtime_drop_two, sequential_string;
   3429   STATIC_ASSERT(kExternalStringTag != 0);
   3430   STATIC_ASSERT(kSeqStringTag == 0);
   3431   __ test_b(ebx, kExternalStringTag);
   3432   __ j(zero, &sequential_string);
   3433 
   3434   // Handle external string.
   3435   // Rule out short external strings.
   3436   STATIC_ASSERT(kShortExternalStringTag != 0);
   3437   __ test_b(ebx, kShortExternalStringMask);
   3438   __ j(not_zero, &runtime);
   3439   __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
   3440   // Move the pointer so that offset-wise, it looks like a sequential string.
   3441   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   3442   __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   3443 
   3444   __ bind(&sequential_string);
   3445   // Stash away (adjusted) index and (underlying) string.
   3446   __ push(edx);
   3447   __ push(edi);
   3448   __ SmiUntag(ecx);
   3449   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
   3450   __ test_b(ebx, kStringEncodingMask);
   3451   __ j(zero, &two_byte_sequential);
   3452 
   3453   // Sequential ASCII string.  Allocate the result.
   3454   __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
   3455 
   3456   // eax: result string
   3457   // ecx: result string length
   3458   // Locate first character of result.
   3459   __ mov(edi, eax);
   3460   __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3461   // Load string argument and locate character of sub string start.
   3462   __ pop(edx);
   3463   __ pop(ebx);
   3464   __ SmiUntag(ebx);
   3465   __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
   3466 
   3467   // eax: result string
   3468   // ecx: result length
   3469   // edi: first character of result
   3470   // edx: character of sub string start
   3471   StringHelper::GenerateCopyCharacters(
   3472       masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
   3473   __ IncrementCounter(counters->sub_string_native(), 1);
   3474   __ ret(3 * kPointerSize);
   3475 
   3476   __ bind(&two_byte_sequential);
   3477   // Sequential two-byte string.  Allocate the result.
   3478   __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
   3479 
   3480   // eax: result string
   3481   // ecx: result string length
   3482   // Locate first character of result.
   3483   __ mov(edi, eax);
   3484   __ add(edi,
   3485          Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   3486   // Load string argument and locate character of sub string start.
   3487   __ pop(edx);
   3488   __ pop(ebx);
   3489   // As from is a smi it is 2 times the value which matches the size of a two
   3490   // byte character.
   3491   STATIC_ASSERT(kSmiTag == 0);
   3492   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   3493   __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
   3494 
   3495   // eax: result string
   3496   // ecx: result length
   3497   // edi: first character of result
   3498   // edx: character of sub string start
   3499   StringHelper::GenerateCopyCharacters(
   3500       masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
   3501   __ IncrementCounter(counters->sub_string_native(), 1);
   3502   __ ret(3 * kPointerSize);
   3503 
   3504   // Drop pushed values on the stack before tail call.
   3505   __ bind(&runtime_drop_two);
   3506   __ Drop(2);
   3507 
   3508   // Just jump to runtime to create the sub string.
   3509   __ bind(&runtime);
   3510   __ TailCallRuntime(Runtime::kHiddenSubString, 3, 1);
   3511 
   3512   __ bind(&single_char);
   3513   // eax: string
   3514   // ebx: instance type
   3515   // ecx: sub string length (smi)
   3516   // edx: from index (smi)
   3517   StringCharAtGenerator generator(
   3518       eax, edx, ecx, eax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
   3519   generator.GenerateFast(masm);
   3520   __ ret(3 * kPointerSize);
   3521   generator.SkipSlow(masm, &runtime);
   3522 }
   3523 
   3524 
   3525 void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
   3526                                                       Register left,
   3527                                                       Register right,
   3528                                                       Register scratch1,
   3529                                                       Register scratch2) {
   3530   Register length = scratch1;
   3531 
   3532   // Compare lengths.
   3533   Label strings_not_equal, check_zero_length;
   3534   __ mov(length, FieldOperand(left, String::kLengthOffset));
   3535   __ cmp(length, FieldOperand(right, String::kLengthOffset));
   3536   __ j(equal, &check_zero_length, Label::kNear);
   3537   __ bind(&strings_not_equal);
   3538   __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
   3539   __ ret(0);
   3540 
   3541   // Check if the length is zero.
   3542   Label compare_chars;
   3543   __ bind(&check_zero_length);
   3544   STATIC_ASSERT(kSmiTag == 0);
   3545   __ test(length, length);
   3546   __ j(not_zero, &compare_chars, Label::kNear);
   3547   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3548   __ ret(0);
   3549 
   3550   // Compare characters.
   3551   __ bind(&compare_chars);
   3552   GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2,
   3553                                 &strings_not_equal, Label::kNear);
   3554 
   3555   // Characters are equal.
   3556   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3557   __ ret(0);
   3558 }
   3559 
   3560 
   3561 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
   3562                                                         Register left,
   3563                                                         Register right,
   3564                                                         Register scratch1,
   3565                                                         Register scratch2,
   3566                                                         Register scratch3) {
   3567   Counters* counters = masm->isolate()->counters();
   3568   __ IncrementCounter(counters->string_compare_native(), 1);
   3569 
   3570   // Find minimum length.
   3571   Label left_shorter;
   3572   __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
   3573   __ mov(scratch3, scratch1);
   3574   __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
   3575 
   3576   Register length_delta = scratch3;
   3577 
   3578   __ j(less_equal, &left_shorter, Label::kNear);
   3579   // Right string is shorter. Change scratch1 to be length of right string.
   3580   __ sub(scratch1, length_delta);
   3581   __ bind(&left_shorter);
   3582 
   3583   Register min_length = scratch1;
   3584 
   3585   // If either length is zero, just compare lengths.
   3586   Label compare_lengths;
   3587   __ test(min_length, min_length);
   3588   __ j(zero, &compare_lengths, Label::kNear);
   3589 
   3590   // Compare characters.
   3591   Label result_not_equal;
   3592   GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2,
   3593                                 &result_not_equal, Label::kNear);
   3594 
   3595   // Compare lengths -  strings up to min-length are equal.
   3596   __ bind(&compare_lengths);
   3597   __ test(length_delta, length_delta);
   3598   Label length_not_equal;
   3599   __ j(not_zero, &length_not_equal, Label::kNear);
   3600 
   3601   // Result is EQUAL.
   3602   STATIC_ASSERT(EQUAL == 0);
   3603   STATIC_ASSERT(kSmiTag == 0);
   3604   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3605   __ ret(0);
   3606 
   3607   Label result_greater;
   3608   Label result_less;
   3609   __ bind(&length_not_equal);
   3610   __ j(greater, &result_greater, Label::kNear);
   3611   __ jmp(&result_less, Label::kNear);
   3612   __ bind(&result_not_equal);
   3613   __ j(above, &result_greater, Label::kNear);
   3614   __ bind(&result_less);
   3615 
   3616   // Result is LESS.
   3617   __ Move(eax, Immediate(Smi::FromInt(LESS)));
   3618   __ ret(0);
   3619 
   3620   // Result is GREATER.
   3621   __ bind(&result_greater);
   3622   __ Move(eax, Immediate(Smi::FromInt(GREATER)));
   3623   __ ret(0);
   3624 }
   3625 
   3626 
   3627 void StringCompareStub::GenerateAsciiCharsCompareLoop(
   3628     MacroAssembler* masm,
   3629     Register left,
   3630     Register right,
   3631     Register length,
   3632     Register scratch,
   3633     Label* chars_not_equal,
   3634     Label::Distance chars_not_equal_near) {
   3635   // Change index to run from -length to -1 by adding length to string
   3636   // start. This means that loop ends when index reaches zero, which
   3637   // doesn't need an additional compare.
   3638   __ SmiUntag(length);
   3639   __ lea(left,
   3640          FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
   3641   __ lea(right,
   3642          FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
   3643   __ neg(length);
   3644   Register index = length;  // index = -length;
   3645 
   3646   // Compare loop.
   3647   Label loop;
   3648   __ bind(&loop);
   3649   __ mov_b(scratch, Operand(left, index, times_1, 0));
   3650   __ cmpb(scratch, Operand(right, index, times_1, 0));
   3651   __ j(not_equal, chars_not_equal, chars_not_equal_near);
   3652   __ inc(index);
   3653   __ j(not_zero, &loop);
   3654 }
   3655 
   3656 
   3657 void StringCompareStub::Generate(MacroAssembler* masm) {
   3658   Label runtime;
   3659 
   3660   // Stack frame on entry.
   3661   //  esp[0]: return address
   3662   //  esp[4]: right string
   3663   //  esp[8]: left string
   3664 
   3665   __ mov(edx, Operand(esp, 2 * kPointerSize));  // left
   3666   __ mov(eax, Operand(esp, 1 * kPointerSize));  // right
   3667 
   3668   Label not_same;
   3669   __ cmp(edx, eax);
   3670   __ j(not_equal, &not_same, Label::kNear);
   3671   STATIC_ASSERT(EQUAL == 0);
   3672   STATIC_ASSERT(kSmiTag == 0);
   3673   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3674   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
   3675   __ ret(2 * kPointerSize);
   3676 
   3677   __ bind(&not_same);
   3678 
   3679   // Check that both objects are sequential ASCII strings.
   3680   __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime);
   3681 
   3682   // Compare flat ASCII strings.
   3683   // Drop arguments from the stack.
   3684   __ pop(ecx);
   3685   __ add(esp, Immediate(2 * kPointerSize));
   3686   __ push(ecx);
   3687   GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi);
   3688 
   3689   // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
   3690   // tagged as a small integer.
   3691   __ bind(&runtime);
   3692   __ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1);
   3693 }
   3694 
   3695 
   3696 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   3697   // ----------- S t a t e -------------
   3698   //  -- edx    : left
   3699   //  -- eax    : right
   3700   //  -- esp[0] : return address
   3701   // -----------------------------------
   3702 
   3703   // Load ecx with the allocation site.  We stick an undefined dummy value here
   3704   // and replace it with the real allocation site later when we instantiate this
   3705   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   3706   __ mov(ecx, handle(isolate()->heap()->undefined_value()));
   3707 
   3708   // Make sure that we actually patched the allocation site.
   3709   if (FLAG_debug_code) {
   3710     __ test(ecx, Immediate(kSmiTagMask));
   3711     __ Assert(not_equal, kExpectedAllocationSite);
   3712     __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
   3713            isolate()->factory()->allocation_site_map());
   3714     __ Assert(equal, kExpectedAllocationSite);
   3715   }
   3716 
   3717   // Tail call into the stub that handles binary operations with allocation
   3718   // sites.
   3719   BinaryOpWithAllocationSiteStub stub(isolate(), state_);
   3720   __ TailCallStub(&stub);
   3721 }
   3722 
   3723 
   3724 void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
   3725   ASSERT(state_ == CompareIC::SMI);
   3726   Label miss;
   3727   __ mov(ecx, edx);
   3728   __ or_(ecx, eax);
   3729   __ JumpIfNotSmi(ecx, &miss, Label::kNear);
   3730 
   3731   if (GetCondition() == equal) {
   3732     // For equality we do not care about the sign of the result.
   3733     __ sub(eax, edx);
   3734   } else {
   3735     Label done;
   3736     __ sub(edx, eax);
   3737     __ j(no_overflow, &done, Label::kNear);
   3738     // Correct sign of result in case of overflow.
   3739     __ not_(edx);
   3740     __ bind(&done);
   3741     __ mov(eax, edx);
   3742   }
   3743   __ ret(0);
   3744 
   3745   __ bind(&miss);
   3746   GenerateMiss(masm);
   3747 }
   3748 
   3749 
   3750 void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
   3751   ASSERT(state_ == CompareIC::NUMBER);
   3752 
   3753   Label generic_stub;
   3754   Label unordered, maybe_undefined1, maybe_undefined2;
   3755   Label miss;
   3756 
   3757   if (left_ == CompareIC::SMI) {
   3758     __ JumpIfNotSmi(edx, &miss);
   3759   }
   3760   if (right_ == CompareIC::SMI) {
   3761     __ JumpIfNotSmi(eax, &miss);
   3762   }
   3763 
   3764   // Load left and right operand.
   3765   Label done, left, left_smi, right_smi;
   3766   __ JumpIfSmi(eax, &right_smi, Label::kNear);
   3767   __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
   3768          isolate()->factory()->heap_number_map());
   3769   __ j(not_equal, &maybe_undefined1, Label::kNear);
   3770   __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
   3771   __ jmp(&left, Label::kNear);
   3772   __ bind(&right_smi);
   3773   __ mov(ecx, eax);  // Can't clobber eax because we can still jump away.
   3774   __ SmiUntag(ecx);
   3775   __ Cvtsi2sd(xmm1, ecx);
   3776 
   3777   __ bind(&left);
   3778   __ JumpIfSmi(edx, &left_smi, Label::kNear);
   3779   __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
   3780          isolate()->factory()->heap_number_map());
   3781   __ j(not_equal, &maybe_undefined2, Label::kNear);
   3782   __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
   3783   __ jmp(&done);
   3784   __ bind(&left_smi);
   3785   __ mov(ecx, edx);  // Can't clobber edx because we can still jump away.
   3786   __ SmiUntag(ecx);
   3787   __ Cvtsi2sd(xmm0, ecx);
   3788 
   3789   __ bind(&done);
   3790   // Compare operands.
   3791   __ ucomisd(xmm0, xmm1);
   3792 
   3793   // Don't base result on EFLAGS when a NaN is involved.
   3794   __ j(parity_even, &unordered, Label::kNear);
   3795 
   3796   // Return a result of -1, 0, or 1, based on EFLAGS.
   3797   // Performing mov, because xor would destroy the flag register.
   3798   __ mov(eax, 0);  // equal
   3799   __ mov(ecx, Immediate(Smi::FromInt(1)));
   3800   __ cmov(above, eax, ecx);
   3801   __ mov(ecx, Immediate(Smi::FromInt(-1)));
   3802   __ cmov(below, eax, ecx);
   3803   __ ret(0);
   3804 
   3805   __ bind(&unordered);
   3806   __ bind(&generic_stub);
   3807   ICCompareStub stub(isolate(), op_, CompareIC::GENERIC, CompareIC::GENERIC,
   3808                      CompareIC::GENERIC);
   3809   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   3810 
   3811   __ bind(&maybe_undefined1);
   3812   if (Token::IsOrderedRelationalCompareOp(op_)) {
   3813     __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
   3814     __ j(not_equal, &miss);
   3815     __ JumpIfSmi(edx, &unordered);
   3816     __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
   3817     __ j(not_equal, &maybe_undefined2, Label::kNear);
   3818     __ jmp(&unordered);
   3819   }
   3820 
   3821   __ bind(&maybe_undefined2);
   3822   if (Token::IsOrderedRelationalCompareOp(op_)) {
   3823     __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
   3824     __ j(equal, &unordered);
   3825   }
   3826 
   3827   __ bind(&miss);
   3828   GenerateMiss(masm);
   3829 }
   3830 
   3831 
   3832 void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   3833   ASSERT(state_ == CompareIC::INTERNALIZED_STRING);
   3834   ASSERT(GetCondition() == equal);
   3835 
   3836   // Registers containing left and right operands respectively.
   3837   Register left = edx;
   3838   Register right = eax;
   3839   Register tmp1 = ecx;
   3840   Register tmp2 = ebx;
   3841 
   3842   // Check that both operands are heap objects.
   3843   Label miss;
   3844   __ mov(tmp1, left);
   3845   STATIC_ASSERT(kSmiTag == 0);
   3846   __ and_(tmp1, right);
   3847   __ JumpIfSmi(tmp1, &miss, Label::kNear);
   3848 
   3849   // Check that both operands are internalized strings.
   3850   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3851   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3852   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3853   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3854   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   3855   __ or_(tmp1, tmp2);
   3856   __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
   3857   __ j(not_zero, &miss, Label::kNear);
   3858 
   3859   // Internalized strings are compared by identity.
   3860   Label done;
   3861   __ cmp(left, right);
   3862   // Make sure eax is non-zero. At this point input operands are
   3863   // guaranteed to be non-zero.
   3864   ASSERT(right.is(eax));
   3865   __ j(not_equal, &done, Label::kNear);
   3866   STATIC_ASSERT(EQUAL == 0);
   3867   STATIC_ASSERT(kSmiTag == 0);
   3868   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3869   __ bind(&done);
   3870   __ ret(0);
   3871 
   3872   __ bind(&miss);
   3873   GenerateMiss(masm);
   3874 }
   3875 
   3876 
   3877 void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
   3878   ASSERT(state_ == CompareIC::UNIQUE_NAME);
   3879   ASSERT(GetCondition() == equal);
   3880 
   3881   // Registers containing left and right operands respectively.
   3882   Register left = edx;
   3883   Register right = eax;
   3884   Register tmp1 = ecx;
   3885   Register tmp2 = ebx;
   3886 
   3887   // Check that both operands are heap objects.
   3888   Label miss;
   3889   __ mov(tmp1, left);
   3890   STATIC_ASSERT(kSmiTag == 0);
   3891   __ and_(tmp1, right);
   3892   __ JumpIfSmi(tmp1, &miss, Label::kNear);
   3893 
   3894   // Check that both operands are unique names. This leaves the instance
   3895   // types loaded in tmp1 and tmp2.
   3896   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3897   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3898   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3899   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3900 
   3901   __ JumpIfNotUniqueName(tmp1, &miss, Label::kNear);
   3902   __ JumpIfNotUniqueName(tmp2, &miss, Label::kNear);
   3903 
   3904   // Unique names are compared by identity.
   3905   Label done;
   3906   __ cmp(left, right);
   3907   // Make sure eax is non-zero. At this point input operands are
   3908   // guaranteed to be non-zero.
   3909   ASSERT(right.is(eax));
   3910   __ j(not_equal, &done, Label::kNear);
   3911   STATIC_ASSERT(EQUAL == 0);
   3912   STATIC_ASSERT(kSmiTag == 0);
   3913   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3914   __ bind(&done);
   3915   __ ret(0);
   3916 
   3917   __ bind(&miss);
   3918   GenerateMiss(masm);
   3919 }
   3920 
   3921 
   3922 void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
   3923   ASSERT(state_ == CompareIC::STRING);
   3924   Label miss;
   3925 
   3926   bool equality = Token::IsEqualityOp(op_);
   3927 
   3928   // Registers containing left and right operands respectively.
   3929   Register left = edx;
   3930   Register right = eax;
   3931   Register tmp1 = ecx;
   3932   Register tmp2 = ebx;
   3933   Register tmp3 = edi;
   3934 
   3935   // Check that both operands are heap objects.
   3936   __ mov(tmp1, left);
   3937   STATIC_ASSERT(kSmiTag == 0);
   3938   __ and_(tmp1, right);
   3939   __ JumpIfSmi(tmp1, &miss);
   3940 
   3941   // Check that both operands are strings. This leaves the instance
   3942   // types loaded in tmp1 and tmp2.
   3943   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3944   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3945   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3946   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3947   __ mov(tmp3, tmp1);
   3948   STATIC_ASSERT(kNotStringTag != 0);
   3949   __ or_(tmp3, tmp2);
   3950   __ test(tmp3, Immediate(kIsNotStringMask));
   3951   __ j(not_zero, &miss);
   3952 
   3953   // Fast check for identical strings.
   3954   Label not_same;
   3955   __ cmp(left, right);
   3956   __ j(not_equal, &not_same, Label::kNear);
   3957   STATIC_ASSERT(EQUAL == 0);
   3958   STATIC_ASSERT(kSmiTag == 0);
   3959   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3960   __ ret(0);
   3961 
   3962   // Handle not identical strings.
   3963   __ bind(&not_same);
   3964 
   3965   // Check that both strings are internalized. If they are, we're done
   3966   // because we already know they are not identical.  But in the case of
   3967   // non-equality compare, we still need to determine the order. We
   3968   // also know they are both strings.
   3969   if (equality) {
   3970     Label do_compare;
   3971     STATIC_ASSERT(kInternalizedTag == 0);
   3972     __ or_(tmp1, tmp2);
   3973     __ test(tmp1, Immediate(kIsNotInternalizedMask));
   3974     __ j(not_zero, &do_compare, Label::kNear);
   3975     // Make sure eax is non-zero. At this point input operands are
   3976     // guaranteed to be non-zero.
   3977     ASSERT(right.is(eax));
   3978     __ ret(0);
   3979     __ bind(&do_compare);
   3980   }
   3981 
   3982   // Check that both strings are sequential ASCII.
   3983   Label runtime;
   3984   __ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime);
   3985 
   3986   // Compare flat ASCII strings. Returns when done.
   3987   if (equality) {
   3988     StringCompareStub::GenerateFlatAsciiStringEquals(
   3989         masm, left, right, tmp1, tmp2);
   3990   } else {
   3991     StringCompareStub::GenerateCompareFlatAsciiStrings(
   3992         masm, left, right, tmp1, tmp2, tmp3);
   3993   }
   3994 
   3995   // Handle more complex cases in runtime.
   3996   __ bind(&runtime);
   3997   __ pop(tmp1);  // Return address.
   3998   __ push(left);
   3999   __ push(right);
   4000   __ push(tmp1);
   4001   if (equality) {
   4002     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
   4003   } else {
   4004     __ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1);
   4005   }
   4006 
   4007   __ bind(&miss);
   4008   GenerateMiss(masm);
   4009 }
   4010 
   4011 
   4012 void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
   4013   ASSERT(state_ == CompareIC::OBJECT);
   4014   Label miss;
   4015   __ mov(ecx, edx);
   4016   __ and_(ecx, eax);
   4017   __ JumpIfSmi(ecx, &miss, Label::kNear);
   4018 
   4019   __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
   4020   __ j(not_equal, &miss, Label::kNear);
   4021   __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
   4022   __ j(not_equal, &miss, Label::kNear);
   4023 
   4024   ASSERT(GetCondition() == equal);
   4025   __ sub(eax, edx);
   4026   __ ret(0);
   4027 
   4028   __ bind(&miss);
   4029   GenerateMiss(masm);
   4030 }
   4031 
   4032 
   4033 void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
   4034   Label miss;
   4035   __ mov(ecx, edx);
   4036   __ and_(ecx, eax);
   4037   __ JumpIfSmi(ecx, &miss, Label::kNear);
   4038 
   4039   __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
   4040   __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
   4041   __ cmp(ecx, known_map_);
   4042   __ j(not_equal, &miss, Label::kNear);
   4043   __ cmp(ebx, known_map_);
   4044   __ j(not_equal, &miss, Label::kNear);
   4045 
   4046   __ sub(eax, edx);
   4047   __ ret(0);
   4048 
   4049   __ bind(&miss);
   4050   GenerateMiss(masm);
   4051 }
   4052 
   4053 
   4054 void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
   4055   {
   4056     // Call the runtime system in a fresh internal frame.
   4057     ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
   4058                                                isolate());
   4059     FrameScope scope(masm, StackFrame::INTERNAL);
   4060     __ push(edx);  // Preserve edx and eax.
   4061     __ push(eax);
   4062     __ push(edx);  // And also use them as the arguments.
   4063     __ push(eax);
   4064     __ push(Immediate(Smi::FromInt(op_)));
   4065     __ CallExternalReference(miss, 3);
   4066     // Compute the entry point of the rewritten stub.
   4067     __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
   4068     __ pop(eax);
   4069     __ pop(edx);
   4070   }
   4071 
   4072   // Do a tail call to the rewritten stub.
   4073   __ jmp(edi);
   4074 }
   4075 
   4076 
   4077 // Helper function used to check that the dictionary doesn't contain
   4078 // the property. This function may return false negatives, so miss_label
   4079 // must always call a backup property check that is complete.
   4080 // This function is safe to call if the receiver has fast properties.
   4081 // Name must be a unique name and receiver must be a heap object.
   4082 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   4083                                                       Label* miss,
   4084                                                       Label* done,
   4085                                                       Register properties,
   4086                                                       Handle<Name> name,
   4087                                                       Register r0) {
   4088   ASSERT(name->IsUniqueName());
   4089 
   4090   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   4091   // not equal to the name and kProbes-th slot is not used (its name is the
   4092   // undefined value), it guarantees the hash table doesn't contain the
   4093   // property. It's true even if some slots represent deleted properties
   4094   // (their names are the hole value).
   4095   for (int i = 0; i < kInlinedProbes; i++) {
   4096     // Compute the masked index: (hash + i + i * i) & mask.
   4097     Register index = r0;
   4098     // Capacity is smi 2^n.
   4099     __ mov(index, FieldOperand(properties, kCapacityOffset));
   4100     __ dec(index);
   4101     __ and_(index,
   4102             Immediate(Smi::FromInt(name->Hash() +
   4103                                    NameDictionary::GetProbeOffset(i))));
   4104 
   4105     // Scale the index by multiplying by the entry size.
   4106     ASSERT(NameDictionary::kEntrySize == 3);
   4107     __ lea(index, Operand(index, index, times_2, 0));  // index *= 3.
   4108     Register entity_name = r0;
   4109     // Having undefined at this place means the name is not contained.
   4110     ASSERT_EQ(kSmiTagSize, 1);
   4111     __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
   4112                                 kElementsStartOffset - kHeapObjectTag));
   4113     __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
   4114     __ j(equal, done);
   4115 
   4116     // Stop if found the property.
   4117     __ cmp(entity_name, Handle<Name>(name));
   4118     __ j(equal, miss);
   4119 
   4120     Label good;
   4121     // Check for the hole and skip.
   4122     __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
   4123     __ j(equal, &good, Label::kNear);
   4124 
   4125     // Check if the entry name is not a unique name.
   4126     __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
   4127     __ JumpIfNotUniqueName(FieldOperand(entity_name, Map::kInstanceTypeOffset),
   4128                            miss);
   4129     __ bind(&good);
   4130   }
   4131 
   4132   NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
   4133                                 NEGATIVE_LOOKUP);
   4134   __ push(Immediate(Handle<Object>(name)));
   4135   __ push(Immediate(name->Hash()));
   4136   __ CallStub(&stub);
   4137   __ test(r0, r0);
   4138   __ j(not_zero, miss);
   4139   __ jmp(done);
   4140 }
   4141 
   4142 
   4143 // Probe the name dictionary in the |elements| register. Jump to the
   4144 // |done| label if a property with the given name is found leaving the
   4145 // index into the dictionary in |r0|. Jump to the |miss| label
   4146 // otherwise.
   4147 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
   4148                                                       Label* miss,
   4149                                                       Label* done,
   4150                                                       Register elements,
   4151                                                       Register name,
   4152                                                       Register r0,
   4153                                                       Register r1) {
   4154   ASSERT(!elements.is(r0));
   4155   ASSERT(!elements.is(r1));
   4156   ASSERT(!name.is(r0));
   4157   ASSERT(!name.is(r1));
   4158 
   4159   __ AssertName(name);
   4160 
   4161   __ mov(r1, FieldOperand(elements, kCapacityOffset));
   4162   __ shr(r1, kSmiTagSize);  // convert smi to int
   4163   __ dec(r1);
   4164 
   4165   // Generate an unrolled loop that performs a few probes before
   4166   // giving up. Measurements done on Gmail indicate that 2 probes
   4167   // cover ~93% of loads from dictionaries.
   4168   for (int i = 0; i < kInlinedProbes; i++) {
   4169     // Compute the masked index: (hash + i + i * i) & mask.
   4170     __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
   4171     __ shr(r0, Name::kHashShift);
   4172     if (i > 0) {
   4173       __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
   4174     }
   4175     __ and_(r0, r1);
   4176 
   4177     // Scale the index by multiplying by the entry size.
   4178     ASSERT(NameDictionary::kEntrySize == 3);
   4179     __ lea(r0, Operand(r0, r0, times_2, 0));  // r0 = r0 * 3
   4180 
   4181     // Check if the key is identical to the name.
   4182     __ cmp(name, Operand(elements,
   4183                          r0,
   4184                          times_4,
   4185                          kElementsStartOffset - kHeapObjectTag));
   4186     __ j(equal, done);
   4187   }
   4188 
   4189   NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
   4190                                 POSITIVE_LOOKUP);
   4191   __ push(name);
   4192   __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
   4193   __ shr(r0, Name::kHashShift);
   4194   __ push(r0);
   4195   __ CallStub(&stub);
   4196 
   4197   __ test(r1, r1);
   4198   __ j(zero, miss);
   4199   __ jmp(done);
   4200 }
   4201 
   4202 
   4203 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   4204   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   4205   // we cannot call anything that could cause a GC from this stub.
   4206   // Stack frame on entry:
   4207   //  esp[0 * kPointerSize]: return address.
   4208   //  esp[1 * kPointerSize]: key's hash.
   4209   //  esp[2 * kPointerSize]: key.
   4210   // Registers:
   4211   //  dictionary_: NameDictionary to probe.
   4212   //  result_: used as scratch.
   4213   //  index_: will hold an index of entry if lookup is successful.
   4214   //          might alias with result_.
   4215   // Returns:
   4216   //  result_ is zero if lookup failed, non zero otherwise.
   4217 
   4218   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   4219 
   4220   Register scratch = result_;
   4221 
   4222   __ mov(scratch, FieldOperand(dictionary_, kCapacityOffset));
   4223   __ dec(scratch);
   4224   __ SmiUntag(scratch);
   4225   __ push(scratch);
   4226 
   4227   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   4228   // not equal to the name and kProbes-th slot is not used (its name is the
   4229   // undefined value), it guarantees the hash table doesn't contain the
   4230   // property. It's true even if some slots represent deleted properties
   4231   // (their names are the null value).
   4232   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   4233     // Compute the masked index: (hash + i + i * i) & mask.
   4234     __ mov(scratch, Operand(esp, 2 * kPointerSize));
   4235     if (i > 0) {
   4236       __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
   4237     }
   4238     __ and_(scratch, Operand(esp, 0));
   4239 
   4240     // Scale the index by multiplying by the entry size.
   4241     ASSERT(NameDictionary::kEntrySize == 3);
   4242     __ lea(index_, Operand(scratch, scratch, times_2, 0));  // index *= 3.
   4243 
   4244     // Having undefined at this place means the name is not contained.
   4245     ASSERT_EQ(kSmiTagSize, 1);
   4246     __ mov(scratch, Operand(dictionary_,
   4247                             index_,
   4248                             times_pointer_size,
   4249                             kElementsStartOffset - kHeapObjectTag));
   4250     __ cmp(scratch, isolate()->factory()->undefined_value());
   4251     __ j(equal, &not_in_dictionary);
   4252 
   4253     // Stop if found the property.
   4254     __ cmp(scratch, Operand(esp, 3 * kPointerSize));
   4255     __ j(equal, &in_dictionary);
   4256 
   4257     if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
   4258       // If we hit a key that is not a unique name during negative
   4259       // lookup we have to bailout as this key might be equal to the
   4260       // key we are looking for.
   4261 
   4262       // Check if the entry name is not a unique name.
   4263       __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
   4264       __ JumpIfNotUniqueName(FieldOperand(scratch, Map::kInstanceTypeOffset),
   4265                              &maybe_in_dictionary);
   4266     }
   4267   }
   4268 
   4269   __ bind(&maybe_in_dictionary);
   4270   // If we are doing negative lookup then probing failure should be
   4271   // treated as a lookup success. For positive lookup probing failure
   4272   // should be treated as lookup failure.
   4273   if (mode_ == POSITIVE_LOOKUP) {
   4274     __ mov(result_, Immediate(0));
   4275     __ Drop(1);
   4276     __ ret(2 * kPointerSize);
   4277   }
   4278 
   4279   __ bind(&in_dictionary);
   4280   __ mov(result_, Immediate(1));
   4281   __ Drop(1);
   4282   __ ret(2 * kPointerSize);
   4283 
   4284   __ bind(&not_in_dictionary);
   4285   __ mov(result_, Immediate(0));
   4286   __ Drop(1);
   4287   __ ret(2 * kPointerSize);
   4288 }
   4289 
   4290 
   4291 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   4292     Isolate* isolate) {
   4293   StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
   4294   stub.GetCode();
   4295   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   4296   stub2.GetCode();
   4297 }
   4298 
   4299 
   4300 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   4301 // the value has just been written into the object, now this stub makes sure
   4302 // we keep the GC informed.  The word in the object where the value has been
   4303 // written is in the address register.
   4304 void RecordWriteStub::Generate(MacroAssembler* masm) {
   4305   Label skip_to_incremental_noncompacting;
   4306   Label skip_to_incremental_compacting;
   4307 
   4308   // The first two instructions are generated with labels so as to get the
   4309   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
   4310   // forth between a compare instructions (a nop in this position) and the
   4311   // real branch when we start and stop incremental heap marking.
   4312   __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
   4313   __ jmp(&skip_to_incremental_compacting, Label::kFar);
   4314 
   4315   if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
   4316     __ RememberedSetHelper(object_,
   4317                            address_,
   4318                            value_,
   4319                            save_fp_regs_mode_,
   4320                            MacroAssembler::kReturnAtEnd);
   4321   } else {
   4322     __ ret(0);
   4323   }
   4324 
   4325   __ bind(&skip_to_incremental_noncompacting);
   4326   GenerateIncremental(masm, INCREMENTAL);
   4327 
   4328   __ bind(&skip_to_incremental_compacting);
   4329   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   4330 
   4331   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   4332   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   4333   masm->set_byte_at(0, kTwoByteNopInstruction);
   4334   masm->set_byte_at(2, kFiveByteNopInstruction);
   4335 }
   4336 
   4337 
   4338 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   4339   regs_.Save(masm);
   4340 
   4341   if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
   4342     Label dont_need_remembered_set;
   4343 
   4344     __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
   4345     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   4346                            regs_.scratch0(),
   4347                            &dont_need_remembered_set);
   4348 
   4349     __ CheckPageFlag(regs_.object(),
   4350                      regs_.scratch0(),
   4351                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
   4352                      not_zero,
   4353                      &dont_need_remembered_set);
   4354 
   4355     // First notify the incremental marker if necessary, then update the
   4356     // remembered set.
   4357     CheckNeedsToInformIncrementalMarker(
   4358         masm,
   4359         kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
   4360         mode);
   4361     InformIncrementalMarker(masm);
   4362     regs_.Restore(masm);
   4363     __ RememberedSetHelper(object_,
   4364                            address_,
   4365                            value_,
   4366                            save_fp_regs_mode_,
   4367                            MacroAssembler::kReturnAtEnd);
   4368 
   4369     __ bind(&dont_need_remembered_set);
   4370   }
   4371 
   4372   CheckNeedsToInformIncrementalMarker(
   4373       masm,
   4374       kReturnOnNoNeedToInformIncrementalMarker,
   4375       mode);
   4376   InformIncrementalMarker(masm);
   4377   regs_.Restore(masm);
   4378   __ ret(0);
   4379 }
   4380 
   4381 
   4382 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   4383   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
   4384   int argument_count = 3;
   4385   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   4386   __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
   4387   __ mov(Operand(esp, 1 * kPointerSize), regs_.address());  // Slot.
   4388   __ mov(Operand(esp, 2 * kPointerSize),
   4389          Immediate(ExternalReference::isolate_address(isolate())));
   4390 
   4391   AllowExternalCallThatCantCauseGC scope(masm);
   4392   __ CallCFunction(
   4393       ExternalReference::incremental_marking_record_write_function(isolate()),
   4394       argument_count);
   4395 
   4396   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
   4397 }
   4398 
   4399 
   4400 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   4401     MacroAssembler* masm,
   4402     OnNoNeedToInformIncrementalMarker on_no_need,
   4403     Mode mode) {
   4404   Label object_is_black, need_incremental, need_incremental_pop_object;
   4405 
   4406   __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
   4407   __ and_(regs_.scratch0(), regs_.object());
   4408   __ mov(regs_.scratch1(),
   4409          Operand(regs_.scratch0(),
   4410                  MemoryChunk::kWriteBarrierCounterOffset));
   4411   __ sub(regs_.scratch1(), Immediate(1));
   4412   __ mov(Operand(regs_.scratch0(),
   4413                  MemoryChunk::kWriteBarrierCounterOffset),
   4414          regs_.scratch1());
   4415   __ j(negative, &need_incremental);
   4416 
   4417   // Let's look at the color of the object:  If it is not black we don't have
   4418   // to inform the incremental marker.
   4419   __ JumpIfBlack(regs_.object(),
   4420                  regs_.scratch0(),
   4421                  regs_.scratch1(),
   4422                  &object_is_black,
   4423                  Label::kNear);
   4424 
   4425   regs_.Restore(masm);
   4426   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   4427     __ RememberedSetHelper(object_,
   4428                            address_,
   4429                            value_,
   4430                            save_fp_regs_mode_,
   4431                            MacroAssembler::kReturnAtEnd);
   4432   } else {
   4433     __ ret(0);
   4434   }
   4435 
   4436   __ bind(&object_is_black);
   4437 
   4438   // Get the value from the slot.
   4439   __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
   4440 
   4441   if (mode == INCREMENTAL_COMPACTION) {
   4442     Label ensure_not_white;
   4443 
   4444     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   4445                      regs_.scratch1(),  // Scratch.
   4446                      MemoryChunk::kEvacuationCandidateMask,
   4447                      zero,
   4448                      &ensure_not_white,
   4449                      Label::kNear);
   4450 
   4451     __ CheckPageFlag(regs_.object(),
   4452                      regs_.scratch1(),  // Scratch.
   4453                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   4454                      not_zero,
   4455                      &ensure_not_white,
   4456                      Label::kNear);
   4457 
   4458     __ jmp(&need_incremental);
   4459 
   4460     __ bind(&ensure_not_white);
   4461   }
   4462 
   4463   // We need an extra register for this, so we push the object register
   4464   // temporarily.
   4465   __ push(regs_.object());
   4466   __ EnsureNotWhite(regs_.scratch0(),  // The value.
   4467                     regs_.scratch1(),  // Scratch.
   4468                     regs_.object(),  // Scratch.
   4469                     &need_incremental_pop_object,
   4470                     Label::kNear);
   4471   __ pop(regs_.object());
   4472 
   4473   regs_.Restore(masm);
   4474   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   4475     __ RememberedSetHelper(object_,
   4476                            address_,
   4477                            value_,
   4478                            save_fp_regs_mode_,
   4479                            MacroAssembler::kReturnAtEnd);
   4480   } else {
   4481     __ ret(0);
   4482   }
   4483 
   4484   __ bind(&need_incremental_pop_object);
   4485   __ pop(regs_.object());
   4486 
   4487   __ bind(&need_incremental);
   4488 
   4489   // Fall through when we need to inform the incremental marker.
   4490 }
   4491 
   4492 
   4493 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
   4494   // ----------- S t a t e -------------
   4495   //  -- eax    : element value to store
   4496   //  -- ecx    : element index as smi
   4497   //  -- esp[0] : return address
   4498   //  -- esp[4] : array literal index in function
   4499   //  -- esp[8] : array literal
   4500   // clobbers ebx, edx, edi
   4501   // -----------------------------------
   4502 
   4503   Label element_done;
   4504   Label double_elements;
   4505   Label smi_element;
   4506   Label slow_elements;
   4507   Label slow_elements_from_double;
   4508   Label fast_elements;
   4509 
   4510   // Get array literal index, array literal and its map.
   4511   __ mov(edx, Operand(esp, 1 * kPointerSize));
   4512   __ mov(ebx, Operand(esp, 2 * kPointerSize));
   4513   __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
   4514 
   4515   __ CheckFastElements(edi, &double_elements);
   4516 
   4517   // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
   4518   __ JumpIfSmi(eax, &smi_element);
   4519   __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
   4520 
   4521   // Store into the array literal requires a elements transition. Call into
   4522   // the runtime.
   4523 
   4524   __ bind(&slow_elements);
   4525   __ pop(edi);  // Pop return address and remember to put back later for tail
   4526                 // call.
   4527   __ push(ebx);
   4528   __ push(ecx);
   4529   __ push(eax);
   4530   __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   4531   __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
   4532   __ push(edx);
   4533   __ push(edi);  // Return return address so that tail call returns to right
   4534                  // place.
   4535   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
   4536 
   4537   __ bind(&slow_elements_from_double);
   4538   __ pop(edx);
   4539   __ jmp(&slow_elements);
   4540 
   4541   // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
   4542   __ bind(&fast_elements);
   4543   __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
   4544   __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
   4545                            FixedArrayBase::kHeaderSize));
   4546   __ mov(Operand(ecx, 0), eax);
   4547   // Update the write barrier for the array store.
   4548   __ RecordWrite(ebx, ecx, eax,
   4549                  kDontSaveFPRegs,
   4550                  EMIT_REMEMBERED_SET,
   4551                  OMIT_SMI_CHECK);
   4552   __ ret(0);
   4553 
   4554   // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
   4555   // and value is Smi.
   4556   __ bind(&smi_element);
   4557   __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
   4558   __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
   4559                       FixedArrayBase::kHeaderSize), eax);
   4560   __ ret(0);
   4561 
   4562   // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
   4563   __ bind(&double_elements);
   4564 
   4565   __ push(edx);
   4566   __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
   4567   __ StoreNumberToDoubleElements(eax,
   4568                                  edx,
   4569                                  ecx,
   4570                                  edi,
   4571                                  xmm0,
   4572                                  &slow_elements_from_double);
   4573   __ pop(edx);
   4574   __ ret(0);
   4575 }
   4576 
   4577 
   4578 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   4579   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   4580   __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
   4581   int parameter_count_offset =
   4582       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
   4583   __ mov(ebx, MemOperand(ebp, parameter_count_offset));
   4584   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   4585   __ pop(ecx);
   4586   int additional_offset = function_mode_ == JS_FUNCTION_STUB_MODE
   4587       ? kPointerSize
   4588       : 0;
   4589   __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
   4590   __ jmp(ecx);  // Return to IC Miss stub, continuation still on stack.
   4591 }
   4592 
   4593 
   4594 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   4595   if (masm->isolate()->function_entry_hook() != NULL) {
   4596     ProfileEntryHookStub stub(masm->isolate());
   4597     masm->CallStub(&stub);
   4598   }
   4599 }
   4600 
   4601 
   4602 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   4603   // Save volatile registers.
   4604   const int kNumSavedRegisters = 3;
   4605   __ push(eax);
   4606   __ push(ecx);
   4607   __ push(edx);
   4608 
   4609   // Calculate and push the original stack pointer.
   4610   __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
   4611   __ push(eax);
   4612 
   4613   // Retrieve our return address and use it to calculate the calling
   4614   // function's address.
   4615   __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
   4616   __ sub(eax, Immediate(Assembler::kCallInstructionLength));
   4617   __ push(eax);
   4618 
   4619   // Call the entry hook.
   4620   ASSERT(isolate()->function_entry_hook() != NULL);
   4621   __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
   4622           RelocInfo::RUNTIME_ENTRY);
   4623   __ add(esp, Immediate(2 * kPointerSize));
   4624 
   4625   // Restore ecx.
   4626   __ pop(edx);
   4627   __ pop(ecx);
   4628   __ pop(eax);
   4629 
   4630   __ ret(0);
   4631 }
   4632 
   4633 
   4634 template<class T>
   4635 static void CreateArrayDispatch(MacroAssembler* masm,
   4636                                 AllocationSiteOverrideMode mode) {
   4637   if (mode == DISABLE_ALLOCATION_SITES) {
   4638     T stub(masm->isolate(),
   4639            GetInitialFastElementsKind(),
   4640            mode);
   4641     __ TailCallStub(&stub);
   4642   } else if (mode == DONT_OVERRIDE) {
   4643     int last_index = GetSequenceIndexFromFastElementsKind(
   4644         TERMINAL_FAST_ELEMENTS_KIND);
   4645     for (int i = 0; i <= last_index; ++i) {
   4646       Label next;
   4647       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4648       __ cmp(edx, kind);
   4649       __ j(not_equal, &next);
   4650       T stub(masm->isolate(), kind);
   4651       __ TailCallStub(&stub);
   4652       __ bind(&next);
   4653     }
   4654 
   4655     // If we reached this point there is a problem.
   4656     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4657   } else {
   4658     UNREACHABLE();
   4659   }
   4660 }
   4661 
   4662 
   4663 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   4664                                            AllocationSiteOverrideMode mode) {
   4665   // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   4666   // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
   4667   // eax - number of arguments
   4668   // edi - constructor?
   4669   // esp[0] - return address
   4670   // esp[4] - last argument
   4671   Label normal_sequence;
   4672   if (mode == DONT_OVERRIDE) {
   4673     ASSERT(FAST_SMI_ELEMENTS == 0);
   4674     ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   4675     ASSERT(FAST_ELEMENTS == 2);
   4676     ASSERT(FAST_HOLEY_ELEMENTS == 3);
   4677     ASSERT(FAST_DOUBLE_ELEMENTS == 4);
   4678     ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   4679 
   4680     // is the low bit set? If so, we are holey and that is good.
   4681     __ test_b(edx, 1);
   4682     __ j(not_zero, &normal_sequence);
   4683   }
   4684 
   4685   // look at the first argument
   4686   __ mov(ecx, Operand(esp, kPointerSize));
   4687   __ test(ecx, ecx);
   4688   __ j(zero, &normal_sequence);
   4689 
   4690   if (mode == DISABLE_ALLOCATION_SITES) {
   4691     ElementsKind initial = GetInitialFastElementsKind();
   4692     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   4693 
   4694     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   4695                                                   holey_initial,
   4696                                                   DISABLE_ALLOCATION_SITES);
   4697     __ TailCallStub(&stub_holey);
   4698 
   4699     __ bind(&normal_sequence);
   4700     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   4701                                             initial,
   4702                                             DISABLE_ALLOCATION_SITES);
   4703     __ TailCallStub(&stub);
   4704   } else if (mode == DONT_OVERRIDE) {
   4705     // We are going to create a holey array, but our kind is non-holey.
   4706     // Fix kind and retry.
   4707     __ inc(edx);
   4708 
   4709     if (FLAG_debug_code) {
   4710       Handle<Map> allocation_site_map =
   4711           masm->isolate()->factory()->allocation_site_map();
   4712       __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
   4713       __ Assert(equal, kExpectedAllocationSite);
   4714     }
   4715 
   4716     // Save the resulting elements kind in type info. We can't just store r3
   4717     // in the AllocationSite::transition_info field because elements kind is
   4718     // restricted to a portion of the field...upper bits need to be left alone.
   4719     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4720     __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
   4721            Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
   4722 
   4723     __ bind(&normal_sequence);
   4724     int last_index = GetSequenceIndexFromFastElementsKind(
   4725         TERMINAL_FAST_ELEMENTS_KIND);
   4726     for (int i = 0; i <= last_index; ++i) {
   4727       Label next;
   4728       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4729       __ cmp(edx, kind);
   4730       __ j(not_equal, &next);
   4731       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   4732       __ TailCallStub(&stub);
   4733       __ bind(&next);
   4734     }
   4735 
   4736     // If we reached this point there is a problem.
   4737     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4738   } else {
   4739     UNREACHABLE();
   4740   }
   4741 }
   4742 
   4743 
   4744 template<class T>
   4745 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   4746   int to_index = GetSequenceIndexFromFastElementsKind(
   4747       TERMINAL_FAST_ELEMENTS_KIND);
   4748   for (int i = 0; i <= to_index; ++i) {
   4749     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4750     T stub(isolate, kind);
   4751     stub.GetCode();
   4752     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   4753       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   4754       stub1.GetCode();
   4755     }
   4756   }
   4757 }
   4758 
   4759 
   4760 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
   4761   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   4762       isolate);
   4763   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   4764       isolate);
   4765   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
   4766       isolate);
   4767 }
   4768 
   4769 
   4770 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
   4771     Isolate* isolate) {
   4772   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   4773   for (int i = 0; i < 2; i++) {
   4774     // For internal arrays we only need a few things
   4775     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   4776     stubh1.GetCode();
   4777     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   4778     stubh2.GetCode();
   4779     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
   4780     stubh3.GetCode();
   4781   }
   4782 }
   4783 
   4784 
   4785 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   4786     MacroAssembler* masm,
   4787     AllocationSiteOverrideMode mode) {
   4788   if (argument_count_ == ANY) {
   4789     Label not_zero_case, not_one_case;
   4790     __ test(eax, eax);
   4791     __ j(not_zero, &not_zero_case);
   4792     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4793 
   4794     __ bind(&not_zero_case);
   4795     __ cmp(eax, 1);
   4796     __ j(greater, &not_one_case);
   4797     CreateArrayDispatchOneArgument(masm, mode);
   4798 
   4799     __ bind(&not_one_case);
   4800     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4801   } else if (argument_count_ == NONE) {
   4802     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4803   } else if (argument_count_ == ONE) {
   4804     CreateArrayDispatchOneArgument(masm, mode);
   4805   } else if (argument_count_ == MORE_THAN_ONE) {
   4806     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4807   } else {
   4808     UNREACHABLE();
   4809   }
   4810 }
   4811 
   4812 
   4813 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   4814   // ----------- S t a t e -------------
   4815   //  -- eax : argc (only if argument_count_ == ANY)
   4816   //  -- ebx : AllocationSite or undefined
   4817   //  -- edi : constructor
   4818   //  -- esp[0] : return address
   4819   //  -- esp[4] : last argument
   4820   // -----------------------------------
   4821   if (FLAG_debug_code) {
   4822     // The array construct code is only set for the global and natives
   4823     // builtin Array functions which always have maps.
   4824 
   4825     // Initial map for the builtin Array function should be a map.
   4826     __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   4827     // Will both indicate a NULL and a Smi.
   4828     __ test(ecx, Immediate(kSmiTagMask));
   4829     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
   4830     __ CmpObjectType(ecx, MAP_TYPE, ecx);
   4831     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
   4832 
   4833     // We should either have undefined in ebx or a valid AllocationSite
   4834     __ AssertUndefinedOrAllocationSite(ebx);
   4835   }
   4836 
   4837   Label no_info;
   4838   // If the feedback vector is the undefined value call an array constructor
   4839   // that doesn't use AllocationSites.
   4840   __ cmp(ebx, isolate()->factory()->undefined_value());
   4841   __ j(equal, &no_info);
   4842 
   4843   // Only look at the lower 16 bits of the transition info.
   4844   __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
   4845   __ SmiUntag(edx);
   4846   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4847   __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
   4848   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   4849 
   4850   __ bind(&no_info);
   4851   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   4852 }
   4853 
   4854 
   4855 void InternalArrayConstructorStub::GenerateCase(
   4856     MacroAssembler* masm, ElementsKind kind) {
   4857   Label not_zero_case, not_one_case;
   4858   Label normal_sequence;
   4859 
   4860   __ test(eax, eax);
   4861   __ j(not_zero, &not_zero_case);
   4862   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   4863   __ TailCallStub(&stub0);
   4864 
   4865   __ bind(&not_zero_case);
   4866   __ cmp(eax, 1);
   4867   __ j(greater, &not_one_case);
   4868 
   4869   if (IsFastPackedElementsKind(kind)) {
   4870     // We might need to create a holey array
   4871     // look at the first argument
   4872     __ mov(ecx, Operand(esp, kPointerSize));
   4873     __ test(ecx, ecx);
   4874     __ j(zero, &normal_sequence);
   4875 
   4876     InternalArraySingleArgumentConstructorStub
   4877         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   4878     __ TailCallStub(&stub1_holey);
   4879   }
   4880 
   4881   __ bind(&normal_sequence);
   4882   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   4883   __ TailCallStub(&stub1);
   4884 
   4885   __ bind(&not_one_case);
   4886   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
   4887   __ TailCallStub(&stubN);
   4888 }
   4889 
   4890 
   4891 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   4892   // ----------- S t a t e -------------
   4893   //  -- eax : argc
   4894   //  -- edi : constructor
   4895   //  -- esp[0] : return address
   4896   //  -- esp[4] : last argument
   4897   // -----------------------------------
   4898 
   4899   if (FLAG_debug_code) {
   4900     // The array construct code is only set for the global and natives
   4901     // builtin Array functions which always have maps.
   4902 
   4903     // Initial map for the builtin Array function should be a map.
   4904     __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   4905     // Will both indicate a NULL and a Smi.
   4906     __ test(ecx, Immediate(kSmiTagMask));
   4907     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
   4908     __ CmpObjectType(ecx, MAP_TYPE, ecx);
   4909     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
   4910   }
   4911 
   4912   // Figure out the right elements kind
   4913   __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   4914 
   4915   // Load the map's "bit field 2" into |result|. We only need the first byte,
   4916   // but the following masking takes care of that anyway.
   4917   __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
   4918   // Retrieve elements_kind from bit field 2.
   4919   __ DecodeField<Map::ElementsKindBits>(ecx);
   4920 
   4921   if (FLAG_debug_code) {
   4922     Label done;
   4923     __ cmp(ecx, Immediate(FAST_ELEMENTS));
   4924     __ j(equal, &done);
   4925     __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
   4926     __ Assert(equal,
   4927               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
   4928     __ bind(&done);
   4929   }
   4930 
   4931   Label fast_elements_case;
   4932   __ cmp(ecx, Immediate(FAST_ELEMENTS));
   4933   __ j(equal, &fast_elements_case);
   4934   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   4935 
   4936   __ bind(&fast_elements_case);
   4937   GenerateCase(masm, FAST_ELEMENTS);
   4938 }
   4939 
   4940 
   4941 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
   4942   // ----------- S t a t e -------------
   4943   //  -- eax                 : callee
   4944   //  -- ebx                 : call_data
   4945   //  -- ecx                 : holder
   4946   //  -- edx                 : api_function_address
   4947   //  -- esi                 : context
   4948   //  --
   4949   //  -- esp[0]              : return address
   4950   //  -- esp[4]              : last argument
   4951   //  -- ...
   4952   //  -- esp[argc * 4]       : first argument
   4953   //  -- esp[(argc + 1) * 4] : receiver
   4954   // -----------------------------------
   4955 
   4956   Register callee = eax;
   4957   Register call_data = ebx;
   4958   Register holder = ecx;
   4959   Register api_function_address = edx;
   4960   Register return_address = edi;
   4961   Register context = esi;
   4962 
   4963   int argc = ArgumentBits::decode(bit_field_);
   4964   bool is_store = IsStoreBits::decode(bit_field_);
   4965   bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_);
   4966 
   4967   typedef FunctionCallbackArguments FCA;
   4968 
   4969   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   4970   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   4971   STATIC_ASSERT(FCA::kDataIndex == 4);
   4972   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   4973   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   4974   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   4975   STATIC_ASSERT(FCA::kHolderIndex == 0);
   4976   STATIC_ASSERT(FCA::kArgsLength == 7);
   4977 
   4978   __ pop(return_address);
   4979 
   4980   // context save
   4981   __ push(context);
   4982   // load context from callee
   4983   __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
   4984 
   4985   // callee
   4986   __ push(callee);
   4987 
   4988   // call data
   4989   __ push(call_data);
   4990 
   4991   Register scratch = call_data;
   4992   if (!call_data_undefined) {
   4993     // return value
   4994     __ push(Immediate(isolate()->factory()->undefined_value()));
   4995     // return value default
   4996     __ push(Immediate(isolate()->factory()->undefined_value()));
   4997   } else {
   4998     // return value
   4999     __ push(scratch);
   5000     // return value default
   5001     __ push(scratch);
   5002   }
   5003   // isolate
   5004   __ push(Immediate(reinterpret_cast<int>(isolate())));
   5005   // holder
   5006   __ push(holder);
   5007 
   5008   __ mov(scratch, esp);
   5009 
   5010   // return address
   5011   __ push(return_address);
   5012 
   5013   // API function gets reference to the v8::Arguments. If CPU profiler
   5014   // is enabled wrapper function will be called and we need to pass
   5015   // address of the callback as additional parameter, always allocate
   5016   // space for it.
   5017   const int kApiArgc = 1 + 1;
   5018 
   5019   // Allocate the v8::Arguments structure in the arguments' space since
   5020   // it's not controlled by GC.
   5021   const int kApiStackSpace = 4;
   5022 
   5023   __ PrepareCallApiFunction(kApiArgc + kApiStackSpace);
   5024 
   5025   // FunctionCallbackInfo::implicit_args_.
   5026   __ mov(ApiParameterOperand(2), scratch);
   5027   __ add(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
   5028   // FunctionCallbackInfo::values_.
   5029   __ mov(ApiParameterOperand(3), scratch);
   5030   // FunctionCallbackInfo::length_.
   5031   __ Move(ApiParameterOperand(4), Immediate(argc));
   5032   // FunctionCallbackInfo::is_construct_call_.
   5033   __ Move(ApiParameterOperand(5), Immediate(0));
   5034 
   5035   // v8::InvocationCallback's argument.
   5036   __ lea(scratch, ApiParameterOperand(2));
   5037   __ mov(ApiParameterOperand(0), scratch);
   5038 
   5039   ExternalReference thunk_ref =
   5040       ExternalReference::invoke_function_callback(isolate());
   5041 
   5042   Operand context_restore_operand(ebp,
   5043                                   (2 + FCA::kContextSaveIndex) * kPointerSize);
   5044   // Stores return the first js argument
   5045   int return_value_offset = 0;
   5046   if (is_store) {
   5047     return_value_offset = 2 + FCA::kArgsLength;
   5048   } else {
   5049     return_value_offset = 2 + FCA::kReturnValueOffset;
   5050   }
   5051   Operand return_value_operand(ebp, return_value_offset * kPointerSize);
   5052   __ CallApiFunctionAndReturn(api_function_address,
   5053                               thunk_ref,
   5054                               ApiParameterOperand(1),
   5055                               argc + FCA::kArgsLength + 1,
   5056                               return_value_operand,
   5057                               &context_restore_operand);
   5058 }
   5059 
   5060 
   5061 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   5062   // ----------- S t a t e -------------
   5063   //  -- esp[0]                  : return address
   5064   //  -- esp[4]                  : name
   5065   //  -- esp[8 - kArgsLength*4]  : PropertyCallbackArguments object
   5066   //  -- ...
   5067   //  -- edx                    : api_function_address
   5068   // -----------------------------------
   5069 
   5070   // array for v8::Arguments::values_, handler for name and pointer
   5071   // to the values (it considered as smi in GC).
   5072   const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
   5073   // Allocate space for opional callback address parameter in case
   5074   // CPU profiler is active.
   5075   const int kApiArgc = 2 + 1;
   5076 
   5077   Register api_function_address = edx;
   5078   Register scratch = ebx;
   5079 
   5080   // load address of name
   5081   __ lea(scratch, Operand(esp, 1 * kPointerSize));
   5082 
   5083   __ PrepareCallApiFunction(kApiArgc);
   5084   __ mov(ApiParameterOperand(0), scratch);  // name.
   5085   __ add(scratch, Immediate(kPointerSize));
   5086   __ mov(ApiParameterOperand(1), scratch);  // arguments pointer.
   5087 
   5088   ExternalReference thunk_ref =
   5089       ExternalReference::invoke_accessor_getter_callback(isolate());
   5090 
   5091   __ CallApiFunctionAndReturn(api_function_address,
   5092                               thunk_ref,
   5093                               ApiParameterOperand(2),
   5094                               kStackSpace,
   5095                               Operand(ebp, 7 * kPointerSize),
   5096                               NULL);
   5097 }
   5098 
   5099 
   5100 #undef __
   5101 
   5102 } }  // namespace v8::internal
   5103 
   5104 #endif  // V8_TARGET_ARCH_IA32
   5105