Home | History | Annotate | Download | only in ia32
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_IA32
      8 
      9 #include "src/ia32/lithium-codegen-ia32.h"
     10 #include "src/ic.h"
     11 #include "src/code-stubs.h"
     12 #include "src/deoptimizer.h"
     13 #include "src/stub-cache.h"
     14 #include "src/codegen.h"
     15 #include "src/hydrogen-osr.h"
     16 
     17 namespace v8 {
     18 namespace internal {
     19 
     20 // When invoking builtins, we need to record the safepoint in the middle of
     21 // the invoke instruction sequence generated by the macro assembler.
     22 class SafepointGenerator V8_FINAL : public CallWrapper {
     23  public:
     24   SafepointGenerator(LCodeGen* codegen,
     25                      LPointerMap* pointers,
     26                      Safepoint::DeoptMode mode)
     27       : codegen_(codegen),
     28         pointers_(pointers),
     29         deopt_mode_(mode) {}
     30   virtual ~SafepointGenerator() {}
     31 
     32   virtual void BeforeCall(int call_size) const V8_OVERRIDE {}
     33 
     34   virtual void AfterCall() const V8_OVERRIDE {
     35     codegen_->RecordSafepoint(pointers_, deopt_mode_);
     36   }
     37 
     38  private:
     39   LCodeGen* codegen_;
     40   LPointerMap* pointers_;
     41   Safepoint::DeoptMode deopt_mode_;
     42 };
     43 
     44 
     45 #define __ masm()->
     46 
     47 bool LCodeGen::GenerateCode() {
     48   LPhase phase("Z_Code generation", chunk());
     49   ASSERT(is_unused());
     50   status_ = GENERATING;
     51 
     52   // Open a frame scope to indicate that there is a frame on the stack.  The
     53   // MANUAL indicates that the scope shouldn't actually generate code to set up
     54   // the frame (that is done in GeneratePrologue).
     55   FrameScope frame_scope(masm_, StackFrame::MANUAL);
     56 
     57   support_aligned_spilled_doubles_ = info()->IsOptimizing();
     58 
     59   dynamic_frame_alignment_ = info()->IsOptimizing() &&
     60       ((chunk()->num_double_slots() > 2 &&
     61         !chunk()->graph()->is_recursive()) ||
     62        !info()->osr_ast_id().IsNone());
     63 
     64   return GeneratePrologue() &&
     65       GenerateBody() &&
     66       GenerateDeferredCode() &&
     67       GenerateJumpTable() &&
     68       GenerateSafepointTable();
     69 }
     70 
     71 
     72 void LCodeGen::FinishCode(Handle<Code> code) {
     73   ASSERT(is_done());
     74   code->set_stack_slots(GetStackSlotCount());
     75   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
     76   if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
     77   PopulateDeoptimizationData(code);
     78   if (!info()->IsStub()) {
     79     Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
     80   }
     81 }
     82 
     83 
     84 #ifdef _MSC_VER
     85 void LCodeGen::MakeSureStackPagesMapped(int offset) {
     86   const int kPageSize = 4 * KB;
     87   for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
     88     __ mov(Operand(esp, offset), eax);
     89   }
     90 }
     91 #endif
     92 
     93 
     94 void LCodeGen::SaveCallerDoubles() {
     95   ASSERT(info()->saves_caller_doubles());
     96   ASSERT(NeedsEagerFrame());
     97   Comment(";;; Save clobbered callee double registers");
     98   int count = 0;
     99   BitVector* doubles = chunk()->allocated_double_registers();
    100   BitVector::Iterator save_iterator(doubles);
    101   while (!save_iterator.Done()) {
    102     __ movsd(MemOperand(esp, count * kDoubleSize),
    103               XMMRegister::FromAllocationIndex(save_iterator.Current()));
    104     save_iterator.Advance();
    105     count++;
    106   }
    107 }
    108 
    109 
    110 void LCodeGen::RestoreCallerDoubles() {
    111   ASSERT(info()->saves_caller_doubles());
    112   ASSERT(NeedsEagerFrame());
    113   Comment(";;; Restore clobbered callee double registers");
    114   BitVector* doubles = chunk()->allocated_double_registers();
    115   BitVector::Iterator save_iterator(doubles);
    116   int count = 0;
    117   while (!save_iterator.Done()) {
    118     __ movsd(XMMRegister::FromAllocationIndex(save_iterator.Current()),
    119               MemOperand(esp, count * kDoubleSize));
    120     save_iterator.Advance();
    121     count++;
    122   }
    123 }
    124 
    125 
    126 bool LCodeGen::GeneratePrologue() {
    127   ASSERT(is_generating());
    128 
    129   if (info()->IsOptimizing()) {
    130     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
    131 
    132 #ifdef DEBUG
    133     if (strlen(FLAG_stop_at) > 0 &&
    134         info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
    135       __ int3();
    136     }
    137 #endif
    138 
    139     // Sloppy mode functions and builtins need to replace the receiver with the
    140     // global proxy when called as functions (without an explicit receiver
    141     // object).
    142     if (info_->this_has_uses() &&
    143         info_->strict_mode() == SLOPPY &&
    144         !info_->is_native()) {
    145       Label ok;
    146       // +1 for return address.
    147       int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize;
    148       __ mov(ecx, Operand(esp, receiver_offset));
    149 
    150       __ cmp(ecx, isolate()->factory()->undefined_value());
    151       __ j(not_equal, &ok, Label::kNear);
    152 
    153       __ mov(ecx, GlobalObjectOperand());
    154       __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalReceiverOffset));
    155 
    156       __ mov(Operand(esp, receiver_offset), ecx);
    157 
    158       __ bind(&ok);
    159     }
    160 
    161     if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
    162       // Move state of dynamic frame alignment into edx.
    163       __ Move(edx, Immediate(kNoAlignmentPadding));
    164 
    165       Label do_not_pad, align_loop;
    166       STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
    167       // Align esp + 4 to a multiple of 2 * kPointerSize.
    168       __ test(esp, Immediate(kPointerSize));
    169       __ j(not_zero, &do_not_pad, Label::kNear);
    170       __ push(Immediate(0));
    171       __ mov(ebx, esp);
    172       __ mov(edx, Immediate(kAlignmentPaddingPushed));
    173       // Copy arguments, receiver, and return address.
    174       __ mov(ecx, Immediate(scope()->num_parameters() + 2));
    175 
    176       __ bind(&align_loop);
    177       __ mov(eax, Operand(ebx, 1 * kPointerSize));
    178       __ mov(Operand(ebx, 0), eax);
    179       __ add(Operand(ebx), Immediate(kPointerSize));
    180       __ dec(ecx);
    181       __ j(not_zero, &align_loop, Label::kNear);
    182       __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
    183       __ bind(&do_not_pad);
    184     }
    185   }
    186 
    187   info()->set_prologue_offset(masm_->pc_offset());
    188   if (NeedsEagerFrame()) {
    189     ASSERT(!frame_is_built_);
    190     frame_is_built_ = true;
    191     if (info()->IsStub()) {
    192       __ StubPrologue();
    193     } else {
    194       __ Prologue(info()->IsCodePreAgingActive());
    195     }
    196     info()->AddNoFrameRange(0, masm_->pc_offset());
    197   }
    198 
    199   if (info()->IsOptimizing() &&
    200       dynamic_frame_alignment_ &&
    201       FLAG_debug_code) {
    202     __ test(esp, Immediate(kPointerSize));
    203     __ Assert(zero, kFrameIsExpectedToBeAligned);
    204   }
    205 
    206   // Reserve space for the stack slots needed by the code.
    207   int slots = GetStackSlotCount();
    208   ASSERT(slots != 0 || !info()->IsOptimizing());
    209   if (slots > 0) {
    210     if (slots == 1) {
    211       if (dynamic_frame_alignment_) {
    212         __ push(edx);
    213       } else {
    214         __ push(Immediate(kNoAlignmentPadding));
    215       }
    216     } else {
    217       if (FLAG_debug_code) {
    218         __ sub(Operand(esp), Immediate(slots * kPointerSize));
    219 #ifdef _MSC_VER
    220         MakeSureStackPagesMapped(slots * kPointerSize);
    221 #endif
    222         __ push(eax);
    223         __ mov(Operand(eax), Immediate(slots));
    224         Label loop;
    225         __ bind(&loop);
    226         __ mov(MemOperand(esp, eax, times_4, 0),
    227                Immediate(kSlotsZapValue));
    228         __ dec(eax);
    229         __ j(not_zero, &loop);
    230         __ pop(eax);
    231       } else {
    232         __ sub(Operand(esp), Immediate(slots * kPointerSize));
    233 #ifdef _MSC_VER
    234         MakeSureStackPagesMapped(slots * kPointerSize);
    235 #endif
    236       }
    237 
    238       if (support_aligned_spilled_doubles_) {
    239         Comment(";;; Store dynamic frame alignment tag for spilled doubles");
    240         // Store dynamic frame alignment state in the first local.
    241         int offset = JavaScriptFrameConstants::kDynamicAlignmentStateOffset;
    242         if (dynamic_frame_alignment_) {
    243           __ mov(Operand(ebp, offset), edx);
    244         } else {
    245           __ mov(Operand(ebp, offset), Immediate(kNoAlignmentPadding));
    246         }
    247       }
    248     }
    249 
    250     if (info()->saves_caller_doubles()) SaveCallerDoubles();
    251   }
    252 
    253   // Possibly allocate a local context.
    254   int heap_slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    255   if (heap_slots > 0) {
    256     Comment(";;; Allocate local context");
    257     bool need_write_barrier = true;
    258     // Argument to NewContext is the function, which is still in edi.
    259     if (heap_slots <= FastNewContextStub::kMaximumSlots) {
    260       FastNewContextStub stub(isolate(), heap_slots);
    261       __ CallStub(&stub);
    262       // Result of FastNewContextStub is always in new space.
    263       need_write_barrier = false;
    264     } else {
    265       __ push(edi);
    266       __ CallRuntime(Runtime::kHiddenNewFunctionContext, 1);
    267     }
    268     RecordSafepoint(Safepoint::kNoLazyDeopt);
    269     // Context is returned in eax.  It replaces the context passed to us.
    270     // It's saved in the stack and kept live in esi.
    271     __ mov(esi, eax);
    272     __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
    273 
    274     // Copy parameters into context if necessary.
    275     int num_parameters = scope()->num_parameters();
    276     for (int i = 0; i < num_parameters; i++) {
    277       Variable* var = scope()->parameter(i);
    278       if (var->IsContextSlot()) {
    279         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
    280             (num_parameters - 1 - i) * kPointerSize;
    281         // Load parameter from stack.
    282         __ mov(eax, Operand(ebp, parameter_offset));
    283         // Store it in the context.
    284         int context_offset = Context::SlotOffset(var->index());
    285         __ mov(Operand(esi, context_offset), eax);
    286         // Update the write barrier. This clobbers eax and ebx.
    287         if (need_write_barrier) {
    288           __ RecordWriteContextSlot(esi,
    289                                     context_offset,
    290                                     eax,
    291                                     ebx,
    292                                     kDontSaveFPRegs);
    293         } else if (FLAG_debug_code) {
    294           Label done;
    295           __ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
    296           __ Abort(kExpectedNewSpaceObject);
    297           __ bind(&done);
    298         }
    299       }
    300     }
    301     Comment(";;; End allocate local context");
    302   }
    303 
    304   // Trace the call.
    305   if (FLAG_trace && info()->IsOptimizing()) {
    306     // We have not executed any compiled code yet, so esi still holds the
    307     // incoming context.
    308     __ CallRuntime(Runtime::kTraceEnter, 0);
    309   }
    310   return !is_aborted();
    311 }
    312 
    313 
    314 void LCodeGen::GenerateOsrPrologue() {
    315   // Generate the OSR entry prologue at the first unknown OSR value, or if there
    316   // are none, at the OSR entrypoint instruction.
    317   if (osr_pc_offset_ >= 0) return;
    318 
    319   osr_pc_offset_ = masm()->pc_offset();
    320 
    321     // Move state of dynamic frame alignment into edx.
    322   __ Move(edx, Immediate(kNoAlignmentPadding));
    323 
    324   if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
    325     Label do_not_pad, align_loop;
    326     // Align ebp + 4 to a multiple of 2 * kPointerSize.
    327     __ test(ebp, Immediate(kPointerSize));
    328     __ j(zero, &do_not_pad, Label::kNear);
    329     __ push(Immediate(0));
    330     __ mov(ebx, esp);
    331     __ mov(edx, Immediate(kAlignmentPaddingPushed));
    332 
    333     // Move all parts of the frame over one word. The frame consists of:
    334     // unoptimized frame slots, alignment state, context, frame pointer, return
    335     // address, receiver, and the arguments.
    336     __ mov(ecx, Immediate(scope()->num_parameters() +
    337            5 + graph()->osr()->UnoptimizedFrameSlots()));
    338 
    339     __ bind(&align_loop);
    340     __ mov(eax, Operand(ebx, 1 * kPointerSize));
    341     __ mov(Operand(ebx, 0), eax);
    342     __ add(Operand(ebx), Immediate(kPointerSize));
    343     __ dec(ecx);
    344     __ j(not_zero, &align_loop, Label::kNear);
    345     __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
    346     __ sub(Operand(ebp), Immediate(kPointerSize));
    347     __ bind(&do_not_pad);
    348   }
    349 
    350   // Save the first local, which is overwritten by the alignment state.
    351   Operand alignment_loc = MemOperand(ebp, -3 * kPointerSize);
    352   __ push(alignment_loc);
    353 
    354   // Set the dynamic frame alignment state.
    355   __ mov(alignment_loc, edx);
    356 
    357   // Adjust the frame size, subsuming the unoptimized frame into the
    358   // optimized frame.
    359   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
    360   ASSERT(slots >= 1);
    361   __ sub(esp, Immediate((slots - 1) * kPointerSize));
    362 }
    363 
    364 
    365 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
    366   if (instr->IsCall()) {
    367     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
    368   }
    369   if (!instr->IsLazyBailout() && !instr->IsGap()) {
    370     safepoints_.BumpLastLazySafepointIndex();
    371   }
    372 }
    373 
    374 
    375 void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) { }
    376 
    377 
    378 bool LCodeGen::GenerateJumpTable() {
    379   Label needs_frame;
    380   if (jump_table_.length() > 0) {
    381     Comment(";;; -------------------- Jump table --------------------");
    382   }
    383   for (int i = 0; i < jump_table_.length(); i++) {
    384     __ bind(&jump_table_[i].label);
    385     Address entry = jump_table_[i].address;
    386     Deoptimizer::BailoutType type = jump_table_[i].bailout_type;
    387     int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
    388     if (id == Deoptimizer::kNotDeoptimizationEntry) {
    389       Comment(";;; jump table entry %d.", i);
    390     } else {
    391       Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
    392     }
    393     if (jump_table_[i].needs_frame) {
    394       ASSERT(!info()->saves_caller_doubles());
    395       __ push(Immediate(ExternalReference::ForDeoptEntry(entry)));
    396       if (needs_frame.is_bound()) {
    397         __ jmp(&needs_frame);
    398       } else {
    399         __ bind(&needs_frame);
    400         __ push(MemOperand(ebp, StandardFrameConstants::kContextOffset));
    401         // This variant of deopt can only be used with stubs. Since we don't
    402         // have a function pointer to install in the stack frame that we're
    403         // building, install a special marker there instead.
    404         ASSERT(info()->IsStub());
    405         __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
    406         // Push a PC inside the function so that the deopt code can find where
    407         // the deopt comes from. It doesn't have to be the precise return
    408         // address of a "calling" LAZY deopt, it only has to be somewhere
    409         // inside the code body.
    410         Label push_approx_pc;
    411         __ call(&push_approx_pc);
    412         __ bind(&push_approx_pc);
    413         // Push the continuation which was stashed were the ebp should
    414         // be. Replace it with the saved ebp.
    415         __ push(MemOperand(esp, 3 * kPointerSize));
    416         __ mov(MemOperand(esp, 4 * kPointerSize), ebp);
    417         __ lea(ebp, MemOperand(esp, 4 * kPointerSize));
    418         __ ret(0);  // Call the continuation without clobbering registers.
    419       }
    420     } else {
    421       if (info()->saves_caller_doubles()) RestoreCallerDoubles();
    422       __ call(entry, RelocInfo::RUNTIME_ENTRY);
    423     }
    424   }
    425   return !is_aborted();
    426 }
    427 
    428 
    429 bool LCodeGen::GenerateDeferredCode() {
    430   ASSERT(is_generating());
    431   if (deferred_.length() > 0) {
    432     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
    433       LDeferredCode* code = deferred_[i];
    434 
    435       HValue* value =
    436           instructions_->at(code->instruction_index())->hydrogen_value();
    437       RecordAndWritePosition(
    438           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
    439 
    440       Comment(";;; <@%d,#%d> "
    441               "-------------------- Deferred %s --------------------",
    442               code->instruction_index(),
    443               code->instr()->hydrogen_value()->id(),
    444               code->instr()->Mnemonic());
    445       __ bind(code->entry());
    446       if (NeedsDeferredFrame()) {
    447         Comment(";;; Build frame");
    448         ASSERT(!frame_is_built_);
    449         ASSERT(info()->IsStub());
    450         frame_is_built_ = true;
    451         // Build the frame in such a way that esi isn't trashed.
    452         __ push(ebp);  // Caller's frame pointer.
    453         __ push(Operand(ebp, StandardFrameConstants::kContextOffset));
    454         __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
    455         __ lea(ebp, Operand(esp, 2 * kPointerSize));
    456         Comment(";;; Deferred code");
    457       }
    458       code->Generate();
    459       if (NeedsDeferredFrame()) {
    460         __ bind(code->done());
    461         Comment(";;; Destroy frame");
    462         ASSERT(frame_is_built_);
    463         frame_is_built_ = false;
    464         __ mov(esp, ebp);
    465         __ pop(ebp);
    466       }
    467       __ jmp(code->exit());
    468     }
    469   }
    470 
    471   // Deferred code is the last part of the instruction sequence. Mark
    472   // the generated code as done unless we bailed out.
    473   if (!is_aborted()) status_ = DONE;
    474   return !is_aborted();
    475 }
    476 
    477 
    478 bool LCodeGen::GenerateSafepointTable() {
    479   ASSERT(is_done());
    480   if (!info()->IsStub()) {
    481     // For lazy deoptimization we need space to patch a call after every call.
    482     // Ensure there is always space for such patching, even if the code ends
    483     // in a call.
    484     int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
    485     while (masm()->pc_offset() < target_offset) {
    486       masm()->nop();
    487     }
    488   }
    489   safepoints_.Emit(masm(), GetStackSlotCount());
    490   return !is_aborted();
    491 }
    492 
    493 
    494 Register LCodeGen::ToRegister(int index) const {
    495   return Register::FromAllocationIndex(index);
    496 }
    497 
    498 
    499 XMMRegister LCodeGen::ToDoubleRegister(int index) const {
    500   return XMMRegister::FromAllocationIndex(index);
    501 }
    502 
    503 
    504 Register LCodeGen::ToRegister(LOperand* op) const {
    505   ASSERT(op->IsRegister());
    506   return ToRegister(op->index());
    507 }
    508 
    509 
    510 XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
    511   ASSERT(op->IsDoubleRegister());
    512   return ToDoubleRegister(op->index());
    513 }
    514 
    515 
    516 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
    517   return ToRepresentation(op, Representation::Integer32());
    518 }
    519 
    520 
    521 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
    522                                    const Representation& r) const {
    523   HConstant* constant = chunk_->LookupConstant(op);
    524   int32_t value = constant->Integer32Value();
    525   if (r.IsInteger32()) return value;
    526   ASSERT(r.IsSmiOrTagged());
    527   return reinterpret_cast<int32_t>(Smi::FromInt(value));
    528 }
    529 
    530 
    531 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
    532   HConstant* constant = chunk_->LookupConstant(op);
    533   ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
    534   return constant->handle(isolate());
    535 }
    536 
    537 
    538 double LCodeGen::ToDouble(LConstantOperand* op) const {
    539   HConstant* constant = chunk_->LookupConstant(op);
    540   ASSERT(constant->HasDoubleValue());
    541   return constant->DoubleValue();
    542 }
    543 
    544 
    545 ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
    546   HConstant* constant = chunk_->LookupConstant(op);
    547   ASSERT(constant->HasExternalReferenceValue());
    548   return constant->ExternalReferenceValue();
    549 }
    550 
    551 
    552 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
    553   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
    554 }
    555 
    556 
    557 bool LCodeGen::IsSmi(LConstantOperand* op) const {
    558   return chunk_->LookupLiteralRepresentation(op).IsSmi();
    559 }
    560 
    561 
    562 static int ArgumentsOffsetWithoutFrame(int index) {
    563   ASSERT(index < 0);
    564   return -(index + 1) * kPointerSize + kPCOnStackSize;
    565 }
    566 
    567 
    568 Operand LCodeGen::ToOperand(LOperand* op) const {
    569   if (op->IsRegister()) return Operand(ToRegister(op));
    570   if (op->IsDoubleRegister()) return Operand(ToDoubleRegister(op));
    571   ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
    572   if (NeedsEagerFrame()) {
    573     return Operand(ebp, StackSlotOffset(op->index()));
    574   } else {
    575     // Retrieve parameter without eager stack-frame relative to the
    576     // stack-pointer.
    577     return Operand(esp, ArgumentsOffsetWithoutFrame(op->index()));
    578   }
    579 }
    580 
    581 
    582 Operand LCodeGen::HighOperand(LOperand* op) {
    583   ASSERT(op->IsDoubleStackSlot());
    584   if (NeedsEagerFrame()) {
    585     return Operand(ebp, StackSlotOffset(op->index()) + kPointerSize);
    586   } else {
    587     // Retrieve parameter without eager stack-frame relative to the
    588     // stack-pointer.
    589     return Operand(
    590         esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
    591   }
    592 }
    593 
    594 
    595 void LCodeGen::WriteTranslation(LEnvironment* environment,
    596                                 Translation* translation) {
    597   if (environment == NULL) return;
    598 
    599   // The translation includes one command per value in the environment.
    600   int translation_size = environment->translation_size();
    601   // The output frame height does not include the parameters.
    602   int height = translation_size - environment->parameter_count();
    603 
    604   WriteTranslation(environment->outer(), translation);
    605   bool has_closure_id = !info()->closure().is_null() &&
    606       !info()->closure().is_identical_to(environment->closure());
    607   int closure_id = has_closure_id
    608       ? DefineDeoptimizationLiteral(environment->closure())
    609       : Translation::kSelfLiteralId;
    610   switch (environment->frame_type()) {
    611     case JS_FUNCTION:
    612       translation->BeginJSFrame(environment->ast_id(), closure_id, height);
    613       break;
    614     case JS_CONSTRUCT:
    615       translation->BeginConstructStubFrame(closure_id, translation_size);
    616       break;
    617     case JS_GETTER:
    618       ASSERT(translation_size == 1);
    619       ASSERT(height == 0);
    620       translation->BeginGetterStubFrame(closure_id);
    621       break;
    622     case JS_SETTER:
    623       ASSERT(translation_size == 2);
    624       ASSERT(height == 0);
    625       translation->BeginSetterStubFrame(closure_id);
    626       break;
    627     case ARGUMENTS_ADAPTOR:
    628       translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
    629       break;
    630     case STUB:
    631       translation->BeginCompiledStubFrame();
    632       break;
    633     default:
    634       UNREACHABLE();
    635   }
    636 
    637   int object_index = 0;
    638   int dematerialized_index = 0;
    639   for (int i = 0; i < translation_size; ++i) {
    640     LOperand* value = environment->values()->at(i);
    641     AddToTranslation(environment,
    642                      translation,
    643                      value,
    644                      environment->HasTaggedValueAt(i),
    645                      environment->HasUint32ValueAt(i),
    646                      &object_index,
    647                      &dematerialized_index);
    648   }
    649 }
    650 
    651 
    652 void LCodeGen::AddToTranslation(LEnvironment* environment,
    653                                 Translation* translation,
    654                                 LOperand* op,
    655                                 bool is_tagged,
    656                                 bool is_uint32,
    657                                 int* object_index_pointer,
    658                                 int* dematerialized_index_pointer) {
    659   if (op == LEnvironment::materialization_marker()) {
    660     int object_index = (*object_index_pointer)++;
    661     if (environment->ObjectIsDuplicateAt(object_index)) {
    662       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
    663       translation->DuplicateObject(dupe_of);
    664       return;
    665     }
    666     int object_length = environment->ObjectLengthAt(object_index);
    667     if (environment->ObjectIsArgumentsAt(object_index)) {
    668       translation->BeginArgumentsObject(object_length);
    669     } else {
    670       translation->BeginCapturedObject(object_length);
    671     }
    672     int dematerialized_index = *dematerialized_index_pointer;
    673     int env_offset = environment->translation_size() + dematerialized_index;
    674     *dematerialized_index_pointer += object_length;
    675     for (int i = 0; i < object_length; ++i) {
    676       LOperand* value = environment->values()->at(env_offset + i);
    677       AddToTranslation(environment,
    678                        translation,
    679                        value,
    680                        environment->HasTaggedValueAt(env_offset + i),
    681                        environment->HasUint32ValueAt(env_offset + i),
    682                        object_index_pointer,
    683                        dematerialized_index_pointer);
    684     }
    685     return;
    686   }
    687 
    688   if (op->IsStackSlot()) {
    689     if (is_tagged) {
    690       translation->StoreStackSlot(op->index());
    691     } else if (is_uint32) {
    692       translation->StoreUint32StackSlot(op->index());
    693     } else {
    694       translation->StoreInt32StackSlot(op->index());
    695     }
    696   } else if (op->IsDoubleStackSlot()) {
    697     translation->StoreDoubleStackSlot(op->index());
    698   } else if (op->IsRegister()) {
    699     Register reg = ToRegister(op);
    700     if (is_tagged) {
    701       translation->StoreRegister(reg);
    702     } else if (is_uint32) {
    703       translation->StoreUint32Register(reg);
    704     } else {
    705       translation->StoreInt32Register(reg);
    706     }
    707   } else if (op->IsDoubleRegister()) {
    708     XMMRegister reg = ToDoubleRegister(op);
    709     translation->StoreDoubleRegister(reg);
    710   } else if (op->IsConstantOperand()) {
    711     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
    712     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
    713     translation->StoreLiteral(src_index);
    714   } else {
    715     UNREACHABLE();
    716   }
    717 }
    718 
    719 
    720 void LCodeGen::CallCodeGeneric(Handle<Code> code,
    721                                RelocInfo::Mode mode,
    722                                LInstruction* instr,
    723                                SafepointMode safepoint_mode) {
    724   ASSERT(instr != NULL);
    725   __ call(code, mode);
    726   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
    727 
    728   // Signal that we don't inline smi code before these stubs in the
    729   // optimizing code generator.
    730   if (code->kind() == Code::BINARY_OP_IC ||
    731       code->kind() == Code::COMPARE_IC) {
    732     __ nop();
    733   }
    734 }
    735 
    736 
    737 void LCodeGen::CallCode(Handle<Code> code,
    738                         RelocInfo::Mode mode,
    739                         LInstruction* instr) {
    740   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
    741 }
    742 
    743 
    744 void LCodeGen::CallRuntime(const Runtime::Function* fun,
    745                            int argc,
    746                            LInstruction* instr,
    747                            SaveFPRegsMode save_doubles) {
    748   ASSERT(instr != NULL);
    749   ASSERT(instr->HasPointerMap());
    750 
    751   __ CallRuntime(fun, argc, save_doubles);
    752 
    753   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
    754 
    755   ASSERT(info()->is_calling());
    756 }
    757 
    758 
    759 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
    760   if (context->IsRegister()) {
    761     if (!ToRegister(context).is(esi)) {
    762       __ mov(esi, ToRegister(context));
    763     }
    764   } else if (context->IsStackSlot()) {
    765     __ mov(esi, ToOperand(context));
    766   } else if (context->IsConstantOperand()) {
    767     HConstant* constant =
    768         chunk_->LookupConstant(LConstantOperand::cast(context));
    769     __ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate())));
    770   } else {
    771     UNREACHABLE();
    772   }
    773 }
    774 
    775 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
    776                                        int argc,
    777                                        LInstruction* instr,
    778                                        LOperand* context) {
    779   LoadContextFromDeferred(context);
    780 
    781   __ CallRuntimeSaveDoubles(id);
    782   RecordSafepointWithRegisters(
    783       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
    784 
    785   ASSERT(info()->is_calling());
    786 }
    787 
    788 
    789 void LCodeGen::RegisterEnvironmentForDeoptimization(
    790     LEnvironment* environment, Safepoint::DeoptMode mode) {
    791   environment->set_has_been_used();
    792   if (!environment->HasBeenRegistered()) {
    793     // Physical stack frame layout:
    794     // -x ............. -4  0 ..................................... y
    795     // [incoming arguments] [spill slots] [pushed outgoing arguments]
    796 
    797     // Layout of the environment:
    798     // 0 ..................................................... size-1
    799     // [parameters] [locals] [expression stack including arguments]
    800 
    801     // Layout of the translation:
    802     // 0 ........................................................ size - 1 + 4
    803     // [expression stack including arguments] [locals] [4 words] [parameters]
    804     // |>------------  translation_size ------------<|
    805 
    806     int frame_count = 0;
    807     int jsframe_count = 0;
    808     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
    809       ++frame_count;
    810       if (e->frame_type() == JS_FUNCTION) {
    811         ++jsframe_count;
    812       }
    813     }
    814     Translation translation(&translations_, frame_count, jsframe_count, zone());
    815     WriteTranslation(environment, &translation);
    816     int deoptimization_index = deoptimizations_.length();
    817     int pc_offset = masm()->pc_offset();
    818     environment->Register(deoptimization_index,
    819                           translation.index(),
    820                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
    821     deoptimizations_.Add(environment, zone());
    822   }
    823 }
    824 
    825 
    826 void LCodeGen::DeoptimizeIf(Condition cc,
    827                             LEnvironment* environment,
    828                             Deoptimizer::BailoutType bailout_type) {
    829   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
    830   ASSERT(environment->HasBeenRegistered());
    831   int id = environment->deoptimization_index();
    832   ASSERT(info()->IsOptimizing() || info()->IsStub());
    833   Address entry =
    834       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
    835   if (entry == NULL) {
    836     Abort(kBailoutWasNotPrepared);
    837     return;
    838   }
    839 
    840   if (DeoptEveryNTimes()) {
    841     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
    842     Label no_deopt;
    843     __ pushfd();
    844     __ push(eax);
    845     __ mov(eax, Operand::StaticVariable(count));
    846     __ sub(eax, Immediate(1));
    847     __ j(not_zero, &no_deopt, Label::kNear);
    848     if (FLAG_trap_on_deopt) __ int3();
    849     __ mov(eax, Immediate(FLAG_deopt_every_n_times));
    850     __ mov(Operand::StaticVariable(count), eax);
    851     __ pop(eax);
    852     __ popfd();
    853     ASSERT(frame_is_built_);
    854     __ call(entry, RelocInfo::RUNTIME_ENTRY);
    855     __ bind(&no_deopt);
    856     __ mov(Operand::StaticVariable(count), eax);
    857     __ pop(eax);
    858     __ popfd();
    859   }
    860 
    861   if (info()->ShouldTrapOnDeopt()) {
    862     Label done;
    863     if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
    864     __ int3();
    865     __ bind(&done);
    866   }
    867 
    868   ASSERT(info()->IsStub() || frame_is_built_);
    869   if (cc == no_condition && frame_is_built_) {
    870     __ call(entry, RelocInfo::RUNTIME_ENTRY);
    871   } else {
    872     // We often have several deopts to the same entry, reuse the last
    873     // jump entry if this is the case.
    874     if (jump_table_.is_empty() ||
    875         jump_table_.last().address != entry ||
    876         jump_table_.last().needs_frame != !frame_is_built_ ||
    877         jump_table_.last().bailout_type != bailout_type) {
    878       Deoptimizer::JumpTableEntry table_entry(entry,
    879                                               bailout_type,
    880                                               !frame_is_built_);
    881       jump_table_.Add(table_entry, zone());
    882     }
    883     if (cc == no_condition) {
    884       __ jmp(&jump_table_.last().label);
    885     } else {
    886       __ j(cc, &jump_table_.last().label);
    887     }
    888   }
    889 }
    890 
    891 
    892 void LCodeGen::DeoptimizeIf(Condition cc,
    893                             LEnvironment* environment) {
    894   Deoptimizer::BailoutType bailout_type = info()->IsStub()
    895       ? Deoptimizer::LAZY
    896       : Deoptimizer::EAGER;
    897   DeoptimizeIf(cc, environment, bailout_type);
    898 }
    899 
    900 
    901 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
    902   int length = deoptimizations_.length();
    903   if (length == 0) return;
    904   Handle<DeoptimizationInputData> data =
    905       DeoptimizationInputData::New(isolate(), length, TENURED);
    906 
    907   Handle<ByteArray> translations =
    908       translations_.CreateByteArray(isolate()->factory());
    909   data->SetTranslationByteArray(*translations);
    910   data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
    911   data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
    912   if (info_->IsOptimizing()) {
    913     // Reference to shared function info does not change between phases.
    914     AllowDeferredHandleDereference allow_handle_dereference;
    915     data->SetSharedFunctionInfo(*info_->shared_info());
    916   } else {
    917     data->SetSharedFunctionInfo(Smi::FromInt(0));
    918   }
    919 
    920   Handle<FixedArray> literals =
    921       factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
    922   { AllowDeferredHandleDereference copy_handles;
    923     for (int i = 0; i < deoptimization_literals_.length(); i++) {
    924       literals->set(i, *deoptimization_literals_[i]);
    925     }
    926     data->SetLiteralArray(*literals);
    927   }
    928 
    929   data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
    930   data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
    931 
    932   // Populate the deoptimization entries.
    933   for (int i = 0; i < length; i++) {
    934     LEnvironment* env = deoptimizations_[i];
    935     data->SetAstId(i, env->ast_id());
    936     data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
    937     data->SetArgumentsStackHeight(i,
    938                                   Smi::FromInt(env->arguments_stack_height()));
    939     data->SetPc(i, Smi::FromInt(env->pc_offset()));
    940   }
    941   code->set_deoptimization_data(*data);
    942 }
    943 
    944 
    945 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
    946   int result = deoptimization_literals_.length();
    947   for (int i = 0; i < deoptimization_literals_.length(); ++i) {
    948     if (deoptimization_literals_[i].is_identical_to(literal)) return i;
    949   }
    950   deoptimization_literals_.Add(literal, zone());
    951   return result;
    952 }
    953 
    954 
    955 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
    956   ASSERT(deoptimization_literals_.length() == 0);
    957 
    958   const ZoneList<Handle<JSFunction> >* inlined_closures =
    959       chunk()->inlined_closures();
    960 
    961   for (int i = 0, length = inlined_closures->length();
    962        i < length;
    963        i++) {
    964     DefineDeoptimizationLiteral(inlined_closures->at(i));
    965   }
    966 
    967   inlined_function_count_ = deoptimization_literals_.length();
    968 }
    969 
    970 
    971 void LCodeGen::RecordSafepointWithLazyDeopt(
    972     LInstruction* instr, SafepointMode safepoint_mode) {
    973   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
    974     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
    975   } else {
    976     ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
    977     RecordSafepointWithRegisters(
    978         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
    979   }
    980 }
    981 
    982 
    983 void LCodeGen::RecordSafepoint(
    984     LPointerMap* pointers,
    985     Safepoint::Kind kind,
    986     int arguments,
    987     Safepoint::DeoptMode deopt_mode) {
    988   ASSERT(kind == expected_safepoint_kind_);
    989   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
    990   Safepoint safepoint =
    991       safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
    992   for (int i = 0; i < operands->length(); i++) {
    993     LOperand* pointer = operands->at(i);
    994     if (pointer->IsStackSlot()) {
    995       safepoint.DefinePointerSlot(pointer->index(), zone());
    996     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
    997       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
    998     }
    999   }
   1000 }
   1001 
   1002 
   1003 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
   1004                                Safepoint::DeoptMode mode) {
   1005   RecordSafepoint(pointers, Safepoint::kSimple, 0, mode);
   1006 }
   1007 
   1008 
   1009 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) {
   1010   LPointerMap empty_pointers(zone());
   1011   RecordSafepoint(&empty_pointers, mode);
   1012 }
   1013 
   1014 
   1015 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
   1016                                             int arguments,
   1017                                             Safepoint::DeoptMode mode) {
   1018   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode);
   1019 }
   1020 
   1021 
   1022 void LCodeGen::RecordAndWritePosition(int position) {
   1023   if (position == RelocInfo::kNoPosition) return;
   1024   masm()->positions_recorder()->RecordPosition(position);
   1025   masm()->positions_recorder()->WriteRecordedPositions();
   1026 }
   1027 
   1028 
   1029 static const char* LabelType(LLabel* label) {
   1030   if (label->is_loop_header()) return " (loop header)";
   1031   if (label->is_osr_entry()) return " (OSR entry)";
   1032   return "";
   1033 }
   1034 
   1035 
   1036 void LCodeGen::DoLabel(LLabel* label) {
   1037   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
   1038           current_instruction_,
   1039           label->hydrogen_value()->id(),
   1040           label->block_id(),
   1041           LabelType(label));
   1042   __ bind(label->label());
   1043   current_block_ = label->block_id();
   1044   DoGap(label);
   1045 }
   1046 
   1047 
   1048 void LCodeGen::DoParallelMove(LParallelMove* move) {
   1049   resolver_.Resolve(move);
   1050 }
   1051 
   1052 
   1053 void LCodeGen::DoGap(LGap* gap) {
   1054   for (int i = LGap::FIRST_INNER_POSITION;
   1055        i <= LGap::LAST_INNER_POSITION;
   1056        i++) {
   1057     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
   1058     LParallelMove* move = gap->GetParallelMove(inner_pos);
   1059     if (move != NULL) DoParallelMove(move);
   1060   }
   1061 }
   1062 
   1063 
   1064 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
   1065   DoGap(instr);
   1066 }
   1067 
   1068 
   1069 void LCodeGen::DoParameter(LParameter* instr) {
   1070   // Nothing to do.
   1071 }
   1072 
   1073 
   1074 void LCodeGen::DoCallStub(LCallStub* instr) {
   1075   ASSERT(ToRegister(instr->context()).is(esi));
   1076   ASSERT(ToRegister(instr->result()).is(eax));
   1077   switch (instr->hydrogen()->major_key()) {
   1078     case CodeStub::RegExpExec: {
   1079       RegExpExecStub stub(isolate());
   1080       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   1081       break;
   1082     }
   1083     case CodeStub::SubString: {
   1084       SubStringStub stub(isolate());
   1085       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   1086       break;
   1087     }
   1088     case CodeStub::StringCompare: {
   1089       StringCompareStub stub(isolate());
   1090       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   1091       break;
   1092     }
   1093     default:
   1094       UNREACHABLE();
   1095   }
   1096 }
   1097 
   1098 
   1099 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
   1100   GenerateOsrPrologue();
   1101 }
   1102 
   1103 
   1104 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
   1105   Register dividend = ToRegister(instr->dividend());
   1106   int32_t divisor = instr->divisor();
   1107   ASSERT(dividend.is(ToRegister(instr->result())));
   1108 
   1109   // Theoretically, a variation of the branch-free code for integer division by
   1110   // a power of 2 (calculating the remainder via an additional multiplication
   1111   // (which gets simplified to an 'and') and subtraction) should be faster, and
   1112   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
   1113   // indicate that positive dividends are heavily favored, so the branching
   1114   // version performs better.
   1115   HMod* hmod = instr->hydrogen();
   1116   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   1117   Label dividend_is_not_negative, done;
   1118   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
   1119     __ test(dividend, dividend);
   1120     __ j(not_sign, &dividend_is_not_negative, Label::kNear);
   1121     // Note that this is correct even for kMinInt operands.
   1122     __ neg(dividend);
   1123     __ and_(dividend, mask);
   1124     __ neg(dividend);
   1125     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1126       DeoptimizeIf(zero, instr->environment());
   1127     }
   1128     __ jmp(&done, Label::kNear);
   1129   }
   1130 
   1131   __ bind(&dividend_is_not_negative);
   1132   __ and_(dividend, mask);
   1133   __ bind(&done);
   1134 }
   1135 
   1136 
   1137 void LCodeGen::DoModByConstI(LModByConstI* instr) {
   1138   Register dividend = ToRegister(instr->dividend());
   1139   int32_t divisor = instr->divisor();
   1140   ASSERT(ToRegister(instr->result()).is(eax));
   1141 
   1142   if (divisor == 0) {
   1143     DeoptimizeIf(no_condition, instr->environment());
   1144     return;
   1145   }
   1146 
   1147   __ TruncatingDiv(dividend, Abs(divisor));
   1148   __ imul(edx, edx, Abs(divisor));
   1149   __ mov(eax, dividend);
   1150   __ sub(eax, edx);
   1151 
   1152   // Check for negative zero.
   1153   HMod* hmod = instr->hydrogen();
   1154   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1155     Label remainder_not_zero;
   1156     __ j(not_zero, &remainder_not_zero, Label::kNear);
   1157     __ cmp(dividend, Immediate(0));
   1158     DeoptimizeIf(less, instr->environment());
   1159     __ bind(&remainder_not_zero);
   1160   }
   1161 }
   1162 
   1163 
   1164 void LCodeGen::DoModI(LModI* instr) {
   1165   HMod* hmod = instr->hydrogen();
   1166 
   1167   Register left_reg = ToRegister(instr->left());
   1168   ASSERT(left_reg.is(eax));
   1169   Register right_reg = ToRegister(instr->right());
   1170   ASSERT(!right_reg.is(eax));
   1171   ASSERT(!right_reg.is(edx));
   1172   Register result_reg = ToRegister(instr->result());
   1173   ASSERT(result_reg.is(edx));
   1174 
   1175   Label done;
   1176   // Check for x % 0, idiv would signal a divide error. We have to
   1177   // deopt in this case because we can't return a NaN.
   1178   if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
   1179     __ test(right_reg, Operand(right_reg));
   1180     DeoptimizeIf(zero, instr->environment());
   1181   }
   1182 
   1183   // Check for kMinInt % -1, idiv would signal a divide error. We
   1184   // have to deopt if we care about -0, because we can't return that.
   1185   if (hmod->CheckFlag(HValue::kCanOverflow)) {
   1186     Label no_overflow_possible;
   1187     __ cmp(left_reg, kMinInt);
   1188     __ j(not_equal, &no_overflow_possible, Label::kNear);
   1189     __ cmp(right_reg, -1);
   1190     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1191       DeoptimizeIf(equal, instr->environment());
   1192     } else {
   1193       __ j(not_equal, &no_overflow_possible, Label::kNear);
   1194       __ Move(result_reg, Immediate(0));
   1195       __ jmp(&done, Label::kNear);
   1196     }
   1197     __ bind(&no_overflow_possible);
   1198   }
   1199 
   1200   // Sign extend dividend in eax into edx:eax.
   1201   __ cdq();
   1202 
   1203   // If we care about -0, test if the dividend is <0 and the result is 0.
   1204   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1205     Label positive_left;
   1206     __ test(left_reg, Operand(left_reg));
   1207     __ j(not_sign, &positive_left, Label::kNear);
   1208     __ idiv(right_reg);
   1209     __ test(result_reg, Operand(result_reg));
   1210     DeoptimizeIf(zero, instr->environment());
   1211     __ jmp(&done, Label::kNear);
   1212     __ bind(&positive_left);
   1213   }
   1214   __ idiv(right_reg);
   1215   __ bind(&done);
   1216 }
   1217 
   1218 
   1219 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
   1220   Register dividend = ToRegister(instr->dividend());
   1221   int32_t divisor = instr->divisor();
   1222   Register result = ToRegister(instr->result());
   1223   ASSERT(divisor == kMinInt || IsPowerOf2(Abs(divisor)));
   1224   ASSERT(!result.is(dividend));
   1225 
   1226   // Check for (0 / -x) that will produce negative zero.
   1227   HDiv* hdiv = instr->hydrogen();
   1228   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1229     __ test(dividend, dividend);
   1230     DeoptimizeIf(zero, instr->environment());
   1231   }
   1232   // Check for (kMinInt / -1).
   1233   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
   1234     __ cmp(dividend, kMinInt);
   1235     DeoptimizeIf(zero, instr->environment());
   1236   }
   1237   // Deoptimize if remainder will not be 0.
   1238   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
   1239       divisor != 1 && divisor != -1) {
   1240     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   1241     __ test(dividend, Immediate(mask));
   1242     DeoptimizeIf(not_zero, instr->environment());
   1243   }
   1244   __ Move(result, dividend);
   1245   int32_t shift = WhichPowerOf2Abs(divisor);
   1246   if (shift > 0) {
   1247     // The arithmetic shift is always OK, the 'if' is an optimization only.
   1248     if (shift > 1) __ sar(result, 31);
   1249     __ shr(result, 32 - shift);
   1250     __ add(result, dividend);
   1251     __ sar(result, shift);
   1252   }
   1253   if (divisor < 0) __ neg(result);
   1254 }
   1255 
   1256 
   1257 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
   1258   Register dividend = ToRegister(instr->dividend());
   1259   int32_t divisor = instr->divisor();
   1260   ASSERT(ToRegister(instr->result()).is(edx));
   1261 
   1262   if (divisor == 0) {
   1263     DeoptimizeIf(no_condition, instr->environment());
   1264     return;
   1265   }
   1266 
   1267   // Check for (0 / -x) that will produce negative zero.
   1268   HDiv* hdiv = instr->hydrogen();
   1269   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1270     __ test(dividend, dividend);
   1271     DeoptimizeIf(zero, instr->environment());
   1272   }
   1273 
   1274   __ TruncatingDiv(dividend, Abs(divisor));
   1275   if (divisor < 0) __ neg(edx);
   1276 
   1277   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
   1278     __ mov(eax, edx);
   1279     __ imul(eax, eax, divisor);
   1280     __ sub(eax, dividend);
   1281     DeoptimizeIf(not_equal, instr->environment());
   1282   }
   1283 }
   1284 
   1285 
   1286 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
   1287 void LCodeGen::DoDivI(LDivI* instr) {
   1288   HBinaryOperation* hdiv = instr->hydrogen();
   1289   Register dividend = ToRegister(instr->dividend());
   1290   Register divisor = ToRegister(instr->divisor());
   1291   Register remainder = ToRegister(instr->temp());
   1292   ASSERT(dividend.is(eax));
   1293   ASSERT(remainder.is(edx));
   1294   ASSERT(ToRegister(instr->result()).is(eax));
   1295   ASSERT(!divisor.is(eax));
   1296   ASSERT(!divisor.is(edx));
   1297 
   1298   // Check for x / 0.
   1299   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   1300     __ test(divisor, divisor);
   1301     DeoptimizeIf(zero, instr->environment());
   1302   }
   1303 
   1304   // Check for (0 / -x) that will produce negative zero.
   1305   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1306     Label dividend_not_zero;
   1307     __ test(dividend, dividend);
   1308     __ j(not_zero, &dividend_not_zero, Label::kNear);
   1309     __ test(divisor, divisor);
   1310     DeoptimizeIf(sign, instr->environment());
   1311     __ bind(&dividend_not_zero);
   1312   }
   1313 
   1314   // Check for (kMinInt / -1).
   1315   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
   1316     Label dividend_not_min_int;
   1317     __ cmp(dividend, kMinInt);
   1318     __ j(not_zero, &dividend_not_min_int, Label::kNear);
   1319     __ cmp(divisor, -1);
   1320     DeoptimizeIf(zero, instr->environment());
   1321     __ bind(&dividend_not_min_int);
   1322   }
   1323 
   1324   // Sign extend to edx (= remainder).
   1325   __ cdq();
   1326   __ idiv(divisor);
   1327 
   1328   if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
   1329     // Deoptimize if remainder is not 0.
   1330     __ test(remainder, remainder);
   1331     DeoptimizeIf(not_zero, instr->environment());
   1332   }
   1333 }
   1334 
   1335 
   1336 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
   1337   Register dividend = ToRegister(instr->dividend());
   1338   int32_t divisor = instr->divisor();
   1339   ASSERT(dividend.is(ToRegister(instr->result())));
   1340 
   1341   // If the divisor is positive, things are easy: There can be no deopts and we
   1342   // can simply do an arithmetic right shift.
   1343   if (divisor == 1) return;
   1344   int32_t shift = WhichPowerOf2Abs(divisor);
   1345   if (divisor > 1) {
   1346     __ sar(dividend, shift);
   1347     return;
   1348   }
   1349 
   1350   // If the divisor is negative, we have to negate and handle edge cases.
   1351   __ neg(dividend);
   1352   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1353     DeoptimizeIf(zero, instr->environment());
   1354   }
   1355 
   1356   // Dividing by -1 is basically negation, unless we overflow.
   1357   if (divisor == -1) {
   1358     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   1359       DeoptimizeIf(overflow, instr->environment());
   1360     }
   1361     return;
   1362   }
   1363 
   1364   // If the negation could not overflow, simply shifting is OK.
   1365   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   1366     __ sar(dividend, shift);
   1367     return;
   1368   }
   1369 
   1370   Label not_kmin_int, done;
   1371   __ j(no_overflow, &not_kmin_int, Label::kNear);
   1372   __ mov(dividend, Immediate(kMinInt / divisor));
   1373   __ jmp(&done, Label::kNear);
   1374   __ bind(&not_kmin_int);
   1375   __ sar(dividend, shift);
   1376   __ bind(&done);
   1377 }
   1378 
   1379 
   1380 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
   1381   Register dividend = ToRegister(instr->dividend());
   1382   int32_t divisor = instr->divisor();
   1383   ASSERT(ToRegister(instr->result()).is(edx));
   1384 
   1385   if (divisor == 0) {
   1386     DeoptimizeIf(no_condition, instr->environment());
   1387     return;
   1388   }
   1389 
   1390   // Check for (0 / -x) that will produce negative zero.
   1391   HMathFloorOfDiv* hdiv = instr->hydrogen();
   1392   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1393     __ test(dividend, dividend);
   1394     DeoptimizeIf(zero, instr->environment());
   1395   }
   1396 
   1397   // Easy case: We need no dynamic check for the dividend and the flooring
   1398   // division is the same as the truncating division.
   1399   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
   1400       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
   1401     __ TruncatingDiv(dividend, Abs(divisor));
   1402     if (divisor < 0) __ neg(edx);
   1403     return;
   1404   }
   1405 
   1406   // In the general case we may need to adjust before and after the truncating
   1407   // division to get a flooring division.
   1408   Register temp = ToRegister(instr->temp3());
   1409   ASSERT(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx));
   1410   Label needs_adjustment, done;
   1411   __ cmp(dividend, Immediate(0));
   1412   __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
   1413   __ TruncatingDiv(dividend, Abs(divisor));
   1414   if (divisor < 0) __ neg(edx);
   1415   __ jmp(&done, Label::kNear);
   1416   __ bind(&needs_adjustment);
   1417   __ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1));
   1418   __ TruncatingDiv(temp, Abs(divisor));
   1419   if (divisor < 0) __ neg(edx);
   1420   __ dec(edx);
   1421   __ bind(&done);
   1422 }
   1423 
   1424 
   1425 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
   1426 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
   1427   HBinaryOperation* hdiv = instr->hydrogen();
   1428   Register dividend = ToRegister(instr->dividend());
   1429   Register divisor = ToRegister(instr->divisor());
   1430   Register remainder = ToRegister(instr->temp());
   1431   Register result = ToRegister(instr->result());
   1432   ASSERT(dividend.is(eax));
   1433   ASSERT(remainder.is(edx));
   1434   ASSERT(result.is(eax));
   1435   ASSERT(!divisor.is(eax));
   1436   ASSERT(!divisor.is(edx));
   1437 
   1438   // Check for x / 0.
   1439   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   1440     __ test(divisor, divisor);
   1441     DeoptimizeIf(zero, instr->environment());
   1442   }
   1443 
   1444   // Check for (0 / -x) that will produce negative zero.
   1445   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1446     Label dividend_not_zero;
   1447     __ test(dividend, dividend);
   1448     __ j(not_zero, &dividend_not_zero, Label::kNear);
   1449     __ test(divisor, divisor);
   1450     DeoptimizeIf(sign, instr->environment());
   1451     __ bind(&dividend_not_zero);
   1452   }
   1453 
   1454   // Check for (kMinInt / -1).
   1455   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
   1456     Label dividend_not_min_int;
   1457     __ cmp(dividend, kMinInt);
   1458     __ j(not_zero, &dividend_not_min_int, Label::kNear);
   1459     __ cmp(divisor, -1);
   1460     DeoptimizeIf(zero, instr->environment());
   1461     __ bind(&dividend_not_min_int);
   1462   }
   1463 
   1464   // Sign extend to edx (= remainder).
   1465   __ cdq();
   1466   __ idiv(divisor);
   1467 
   1468   Label done;
   1469   __ test(remainder, remainder);
   1470   __ j(zero, &done, Label::kNear);
   1471   __ xor_(remainder, divisor);
   1472   __ sar(remainder, 31);
   1473   __ add(result, remainder);
   1474   __ bind(&done);
   1475 }
   1476 
   1477 
   1478 void LCodeGen::DoMulI(LMulI* instr) {
   1479   Register left = ToRegister(instr->left());
   1480   LOperand* right = instr->right();
   1481 
   1482   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1483     __ mov(ToRegister(instr->temp()), left);
   1484   }
   1485 
   1486   if (right->IsConstantOperand()) {
   1487     // Try strength reductions on the multiplication.
   1488     // All replacement instructions are at most as long as the imul
   1489     // and have better latency.
   1490     int constant = ToInteger32(LConstantOperand::cast(right));
   1491     if (constant == -1) {
   1492       __ neg(left);
   1493     } else if (constant == 0) {
   1494       __ xor_(left, Operand(left));
   1495     } else if (constant == 2) {
   1496       __ add(left, Operand(left));
   1497     } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1498       // If we know that the multiplication can't overflow, it's safe to
   1499       // use instructions that don't set the overflow flag for the
   1500       // multiplication.
   1501       switch (constant) {
   1502         case 1:
   1503           // Do nothing.
   1504           break;
   1505         case 3:
   1506           __ lea(left, Operand(left, left, times_2, 0));
   1507           break;
   1508         case 4:
   1509           __ shl(left, 2);
   1510           break;
   1511         case 5:
   1512           __ lea(left, Operand(left, left, times_4, 0));
   1513           break;
   1514         case 8:
   1515           __ shl(left, 3);
   1516           break;
   1517         case 9:
   1518           __ lea(left, Operand(left, left, times_8, 0));
   1519           break;
   1520         case 16:
   1521           __ shl(left, 4);
   1522           break;
   1523         default:
   1524           __ imul(left, left, constant);
   1525           break;
   1526       }
   1527     } else {
   1528       __ imul(left, left, constant);
   1529     }
   1530   } else {
   1531     if (instr->hydrogen()->representation().IsSmi()) {
   1532       __ SmiUntag(left);
   1533     }
   1534     __ imul(left, ToOperand(right));
   1535   }
   1536 
   1537   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1538     DeoptimizeIf(overflow, instr->environment());
   1539   }
   1540 
   1541   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1542     // Bail out if the result is supposed to be negative zero.
   1543     Label done;
   1544     __ test(left, Operand(left));
   1545     __ j(not_zero, &done, Label::kNear);
   1546     if (right->IsConstantOperand()) {
   1547       if (ToInteger32(LConstantOperand::cast(right)) < 0) {
   1548         DeoptimizeIf(no_condition, instr->environment());
   1549       } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
   1550         __ cmp(ToRegister(instr->temp()), Immediate(0));
   1551         DeoptimizeIf(less, instr->environment());
   1552       }
   1553     } else {
   1554       // Test the non-zero operand for negative sign.
   1555       __ or_(ToRegister(instr->temp()), ToOperand(right));
   1556       DeoptimizeIf(sign, instr->environment());
   1557     }
   1558     __ bind(&done);
   1559   }
   1560 }
   1561 
   1562 
   1563 void LCodeGen::DoBitI(LBitI* instr) {
   1564   LOperand* left = instr->left();
   1565   LOperand* right = instr->right();
   1566   ASSERT(left->Equals(instr->result()));
   1567   ASSERT(left->IsRegister());
   1568 
   1569   if (right->IsConstantOperand()) {
   1570     int32_t right_operand =
   1571         ToRepresentation(LConstantOperand::cast(right),
   1572                          instr->hydrogen()->representation());
   1573     switch (instr->op()) {
   1574       case Token::BIT_AND:
   1575         __ and_(ToRegister(left), right_operand);
   1576         break;
   1577       case Token::BIT_OR:
   1578         __ or_(ToRegister(left), right_operand);
   1579         break;
   1580       case Token::BIT_XOR:
   1581         if (right_operand == int32_t(~0)) {
   1582           __ not_(ToRegister(left));
   1583         } else {
   1584           __ xor_(ToRegister(left), right_operand);
   1585         }
   1586         break;
   1587       default:
   1588         UNREACHABLE();
   1589         break;
   1590     }
   1591   } else {
   1592     switch (instr->op()) {
   1593       case Token::BIT_AND:
   1594         __ and_(ToRegister(left), ToOperand(right));
   1595         break;
   1596       case Token::BIT_OR:
   1597         __ or_(ToRegister(left), ToOperand(right));
   1598         break;
   1599       case Token::BIT_XOR:
   1600         __ xor_(ToRegister(left), ToOperand(right));
   1601         break;
   1602       default:
   1603         UNREACHABLE();
   1604         break;
   1605     }
   1606   }
   1607 }
   1608 
   1609 
   1610 void LCodeGen::DoShiftI(LShiftI* instr) {
   1611   LOperand* left = instr->left();
   1612   LOperand* right = instr->right();
   1613   ASSERT(left->Equals(instr->result()));
   1614   ASSERT(left->IsRegister());
   1615   if (right->IsRegister()) {
   1616     ASSERT(ToRegister(right).is(ecx));
   1617 
   1618     switch (instr->op()) {
   1619       case Token::ROR:
   1620         __ ror_cl(ToRegister(left));
   1621         if (instr->can_deopt()) {
   1622           __ test(ToRegister(left), ToRegister(left));
   1623           DeoptimizeIf(sign, instr->environment());
   1624         }
   1625         break;
   1626       case Token::SAR:
   1627         __ sar_cl(ToRegister(left));
   1628         break;
   1629       case Token::SHR:
   1630         __ shr_cl(ToRegister(left));
   1631         if (instr->can_deopt()) {
   1632           __ test(ToRegister(left), ToRegister(left));
   1633           DeoptimizeIf(sign, instr->environment());
   1634         }
   1635         break;
   1636       case Token::SHL:
   1637         __ shl_cl(ToRegister(left));
   1638         break;
   1639       default:
   1640         UNREACHABLE();
   1641         break;
   1642     }
   1643   } else {
   1644     int value = ToInteger32(LConstantOperand::cast(right));
   1645     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
   1646     switch (instr->op()) {
   1647       case Token::ROR:
   1648         if (shift_count == 0 && instr->can_deopt()) {
   1649           __ test(ToRegister(left), ToRegister(left));
   1650           DeoptimizeIf(sign, instr->environment());
   1651         } else {
   1652           __ ror(ToRegister(left), shift_count);
   1653         }
   1654         break;
   1655       case Token::SAR:
   1656         if (shift_count != 0) {
   1657           __ sar(ToRegister(left), shift_count);
   1658         }
   1659         break;
   1660       case Token::SHR:
   1661         if (shift_count != 0) {
   1662           __ shr(ToRegister(left), shift_count);
   1663         } else if (instr->can_deopt()) {
   1664           __ test(ToRegister(left), ToRegister(left));
   1665           DeoptimizeIf(sign, instr->environment());
   1666         }
   1667         break;
   1668       case Token::SHL:
   1669         if (shift_count != 0) {
   1670           if (instr->hydrogen_value()->representation().IsSmi() &&
   1671               instr->can_deopt()) {
   1672             if (shift_count != 1) {
   1673               __ shl(ToRegister(left), shift_count - 1);
   1674             }
   1675             __ SmiTag(ToRegister(left));
   1676             DeoptimizeIf(overflow, instr->environment());
   1677           } else {
   1678             __ shl(ToRegister(left), shift_count);
   1679           }
   1680         }
   1681         break;
   1682       default:
   1683         UNREACHABLE();
   1684         break;
   1685     }
   1686   }
   1687 }
   1688 
   1689 
   1690 void LCodeGen::DoSubI(LSubI* instr) {
   1691   LOperand* left = instr->left();
   1692   LOperand* right = instr->right();
   1693   ASSERT(left->Equals(instr->result()));
   1694 
   1695   if (right->IsConstantOperand()) {
   1696     __ sub(ToOperand(left),
   1697            ToImmediate(right, instr->hydrogen()->representation()));
   1698   } else {
   1699     __ sub(ToRegister(left), ToOperand(right));
   1700   }
   1701   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1702     DeoptimizeIf(overflow, instr->environment());
   1703   }
   1704 }
   1705 
   1706 
   1707 void LCodeGen::DoConstantI(LConstantI* instr) {
   1708   __ Move(ToRegister(instr->result()), Immediate(instr->value()));
   1709 }
   1710 
   1711 
   1712 void LCodeGen::DoConstantS(LConstantS* instr) {
   1713   __ Move(ToRegister(instr->result()), Immediate(instr->value()));
   1714 }
   1715 
   1716 
   1717 void LCodeGen::DoConstantD(LConstantD* instr) {
   1718   double v = instr->value();
   1719   uint64_t int_val = BitCast<uint64_t, double>(v);
   1720   int32_t lower = static_cast<int32_t>(int_val);
   1721   int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
   1722   ASSERT(instr->result()->IsDoubleRegister());
   1723 
   1724   XMMRegister res = ToDoubleRegister(instr->result());
   1725   if (int_val == 0) {
   1726     __ xorps(res, res);
   1727   } else {
   1728     Register temp = ToRegister(instr->temp());
   1729     if (CpuFeatures::IsSupported(SSE4_1)) {
   1730       CpuFeatureScope scope2(masm(), SSE4_1);
   1731       if (lower != 0) {
   1732         __ Move(temp, Immediate(lower));
   1733         __ movd(res, Operand(temp));
   1734         __ Move(temp, Immediate(upper));
   1735         __ pinsrd(res, Operand(temp), 1);
   1736       } else {
   1737         __ xorps(res, res);
   1738         __ Move(temp, Immediate(upper));
   1739         __ pinsrd(res, Operand(temp), 1);
   1740       }
   1741     } else {
   1742       __ Move(temp, Immediate(upper));
   1743       __ movd(res, Operand(temp));
   1744       __ psllq(res, 32);
   1745       if (lower != 0) {
   1746         XMMRegister xmm_scratch = double_scratch0();
   1747         __ Move(temp, Immediate(lower));
   1748         __ movd(xmm_scratch, Operand(temp));
   1749         __ orps(res, xmm_scratch);
   1750       }
   1751     }
   1752   }
   1753 }
   1754 
   1755 
   1756 void LCodeGen::DoConstantE(LConstantE* instr) {
   1757   __ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value()));
   1758 }
   1759 
   1760 
   1761 void LCodeGen::DoConstantT(LConstantT* instr) {
   1762   Register reg = ToRegister(instr->result());
   1763   Handle<Object> object = instr->value(isolate());
   1764   AllowDeferredHandleDereference smi_check;
   1765   __ LoadObject(reg, object);
   1766 }
   1767 
   1768 
   1769 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
   1770   Register result = ToRegister(instr->result());
   1771   Register map = ToRegister(instr->value());
   1772   __ EnumLength(result, map);
   1773 }
   1774 
   1775 
   1776 void LCodeGen::DoDateField(LDateField* instr) {
   1777   Register object = ToRegister(instr->date());
   1778   Register result = ToRegister(instr->result());
   1779   Register scratch = ToRegister(instr->temp());
   1780   Smi* index = instr->index();
   1781   Label runtime, done;
   1782   ASSERT(object.is(result));
   1783   ASSERT(object.is(eax));
   1784 
   1785   __ test(object, Immediate(kSmiTagMask));
   1786   DeoptimizeIf(zero, instr->environment());
   1787   __ CmpObjectType(object, JS_DATE_TYPE, scratch);
   1788   DeoptimizeIf(not_equal, instr->environment());
   1789 
   1790   if (index->value() == 0) {
   1791     __ mov(result, FieldOperand(object, JSDate::kValueOffset));
   1792   } else {
   1793     if (index->value() < JSDate::kFirstUncachedField) {
   1794       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
   1795       __ mov(scratch, Operand::StaticVariable(stamp));
   1796       __ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
   1797       __ j(not_equal, &runtime, Label::kNear);
   1798       __ mov(result, FieldOperand(object, JSDate::kValueOffset +
   1799                                           kPointerSize * index->value()));
   1800       __ jmp(&done, Label::kNear);
   1801     }
   1802     __ bind(&runtime);
   1803     __ PrepareCallCFunction(2, scratch);
   1804     __ mov(Operand(esp, 0), object);
   1805     __ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
   1806     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
   1807     __ bind(&done);
   1808   }
   1809 }
   1810 
   1811 
   1812 Operand LCodeGen::BuildSeqStringOperand(Register string,
   1813                                         LOperand* index,
   1814                                         String::Encoding encoding) {
   1815   if (index->IsConstantOperand()) {
   1816     int offset = ToRepresentation(LConstantOperand::cast(index),
   1817                                   Representation::Integer32());
   1818     if (encoding == String::TWO_BYTE_ENCODING) {
   1819       offset *= kUC16Size;
   1820     }
   1821     STATIC_ASSERT(kCharSize == 1);
   1822     return FieldOperand(string, SeqString::kHeaderSize + offset);
   1823   }
   1824   return FieldOperand(
   1825       string, ToRegister(index),
   1826       encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
   1827       SeqString::kHeaderSize);
   1828 }
   1829 
   1830 
   1831 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
   1832   String::Encoding encoding = instr->hydrogen()->encoding();
   1833   Register result = ToRegister(instr->result());
   1834   Register string = ToRegister(instr->string());
   1835 
   1836   if (FLAG_debug_code) {
   1837     __ push(string);
   1838     __ mov(string, FieldOperand(string, HeapObject::kMapOffset));
   1839     __ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset));
   1840 
   1841     __ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
   1842     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   1843     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   1844     __ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
   1845                              ? one_byte_seq_type : two_byte_seq_type));
   1846     __ Check(equal, kUnexpectedStringType);
   1847     __ pop(string);
   1848   }
   1849 
   1850   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
   1851   if (encoding == String::ONE_BYTE_ENCODING) {
   1852     __ movzx_b(result, operand);
   1853   } else {
   1854     __ movzx_w(result, operand);
   1855   }
   1856 }
   1857 
   1858 
   1859 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
   1860   String::Encoding encoding = instr->hydrogen()->encoding();
   1861   Register string = ToRegister(instr->string());
   1862 
   1863   if (FLAG_debug_code) {
   1864     Register value = ToRegister(instr->value());
   1865     Register index = ToRegister(instr->index());
   1866     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   1867     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   1868     int encoding_mask =
   1869         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
   1870         ? one_byte_seq_type : two_byte_seq_type;
   1871     __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
   1872   }
   1873 
   1874   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
   1875   if (instr->value()->IsConstantOperand()) {
   1876     int value = ToRepresentation(LConstantOperand::cast(instr->value()),
   1877                                  Representation::Integer32());
   1878     ASSERT_LE(0, value);
   1879     if (encoding == String::ONE_BYTE_ENCODING) {
   1880       ASSERT_LE(value, String::kMaxOneByteCharCode);
   1881       __ mov_b(operand, static_cast<int8_t>(value));
   1882     } else {
   1883       ASSERT_LE(value, String::kMaxUtf16CodeUnit);
   1884       __ mov_w(operand, static_cast<int16_t>(value));
   1885     }
   1886   } else {
   1887     Register value = ToRegister(instr->value());
   1888     if (encoding == String::ONE_BYTE_ENCODING) {
   1889       __ mov_b(operand, value);
   1890     } else {
   1891       __ mov_w(operand, value);
   1892     }
   1893   }
   1894 }
   1895 
   1896 
   1897 void LCodeGen::DoAddI(LAddI* instr) {
   1898   LOperand* left = instr->left();
   1899   LOperand* right = instr->right();
   1900 
   1901   if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
   1902     if (right->IsConstantOperand()) {
   1903       int32_t offset = ToRepresentation(LConstantOperand::cast(right),
   1904                                         instr->hydrogen()->representation());
   1905       __ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset));
   1906     } else {
   1907       Operand address(ToRegister(left), ToRegister(right), times_1, 0);
   1908       __ lea(ToRegister(instr->result()), address);
   1909     }
   1910   } else {
   1911     if (right->IsConstantOperand()) {
   1912       __ add(ToOperand(left),
   1913              ToImmediate(right, instr->hydrogen()->representation()));
   1914     } else {
   1915       __ add(ToRegister(left), ToOperand(right));
   1916     }
   1917     if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1918       DeoptimizeIf(overflow, instr->environment());
   1919     }
   1920   }
   1921 }
   1922 
   1923 
   1924 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
   1925   LOperand* left = instr->left();
   1926   LOperand* right = instr->right();
   1927   ASSERT(left->Equals(instr->result()));
   1928   HMathMinMax::Operation operation = instr->hydrogen()->operation();
   1929   if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
   1930     Label return_left;
   1931     Condition condition = (operation == HMathMinMax::kMathMin)
   1932         ? less_equal
   1933         : greater_equal;
   1934     if (right->IsConstantOperand()) {
   1935       Operand left_op = ToOperand(left);
   1936       Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()),
   1937                                         instr->hydrogen()->representation());
   1938       __ cmp(left_op, immediate);
   1939       __ j(condition, &return_left, Label::kNear);
   1940       __ mov(left_op, immediate);
   1941     } else {
   1942       Register left_reg = ToRegister(left);
   1943       Operand right_op = ToOperand(right);
   1944       __ cmp(left_reg, right_op);
   1945       __ j(condition, &return_left, Label::kNear);
   1946       __ mov(left_reg, right_op);
   1947     }
   1948     __ bind(&return_left);
   1949   } else {
   1950     ASSERT(instr->hydrogen()->representation().IsDouble());
   1951     Label check_nan_left, check_zero, return_left, return_right;
   1952     Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
   1953     XMMRegister left_reg = ToDoubleRegister(left);
   1954     XMMRegister right_reg = ToDoubleRegister(right);
   1955     __ ucomisd(left_reg, right_reg);
   1956     __ j(parity_even, &check_nan_left, Label::kNear);  // At least one NaN.
   1957     __ j(equal, &check_zero, Label::kNear);  // left == right.
   1958     __ j(condition, &return_left, Label::kNear);
   1959     __ jmp(&return_right, Label::kNear);
   1960 
   1961     __ bind(&check_zero);
   1962     XMMRegister xmm_scratch = double_scratch0();
   1963     __ xorps(xmm_scratch, xmm_scratch);
   1964     __ ucomisd(left_reg, xmm_scratch);
   1965     __ j(not_equal, &return_left, Label::kNear);  // left == right != 0.
   1966     // At this point, both left and right are either 0 or -0.
   1967     if (operation == HMathMinMax::kMathMin) {
   1968       __ orpd(left_reg, right_reg);
   1969     } else {
   1970       // Since we operate on +0 and/or -0, addsd and andsd have the same effect.
   1971       __ addsd(left_reg, right_reg);
   1972     }
   1973     __ jmp(&return_left, Label::kNear);
   1974 
   1975     __ bind(&check_nan_left);
   1976     __ ucomisd(left_reg, left_reg);  // NaN check.
   1977     __ j(parity_even, &return_left, Label::kNear);  // left == NaN.
   1978     __ bind(&return_right);
   1979     __ movaps(left_reg, right_reg);
   1980 
   1981     __ bind(&return_left);
   1982   }
   1983 }
   1984 
   1985 
   1986 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
   1987   XMMRegister left = ToDoubleRegister(instr->left());
   1988   XMMRegister right = ToDoubleRegister(instr->right());
   1989   XMMRegister result = ToDoubleRegister(instr->result());
   1990   switch (instr->op()) {
   1991     case Token::ADD:
   1992       __ addsd(left, right);
   1993       break;
   1994     case Token::SUB:
   1995       __ subsd(left, right);
   1996       break;
   1997     case Token::MUL:
   1998       __ mulsd(left, right);
   1999       break;
   2000     case Token::DIV:
   2001       __ divsd(left, right);
   2002       // Don't delete this mov. It may improve performance on some CPUs,
   2003       // when there is a mulsd depending on the result
   2004       __ movaps(left, left);
   2005       break;
   2006     case Token::MOD: {
   2007       // Pass two doubles as arguments on the stack.
   2008       __ PrepareCallCFunction(4, eax);
   2009       __ movsd(Operand(esp, 0 * kDoubleSize), left);
   2010       __ movsd(Operand(esp, 1 * kDoubleSize), right);
   2011       __ CallCFunction(
   2012           ExternalReference::mod_two_doubles_operation(isolate()),
   2013           4);
   2014 
   2015       // Return value is in st(0) on ia32.
   2016       // Store it into the result register.
   2017       __ sub(Operand(esp), Immediate(kDoubleSize));
   2018       __ fstp_d(Operand(esp, 0));
   2019       __ movsd(result, Operand(esp, 0));
   2020       __ add(Operand(esp), Immediate(kDoubleSize));
   2021       break;
   2022     }
   2023     default:
   2024       UNREACHABLE();
   2025       break;
   2026   }
   2027 }
   2028 
   2029 
   2030 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
   2031   ASSERT(ToRegister(instr->context()).is(esi));
   2032   ASSERT(ToRegister(instr->left()).is(edx));
   2033   ASSERT(ToRegister(instr->right()).is(eax));
   2034   ASSERT(ToRegister(instr->result()).is(eax));
   2035 
   2036   BinaryOpICStub stub(isolate(), instr->op(), NO_OVERWRITE);
   2037   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2038 }
   2039 
   2040 
   2041 template<class InstrType>
   2042 void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
   2043   int left_block = instr->TrueDestination(chunk_);
   2044   int right_block = instr->FalseDestination(chunk_);
   2045 
   2046   int next_block = GetNextEmittedBlock();
   2047 
   2048   if (right_block == left_block || cc == no_condition) {
   2049     EmitGoto(left_block);
   2050   } else if (left_block == next_block) {
   2051     __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
   2052   } else if (right_block == next_block) {
   2053     __ j(cc, chunk_->GetAssemblyLabel(left_block));
   2054   } else {
   2055     __ j(cc, chunk_->GetAssemblyLabel(left_block));
   2056     __ jmp(chunk_->GetAssemblyLabel(right_block));
   2057   }
   2058 }
   2059 
   2060 
   2061 template<class InstrType>
   2062 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
   2063   int false_block = instr->FalseDestination(chunk_);
   2064   if (cc == no_condition) {
   2065     __ jmp(chunk_->GetAssemblyLabel(false_block));
   2066   } else {
   2067     __ j(cc, chunk_->GetAssemblyLabel(false_block));
   2068   }
   2069 }
   2070 
   2071 
   2072 void LCodeGen::DoBranch(LBranch* instr) {
   2073   Representation r = instr->hydrogen()->value()->representation();
   2074   if (r.IsSmiOrInteger32()) {
   2075     Register reg = ToRegister(instr->value());
   2076     __ test(reg, Operand(reg));
   2077     EmitBranch(instr, not_zero);
   2078   } else if (r.IsDouble()) {
   2079     ASSERT(!info()->IsStub());
   2080     XMMRegister reg = ToDoubleRegister(instr->value());
   2081     XMMRegister xmm_scratch = double_scratch0();
   2082     __ xorps(xmm_scratch, xmm_scratch);
   2083     __ ucomisd(reg, xmm_scratch);
   2084     EmitBranch(instr, not_equal);
   2085   } else {
   2086     ASSERT(r.IsTagged());
   2087     Register reg = ToRegister(instr->value());
   2088     HType type = instr->hydrogen()->value()->type();
   2089     if (type.IsBoolean()) {
   2090       ASSERT(!info()->IsStub());
   2091       __ cmp(reg, factory()->true_value());
   2092       EmitBranch(instr, equal);
   2093     } else if (type.IsSmi()) {
   2094       ASSERT(!info()->IsStub());
   2095       __ test(reg, Operand(reg));
   2096       EmitBranch(instr, not_equal);
   2097     } else if (type.IsJSArray()) {
   2098       ASSERT(!info()->IsStub());
   2099       EmitBranch(instr, no_condition);
   2100     } else if (type.IsHeapNumber()) {
   2101       ASSERT(!info()->IsStub());
   2102       XMMRegister xmm_scratch = double_scratch0();
   2103       __ xorps(xmm_scratch, xmm_scratch);
   2104       __ ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
   2105       EmitBranch(instr, not_equal);
   2106     } else if (type.IsString()) {
   2107       ASSERT(!info()->IsStub());
   2108       __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
   2109       EmitBranch(instr, not_equal);
   2110     } else {
   2111       ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
   2112       if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
   2113 
   2114       if (expected.Contains(ToBooleanStub::UNDEFINED)) {
   2115         // undefined -> false.
   2116         __ cmp(reg, factory()->undefined_value());
   2117         __ j(equal, instr->FalseLabel(chunk_));
   2118       }
   2119       if (expected.Contains(ToBooleanStub::BOOLEAN)) {
   2120         // true -> true.
   2121         __ cmp(reg, factory()->true_value());
   2122         __ j(equal, instr->TrueLabel(chunk_));
   2123         // false -> false.
   2124         __ cmp(reg, factory()->false_value());
   2125         __ j(equal, instr->FalseLabel(chunk_));
   2126       }
   2127       if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
   2128         // 'null' -> false.
   2129         __ cmp(reg, factory()->null_value());
   2130         __ j(equal, instr->FalseLabel(chunk_));
   2131       }
   2132 
   2133       if (expected.Contains(ToBooleanStub::SMI)) {
   2134         // Smis: 0 -> false, all other -> true.
   2135         __ test(reg, Operand(reg));
   2136         __ j(equal, instr->FalseLabel(chunk_));
   2137         __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
   2138       } else if (expected.NeedsMap()) {
   2139         // If we need a map later and have a Smi -> deopt.
   2140         __ test(reg, Immediate(kSmiTagMask));
   2141         DeoptimizeIf(zero, instr->environment());
   2142       }
   2143 
   2144       Register map = no_reg;  // Keep the compiler happy.
   2145       if (expected.NeedsMap()) {
   2146         map = ToRegister(instr->temp());
   2147         ASSERT(!map.is(reg));
   2148         __ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
   2149 
   2150         if (expected.CanBeUndetectable()) {
   2151           // Undetectable -> false.
   2152           __ test_b(FieldOperand(map, Map::kBitFieldOffset),
   2153                     1 << Map::kIsUndetectable);
   2154           __ j(not_zero, instr->FalseLabel(chunk_));
   2155         }
   2156       }
   2157 
   2158       if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
   2159         // spec object -> true.
   2160         __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
   2161         __ j(above_equal, instr->TrueLabel(chunk_));
   2162       }
   2163 
   2164       if (expected.Contains(ToBooleanStub::STRING)) {
   2165         // String value -> false iff empty.
   2166         Label not_string;
   2167         __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
   2168         __ j(above_equal, &not_string, Label::kNear);
   2169         __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
   2170         __ j(not_zero, instr->TrueLabel(chunk_));
   2171         __ jmp(instr->FalseLabel(chunk_));
   2172         __ bind(&not_string);
   2173       }
   2174 
   2175       if (expected.Contains(ToBooleanStub::SYMBOL)) {
   2176         // Symbol value -> true.
   2177         __ CmpInstanceType(map, SYMBOL_TYPE);
   2178         __ j(equal, instr->TrueLabel(chunk_));
   2179       }
   2180 
   2181       if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
   2182         // heap number -> false iff +0, -0, or NaN.
   2183         Label not_heap_number;
   2184         __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
   2185                factory()->heap_number_map());
   2186         __ j(not_equal, &not_heap_number, Label::kNear);
   2187         XMMRegister xmm_scratch = double_scratch0();
   2188         __ xorps(xmm_scratch, xmm_scratch);
   2189         __ ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
   2190         __ j(zero, instr->FalseLabel(chunk_));
   2191         __ jmp(instr->TrueLabel(chunk_));
   2192         __ bind(&not_heap_number);
   2193       }
   2194 
   2195       if (!expected.IsGeneric()) {
   2196         // We've seen something for the first time -> deopt.
   2197         // This can only happen if we are not generic already.
   2198         DeoptimizeIf(no_condition, instr->environment());
   2199       }
   2200     }
   2201   }
   2202 }
   2203 
   2204 
   2205 void LCodeGen::EmitGoto(int block) {
   2206   if (!IsNextEmittedBlock(block)) {
   2207     __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
   2208   }
   2209 }
   2210 
   2211 
   2212 void LCodeGen::DoGoto(LGoto* instr) {
   2213   EmitGoto(instr->block_id());
   2214 }
   2215 
   2216 
   2217 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
   2218   Condition cond = no_condition;
   2219   switch (op) {
   2220     case Token::EQ:
   2221     case Token::EQ_STRICT:
   2222       cond = equal;
   2223       break;
   2224     case Token::NE:
   2225     case Token::NE_STRICT:
   2226       cond = not_equal;
   2227       break;
   2228     case Token::LT:
   2229       cond = is_unsigned ? below : less;
   2230       break;
   2231     case Token::GT:
   2232       cond = is_unsigned ? above : greater;
   2233       break;
   2234     case Token::LTE:
   2235       cond = is_unsigned ? below_equal : less_equal;
   2236       break;
   2237     case Token::GTE:
   2238       cond = is_unsigned ? above_equal : greater_equal;
   2239       break;
   2240     case Token::IN:
   2241     case Token::INSTANCEOF:
   2242     default:
   2243       UNREACHABLE();
   2244   }
   2245   return cond;
   2246 }
   2247 
   2248 
   2249 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
   2250   LOperand* left = instr->left();
   2251   LOperand* right = instr->right();
   2252   bool is_unsigned =
   2253       instr->is_double() ||
   2254       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
   2255       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
   2256   Condition cc = TokenToCondition(instr->op(), is_unsigned);
   2257 
   2258   if (left->IsConstantOperand() && right->IsConstantOperand()) {
   2259     // We can statically evaluate the comparison.
   2260     double left_val = ToDouble(LConstantOperand::cast(left));
   2261     double right_val = ToDouble(LConstantOperand::cast(right));
   2262     int next_block = EvalComparison(instr->op(), left_val, right_val) ?
   2263         instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
   2264     EmitGoto(next_block);
   2265   } else {
   2266     if (instr->is_double()) {
   2267       __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
   2268       // Don't base result on EFLAGS when a NaN is involved. Instead
   2269       // jump to the false block.
   2270       __ j(parity_even, instr->FalseLabel(chunk_));
   2271     } else {
   2272       if (right->IsConstantOperand()) {
   2273         __ cmp(ToOperand(left),
   2274                ToImmediate(right, instr->hydrogen()->representation()));
   2275       } else if (left->IsConstantOperand()) {
   2276         __ cmp(ToOperand(right),
   2277                ToImmediate(left, instr->hydrogen()->representation()));
   2278         // We commuted the operands, so commute the condition.
   2279         cc = CommuteCondition(cc);
   2280       } else {
   2281         __ cmp(ToRegister(left), ToOperand(right));
   2282       }
   2283     }
   2284     EmitBranch(instr, cc);
   2285   }
   2286 }
   2287 
   2288 
   2289 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
   2290   Register left = ToRegister(instr->left());
   2291 
   2292   if (instr->right()->IsConstantOperand()) {
   2293     Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
   2294     __ CmpObject(left, right);
   2295   } else {
   2296     Operand right = ToOperand(instr->right());
   2297     __ cmp(left, right);
   2298   }
   2299   EmitBranch(instr, equal);
   2300 }
   2301 
   2302 
   2303 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
   2304   if (instr->hydrogen()->representation().IsTagged()) {
   2305     Register input_reg = ToRegister(instr->object());
   2306     __ cmp(input_reg, factory()->the_hole_value());
   2307     EmitBranch(instr, equal);
   2308     return;
   2309   }
   2310 
   2311   XMMRegister input_reg = ToDoubleRegister(instr->object());
   2312   __ ucomisd(input_reg, input_reg);
   2313   EmitFalseBranch(instr, parity_odd);
   2314 
   2315   __ sub(esp, Immediate(kDoubleSize));
   2316   __ movsd(MemOperand(esp, 0), input_reg);
   2317 
   2318   __ add(esp, Immediate(kDoubleSize));
   2319   int offset = sizeof(kHoleNanUpper32);
   2320   __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
   2321   EmitBranch(instr, equal);
   2322 }
   2323 
   2324 
   2325 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
   2326   Representation rep = instr->hydrogen()->value()->representation();
   2327   ASSERT(!rep.IsInteger32());
   2328   Register scratch = ToRegister(instr->temp());
   2329 
   2330   if (rep.IsDouble()) {
   2331     XMMRegister value = ToDoubleRegister(instr->value());
   2332     XMMRegister xmm_scratch = double_scratch0();
   2333     __ xorps(xmm_scratch, xmm_scratch);
   2334     __ ucomisd(xmm_scratch, value);
   2335     EmitFalseBranch(instr, not_equal);
   2336     __ movmskpd(scratch, value);
   2337     __ test(scratch, Immediate(1));
   2338     EmitBranch(instr, not_zero);
   2339   } else {
   2340     Register value = ToRegister(instr->value());
   2341     Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
   2342     __ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK);
   2343     __ cmp(FieldOperand(value, HeapNumber::kExponentOffset),
   2344            Immediate(0x1));
   2345     EmitFalseBranch(instr, no_overflow);
   2346     __ cmp(FieldOperand(value, HeapNumber::kMantissaOffset),
   2347            Immediate(0x00000000));
   2348     EmitBranch(instr, equal);
   2349   }
   2350 }
   2351 
   2352 
   2353 Condition LCodeGen::EmitIsObject(Register input,
   2354                                  Register temp1,
   2355                                  Label* is_not_object,
   2356                                  Label* is_object) {
   2357   __ JumpIfSmi(input, is_not_object);
   2358 
   2359   __ cmp(input, isolate()->factory()->null_value());
   2360   __ j(equal, is_object);
   2361 
   2362   __ mov(temp1, FieldOperand(input, HeapObject::kMapOffset));
   2363   // Undetectable objects behave like undefined.
   2364   __ test_b(FieldOperand(temp1, Map::kBitFieldOffset),
   2365             1 << Map::kIsUndetectable);
   2366   __ j(not_zero, is_not_object);
   2367 
   2368   __ movzx_b(temp1, FieldOperand(temp1, Map::kInstanceTypeOffset));
   2369   __ cmp(temp1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
   2370   __ j(below, is_not_object);
   2371   __ cmp(temp1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
   2372   return below_equal;
   2373 }
   2374 
   2375 
   2376 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
   2377   Register reg = ToRegister(instr->value());
   2378   Register temp = ToRegister(instr->temp());
   2379 
   2380   Condition true_cond = EmitIsObject(
   2381       reg, temp, instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
   2382 
   2383   EmitBranch(instr, true_cond);
   2384 }
   2385 
   2386 
   2387 Condition LCodeGen::EmitIsString(Register input,
   2388                                  Register temp1,
   2389                                  Label* is_not_string,
   2390                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
   2391   if (check_needed == INLINE_SMI_CHECK) {
   2392     __ JumpIfSmi(input, is_not_string);
   2393   }
   2394 
   2395   Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
   2396 
   2397   return cond;
   2398 }
   2399 
   2400 
   2401 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
   2402   Register reg = ToRegister(instr->value());
   2403   Register temp = ToRegister(instr->temp());
   2404 
   2405   SmiCheck check_needed =
   2406       instr->hydrogen()->value()->type().IsHeapObject()
   2407           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   2408 
   2409   Condition true_cond = EmitIsString(
   2410       reg, temp, instr->FalseLabel(chunk_), check_needed);
   2411 
   2412   EmitBranch(instr, true_cond);
   2413 }
   2414 
   2415 
   2416 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
   2417   Operand input = ToOperand(instr->value());
   2418 
   2419   __ test(input, Immediate(kSmiTagMask));
   2420   EmitBranch(instr, zero);
   2421 }
   2422 
   2423 
   2424 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
   2425   Register input = ToRegister(instr->value());
   2426   Register temp = ToRegister(instr->temp());
   2427 
   2428   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2429     STATIC_ASSERT(kSmiTag == 0);
   2430     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2431   }
   2432   __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
   2433   __ test_b(FieldOperand(temp, Map::kBitFieldOffset),
   2434             1 << Map::kIsUndetectable);
   2435   EmitBranch(instr, not_zero);
   2436 }
   2437 
   2438 
   2439 static Condition ComputeCompareCondition(Token::Value op) {
   2440   switch (op) {
   2441     case Token::EQ_STRICT:
   2442     case Token::EQ:
   2443       return equal;
   2444     case Token::LT:
   2445       return less;
   2446     case Token::GT:
   2447       return greater;
   2448     case Token::LTE:
   2449       return less_equal;
   2450     case Token::GTE:
   2451       return greater_equal;
   2452     default:
   2453       UNREACHABLE();
   2454       return no_condition;
   2455   }
   2456 }
   2457 
   2458 
   2459 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
   2460   Token::Value op = instr->op();
   2461 
   2462   Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
   2463   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2464 
   2465   Condition condition = ComputeCompareCondition(op);
   2466   __ test(eax, Operand(eax));
   2467 
   2468   EmitBranch(instr, condition);
   2469 }
   2470 
   2471 
   2472 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
   2473   InstanceType from = instr->from();
   2474   InstanceType to = instr->to();
   2475   if (from == FIRST_TYPE) return to;
   2476   ASSERT(from == to || to == LAST_TYPE);
   2477   return from;
   2478 }
   2479 
   2480 
   2481 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
   2482   InstanceType from = instr->from();
   2483   InstanceType to = instr->to();
   2484   if (from == to) return equal;
   2485   if (to == LAST_TYPE) return above_equal;
   2486   if (from == FIRST_TYPE) return below_equal;
   2487   UNREACHABLE();
   2488   return equal;
   2489 }
   2490 
   2491 
   2492 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
   2493   Register input = ToRegister(instr->value());
   2494   Register temp = ToRegister(instr->temp());
   2495 
   2496   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2497     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2498   }
   2499 
   2500   __ CmpObjectType(input, TestType(instr->hydrogen()), temp);
   2501   EmitBranch(instr, BranchCondition(instr->hydrogen()));
   2502 }
   2503 
   2504 
   2505 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
   2506   Register input = ToRegister(instr->value());
   2507   Register result = ToRegister(instr->result());
   2508 
   2509   __ AssertString(input);
   2510 
   2511   __ mov(result, FieldOperand(input, String::kHashFieldOffset));
   2512   __ IndexFromHash(result, result);
   2513 }
   2514 
   2515 
   2516 void LCodeGen::DoHasCachedArrayIndexAndBranch(
   2517     LHasCachedArrayIndexAndBranch* instr) {
   2518   Register input = ToRegister(instr->value());
   2519 
   2520   __ test(FieldOperand(input, String::kHashFieldOffset),
   2521           Immediate(String::kContainsCachedArrayIndexMask));
   2522   EmitBranch(instr, equal);
   2523 }
   2524 
   2525 
   2526 // Branches to a label or falls through with the answer in the z flag.  Trashes
   2527 // the temp registers, but not the input.
   2528 void LCodeGen::EmitClassOfTest(Label* is_true,
   2529                                Label* is_false,
   2530                                Handle<String>class_name,
   2531                                Register input,
   2532                                Register temp,
   2533                                Register temp2) {
   2534   ASSERT(!input.is(temp));
   2535   ASSERT(!input.is(temp2));
   2536   ASSERT(!temp.is(temp2));
   2537   __ JumpIfSmi(input, is_false);
   2538 
   2539   if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Function"))) {
   2540     // Assuming the following assertions, we can use the same compares to test
   2541     // for both being a function type and being in the object type range.
   2542     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   2543     STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2544                   FIRST_SPEC_OBJECT_TYPE + 1);
   2545     STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2546                   LAST_SPEC_OBJECT_TYPE - 1);
   2547     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
   2548     __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp);
   2549     __ j(below, is_false);
   2550     __ j(equal, is_true);
   2551     __ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE);
   2552     __ j(equal, is_true);
   2553   } else {
   2554     // Faster code path to avoid two compares: subtract lower bound from the
   2555     // actual type and do a signed compare with the width of the type range.
   2556     __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
   2557     __ movzx_b(temp2, FieldOperand(temp, Map::kInstanceTypeOffset));
   2558     __ sub(Operand(temp2), Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   2559     __ cmp(Operand(temp2), Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
   2560                                      FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   2561     __ j(above, is_false);
   2562   }
   2563 
   2564   // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
   2565   // Check if the constructor in the map is a function.
   2566   __ mov(temp, FieldOperand(temp, Map::kConstructorOffset));
   2567   // Objects with a non-function constructor have class 'Object'.
   2568   __ CmpObjectType(temp, JS_FUNCTION_TYPE, temp2);
   2569   if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Object"))) {
   2570     __ j(not_equal, is_true);
   2571   } else {
   2572     __ j(not_equal, is_false);
   2573   }
   2574 
   2575   // temp now contains the constructor function. Grab the
   2576   // instance class name from there.
   2577   __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
   2578   __ mov(temp, FieldOperand(temp,
   2579                             SharedFunctionInfo::kInstanceClassNameOffset));
   2580   // The class name we are testing against is internalized since it's a literal.
   2581   // The name in the constructor is internalized because of the way the context
   2582   // is booted.  This routine isn't expected to work for random API-created
   2583   // classes and it doesn't have to because you can't access it with natives
   2584   // syntax.  Since both sides are internalized it is sufficient to use an
   2585   // identity comparison.
   2586   __ cmp(temp, class_name);
   2587   // End with the answer in the z flag.
   2588 }
   2589 
   2590 
   2591 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
   2592   Register input = ToRegister(instr->value());
   2593   Register temp = ToRegister(instr->temp());
   2594   Register temp2 = ToRegister(instr->temp2());
   2595 
   2596   Handle<String> class_name = instr->hydrogen()->class_name();
   2597 
   2598   EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
   2599       class_name, input, temp, temp2);
   2600 
   2601   EmitBranch(instr, equal);
   2602 }
   2603 
   2604 
   2605 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
   2606   Register reg = ToRegister(instr->value());
   2607   __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
   2608   EmitBranch(instr, equal);
   2609 }
   2610 
   2611 
   2612 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
   2613   // Object and function are in fixed registers defined by the stub.
   2614   ASSERT(ToRegister(instr->context()).is(esi));
   2615   InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
   2616   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2617 
   2618   Label true_value, done;
   2619   __ test(eax, Operand(eax));
   2620   __ j(zero, &true_value, Label::kNear);
   2621   __ mov(ToRegister(instr->result()), factory()->false_value());
   2622   __ jmp(&done, Label::kNear);
   2623   __ bind(&true_value);
   2624   __ mov(ToRegister(instr->result()), factory()->true_value());
   2625   __ bind(&done);
   2626 }
   2627 
   2628 
   2629 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
   2630   class DeferredInstanceOfKnownGlobal V8_FINAL : public LDeferredCode {
   2631    public:
   2632     DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
   2633                                   LInstanceOfKnownGlobal* instr)
   2634         : LDeferredCode(codegen), instr_(instr) { }
   2635     virtual void Generate() V8_OVERRIDE {
   2636       codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
   2637     }
   2638     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   2639     Label* map_check() { return &map_check_; }
   2640    private:
   2641     LInstanceOfKnownGlobal* instr_;
   2642     Label map_check_;
   2643   };
   2644 
   2645   DeferredInstanceOfKnownGlobal* deferred;
   2646   deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
   2647 
   2648   Label done, false_result;
   2649   Register object = ToRegister(instr->value());
   2650   Register temp = ToRegister(instr->temp());
   2651 
   2652   // A Smi is not an instance of anything.
   2653   __ JumpIfSmi(object, &false_result, Label::kNear);
   2654 
   2655   // This is the inlined call site instanceof cache. The two occurences of the
   2656   // hole value will be patched to the last map/result pair generated by the
   2657   // instanceof stub.
   2658   Label cache_miss;
   2659   Register map = ToRegister(instr->temp());
   2660   __ mov(map, FieldOperand(object, HeapObject::kMapOffset));
   2661   __ bind(deferred->map_check());  // Label for calculating code patching.
   2662   Handle<Cell> cache_cell = factory()->NewCell(factory()->the_hole_value());
   2663   __ cmp(map, Operand::ForCell(cache_cell));  // Patched to cached map.
   2664   __ j(not_equal, &cache_miss, Label::kNear);
   2665   __ mov(eax, factory()->the_hole_value());  // Patched to either true or false.
   2666   __ jmp(&done, Label::kNear);
   2667 
   2668   // The inlined call site cache did not match. Check for null and string
   2669   // before calling the deferred code.
   2670   __ bind(&cache_miss);
   2671   // Null is not an instance of anything.
   2672   __ cmp(object, factory()->null_value());
   2673   __ j(equal, &false_result, Label::kNear);
   2674 
   2675   // String values are not instances of anything.
   2676   Condition is_string = masm_->IsObjectStringType(object, temp, temp);
   2677   __ j(is_string, &false_result, Label::kNear);
   2678 
   2679   // Go to the deferred code.
   2680   __ jmp(deferred->entry());
   2681 
   2682   __ bind(&false_result);
   2683   __ mov(ToRegister(instr->result()), factory()->false_value());
   2684 
   2685   // Here result has either true or false. Deferred code also produces true or
   2686   // false object.
   2687   __ bind(deferred->exit());
   2688   __ bind(&done);
   2689 }
   2690 
   2691 
   2692 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
   2693                                                Label* map_check) {
   2694   PushSafepointRegistersScope scope(this);
   2695 
   2696   InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
   2697   flags = static_cast<InstanceofStub::Flags>(
   2698       flags | InstanceofStub::kArgsInRegisters);
   2699   flags = static_cast<InstanceofStub::Flags>(
   2700       flags | InstanceofStub::kCallSiteInlineCheck);
   2701   flags = static_cast<InstanceofStub::Flags>(
   2702       flags | InstanceofStub::kReturnTrueFalseObject);
   2703   InstanceofStub stub(isolate(), flags);
   2704 
   2705   // Get the temp register reserved by the instruction. This needs to be a
   2706   // register which is pushed last by PushSafepointRegisters as top of the
   2707   // stack is used to pass the offset to the location of the map check to
   2708   // the stub.
   2709   Register temp = ToRegister(instr->temp());
   2710   ASSERT(MacroAssembler::SafepointRegisterStackIndex(temp) == 0);
   2711   __ LoadHeapObject(InstanceofStub::right(), instr->function());
   2712   static const int kAdditionalDelta = 13;
   2713   int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
   2714   __ mov(temp, Immediate(delta));
   2715   __ StoreToSafepointRegisterSlot(temp, temp);
   2716   CallCodeGeneric(stub.GetCode(),
   2717                   RelocInfo::CODE_TARGET,
   2718                   instr,
   2719                   RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   2720   // Get the deoptimization index of the LLazyBailout-environment that
   2721   // corresponds to this instruction.
   2722   LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
   2723   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   2724 
   2725   // Put the result value into the eax slot and restore all registers.
   2726   __ StoreToSafepointRegisterSlot(eax, eax);
   2727 }
   2728 
   2729 
   2730 void LCodeGen::DoCmpT(LCmpT* instr) {
   2731   Token::Value op = instr->op();
   2732 
   2733   Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
   2734   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2735 
   2736   Condition condition = ComputeCompareCondition(op);
   2737   Label true_value, done;
   2738   __ test(eax, Operand(eax));
   2739   __ j(condition, &true_value, Label::kNear);
   2740   __ mov(ToRegister(instr->result()), factory()->false_value());
   2741   __ jmp(&done, Label::kNear);
   2742   __ bind(&true_value);
   2743   __ mov(ToRegister(instr->result()), factory()->true_value());
   2744   __ bind(&done);
   2745 }
   2746 
   2747 
   2748 void LCodeGen::EmitReturn(LReturn* instr, bool dynamic_frame_alignment) {
   2749   int extra_value_count = dynamic_frame_alignment ? 2 : 1;
   2750 
   2751   if (instr->has_constant_parameter_count()) {
   2752     int parameter_count = ToInteger32(instr->constant_parameter_count());
   2753     if (dynamic_frame_alignment && FLAG_debug_code) {
   2754       __ cmp(Operand(esp,
   2755                      (parameter_count + extra_value_count) * kPointerSize),
   2756              Immediate(kAlignmentZapValue));
   2757       __ Assert(equal, kExpectedAlignmentMarker);
   2758     }
   2759     __ Ret((parameter_count + extra_value_count) * kPointerSize, ecx);
   2760   } else {
   2761     Register reg = ToRegister(instr->parameter_count());
   2762     // The argument count parameter is a smi
   2763     __ SmiUntag(reg);
   2764     Register return_addr_reg = reg.is(ecx) ? ebx : ecx;
   2765     if (dynamic_frame_alignment && FLAG_debug_code) {
   2766       ASSERT(extra_value_count == 2);
   2767       __ cmp(Operand(esp, reg, times_pointer_size,
   2768                      extra_value_count * kPointerSize),
   2769              Immediate(kAlignmentZapValue));
   2770       __ Assert(equal, kExpectedAlignmentMarker);
   2771     }
   2772 
   2773     // emit code to restore stack based on instr->parameter_count()
   2774     __ pop(return_addr_reg);  // save return address
   2775     if (dynamic_frame_alignment) {
   2776       __ inc(reg);  // 1 more for alignment
   2777     }
   2778     __ shl(reg, kPointerSizeLog2);
   2779     __ add(esp, reg);
   2780     __ jmp(return_addr_reg);
   2781   }
   2782 }
   2783 
   2784 
   2785 void LCodeGen::DoReturn(LReturn* instr) {
   2786   if (FLAG_trace && info()->IsOptimizing()) {
   2787     // Preserve the return value on the stack and rely on the runtime call
   2788     // to return the value in the same register.  We're leaving the code
   2789     // managed by the register allocator and tearing down the frame, it's
   2790     // safe to write to the context register.
   2791     __ push(eax);
   2792     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   2793     __ CallRuntime(Runtime::kTraceExit, 1);
   2794   }
   2795   if (info()->saves_caller_doubles()) RestoreCallerDoubles();
   2796   if (dynamic_frame_alignment_) {
   2797     // Fetch the state of the dynamic frame alignment.
   2798     __ mov(edx, Operand(ebp,
   2799       JavaScriptFrameConstants::kDynamicAlignmentStateOffset));
   2800   }
   2801   int no_frame_start = -1;
   2802   if (NeedsEagerFrame()) {
   2803     __ mov(esp, ebp);
   2804     __ pop(ebp);
   2805     no_frame_start = masm_->pc_offset();
   2806   }
   2807   if (dynamic_frame_alignment_) {
   2808     Label no_padding;
   2809     __ cmp(edx, Immediate(kNoAlignmentPadding));
   2810     __ j(equal, &no_padding, Label::kNear);
   2811 
   2812     EmitReturn(instr, true);
   2813     __ bind(&no_padding);
   2814   }
   2815 
   2816   EmitReturn(instr, false);
   2817   if (no_frame_start != -1) {
   2818     info()->AddNoFrameRange(no_frame_start, masm_->pc_offset());
   2819   }
   2820 }
   2821 
   2822 
   2823 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
   2824   Register result = ToRegister(instr->result());
   2825   __ mov(result, Operand::ForCell(instr->hydrogen()->cell().handle()));
   2826   if (instr->hydrogen()->RequiresHoleCheck()) {
   2827     __ cmp(result, factory()->the_hole_value());
   2828     DeoptimizeIf(equal, instr->environment());
   2829   }
   2830 }
   2831 
   2832 
   2833 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
   2834   ASSERT(ToRegister(instr->context()).is(esi));
   2835   ASSERT(ToRegister(instr->global_object()).is(edx));
   2836   ASSERT(ToRegister(instr->result()).is(eax));
   2837 
   2838   __ mov(ecx, instr->name());
   2839   ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
   2840   Handle<Code> ic = LoadIC::initialize_stub(isolate(), mode);
   2841   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2842 }
   2843 
   2844 
   2845 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
   2846   Register value = ToRegister(instr->value());
   2847   Handle<PropertyCell> cell_handle = instr->hydrogen()->cell().handle();
   2848 
   2849   // If the cell we are storing to contains the hole it could have
   2850   // been deleted from the property dictionary. In that case, we need
   2851   // to update the property details in the property dictionary to mark
   2852   // it as no longer deleted. We deoptimize in that case.
   2853   if (instr->hydrogen()->RequiresHoleCheck()) {
   2854     __ cmp(Operand::ForCell(cell_handle), factory()->the_hole_value());
   2855     DeoptimizeIf(equal, instr->environment());
   2856   }
   2857 
   2858   // Store the value.
   2859   __ mov(Operand::ForCell(cell_handle), value);
   2860   // Cells are always rescanned, so no write barrier here.
   2861 }
   2862 
   2863 
   2864 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
   2865   Register context = ToRegister(instr->context());
   2866   Register result = ToRegister(instr->result());
   2867   __ mov(result, ContextOperand(context, instr->slot_index()));
   2868 
   2869   if (instr->hydrogen()->RequiresHoleCheck()) {
   2870     __ cmp(result, factory()->the_hole_value());
   2871     if (instr->hydrogen()->DeoptimizesOnHole()) {
   2872       DeoptimizeIf(equal, instr->environment());
   2873     } else {
   2874       Label is_not_hole;
   2875       __ j(not_equal, &is_not_hole, Label::kNear);
   2876       __ mov(result, factory()->undefined_value());
   2877       __ bind(&is_not_hole);
   2878     }
   2879   }
   2880 }
   2881 
   2882 
   2883 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
   2884   Register context = ToRegister(instr->context());
   2885   Register value = ToRegister(instr->value());
   2886 
   2887   Label skip_assignment;
   2888 
   2889   Operand target = ContextOperand(context, instr->slot_index());
   2890   if (instr->hydrogen()->RequiresHoleCheck()) {
   2891     __ cmp(target, factory()->the_hole_value());
   2892     if (instr->hydrogen()->DeoptimizesOnHole()) {
   2893       DeoptimizeIf(equal, instr->environment());
   2894     } else {
   2895       __ j(not_equal, &skip_assignment, Label::kNear);
   2896     }
   2897   }
   2898 
   2899   __ mov(target, value);
   2900   if (instr->hydrogen()->NeedsWriteBarrier()) {
   2901     SmiCheck check_needed =
   2902         instr->hydrogen()->value()->type().IsHeapObject()
   2903             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   2904     Register temp = ToRegister(instr->temp());
   2905     int offset = Context::SlotOffset(instr->slot_index());
   2906     __ RecordWriteContextSlot(context,
   2907                               offset,
   2908                               value,
   2909                               temp,
   2910                               kSaveFPRegs,
   2911                               EMIT_REMEMBERED_SET,
   2912                               check_needed);
   2913   }
   2914 
   2915   __ bind(&skip_assignment);
   2916 }
   2917 
   2918 
   2919 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
   2920   HObjectAccess access = instr->hydrogen()->access();
   2921   int offset = access.offset();
   2922 
   2923   if (access.IsExternalMemory()) {
   2924     Register result = ToRegister(instr->result());
   2925     MemOperand operand = instr->object()->IsConstantOperand()
   2926         ? MemOperand::StaticVariable(ToExternalReference(
   2927                 LConstantOperand::cast(instr->object())))
   2928         : MemOperand(ToRegister(instr->object()), offset);
   2929     __ Load(result, operand, access.representation());
   2930     return;
   2931   }
   2932 
   2933   Register object = ToRegister(instr->object());
   2934   if (instr->hydrogen()->representation().IsDouble()) {
   2935     XMMRegister result = ToDoubleRegister(instr->result());
   2936     __ movsd(result, FieldOperand(object, offset));
   2937     return;
   2938   }
   2939 
   2940   Register result = ToRegister(instr->result());
   2941   if (!access.IsInobject()) {
   2942     __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
   2943     object = result;
   2944   }
   2945   __ Load(result, FieldOperand(object, offset), access.representation());
   2946 }
   2947 
   2948 
   2949 void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
   2950   ASSERT(!operand->IsDoubleRegister());
   2951   if (operand->IsConstantOperand()) {
   2952     Handle<Object> object = ToHandle(LConstantOperand::cast(operand));
   2953     AllowDeferredHandleDereference smi_check;
   2954     if (object->IsSmi()) {
   2955       __ Push(Handle<Smi>::cast(object));
   2956     } else {
   2957       __ PushHeapObject(Handle<HeapObject>::cast(object));
   2958     }
   2959   } else if (operand->IsRegister()) {
   2960     __ push(ToRegister(operand));
   2961   } else {
   2962     __ push(ToOperand(operand));
   2963   }
   2964 }
   2965 
   2966 
   2967 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
   2968   ASSERT(ToRegister(instr->context()).is(esi));
   2969   ASSERT(ToRegister(instr->object()).is(edx));
   2970   ASSERT(ToRegister(instr->result()).is(eax));
   2971 
   2972   __ mov(ecx, instr->name());
   2973   Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL);
   2974   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2975 }
   2976 
   2977 
   2978 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
   2979   Register function = ToRegister(instr->function());
   2980   Register temp = ToRegister(instr->temp());
   2981   Register result = ToRegister(instr->result());
   2982 
   2983   // Check that the function really is a function.
   2984   __ CmpObjectType(function, JS_FUNCTION_TYPE, result);
   2985   DeoptimizeIf(not_equal, instr->environment());
   2986 
   2987   // Check whether the function has an instance prototype.
   2988   Label non_instance;
   2989   __ test_b(FieldOperand(result, Map::kBitFieldOffset),
   2990             1 << Map::kHasNonInstancePrototype);
   2991   __ j(not_zero, &non_instance, Label::kNear);
   2992 
   2993   // Get the prototype or initial map from the function.
   2994   __ mov(result,
   2995          FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   2996 
   2997   // Check that the function has a prototype or an initial map.
   2998   __ cmp(Operand(result), Immediate(factory()->the_hole_value()));
   2999   DeoptimizeIf(equal, instr->environment());
   3000 
   3001   // If the function does not have an initial map, we're done.
   3002   Label done;
   3003   __ CmpObjectType(result, MAP_TYPE, temp);
   3004   __ j(not_equal, &done, Label::kNear);
   3005 
   3006   // Get the prototype from the initial map.
   3007   __ mov(result, FieldOperand(result, Map::kPrototypeOffset));
   3008   __ jmp(&done, Label::kNear);
   3009 
   3010   // Non-instance prototype: Fetch prototype from constructor field
   3011   // in the function's map.
   3012   __ bind(&non_instance);
   3013   __ mov(result, FieldOperand(result, Map::kConstructorOffset));
   3014 
   3015   // All done.
   3016   __ bind(&done);
   3017 }
   3018 
   3019 
   3020 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
   3021   Register result = ToRegister(instr->result());
   3022   __ LoadRoot(result, instr->index());
   3023 }
   3024 
   3025 
   3026 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
   3027   Register arguments = ToRegister(instr->arguments());
   3028   Register result = ToRegister(instr->result());
   3029   if (instr->length()->IsConstantOperand() &&
   3030       instr->index()->IsConstantOperand()) {
   3031     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
   3032     int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
   3033     int index = (const_length - const_index) + 1;
   3034     __ mov(result, Operand(arguments, index * kPointerSize));
   3035   } else {
   3036     Register length = ToRegister(instr->length());
   3037     Operand index = ToOperand(instr->index());
   3038     // There are two words between the frame pointer and the last argument.
   3039     // Subtracting from length accounts for one of them add one more.
   3040     __ sub(length, index);
   3041     __ mov(result, Operand(arguments, length, times_4, kPointerSize));
   3042   }
   3043 }
   3044 
   3045 
   3046 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
   3047   ElementsKind elements_kind = instr->elements_kind();
   3048   LOperand* key = instr->key();
   3049   if (!key->IsConstantOperand() &&
   3050       ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
   3051                                   elements_kind)) {
   3052     __ SmiUntag(ToRegister(key));
   3053   }
   3054   Operand operand(BuildFastArrayOperand(
   3055       instr->elements(),
   3056       key,
   3057       instr->hydrogen()->key()->representation(),
   3058       elements_kind,
   3059       instr->base_offset()));
   3060   if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
   3061       elements_kind == FLOAT32_ELEMENTS) {
   3062     XMMRegister result(ToDoubleRegister(instr->result()));
   3063     __ movss(result, operand);
   3064     __ cvtss2sd(result, result);
   3065   } else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
   3066              elements_kind == FLOAT64_ELEMENTS) {
   3067     __ movsd(ToDoubleRegister(instr->result()), operand);
   3068   } else {
   3069     Register result(ToRegister(instr->result()));
   3070     switch (elements_kind) {
   3071       case EXTERNAL_INT8_ELEMENTS:
   3072       case INT8_ELEMENTS:
   3073         __ movsx_b(result, operand);
   3074         break;
   3075       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
   3076       case EXTERNAL_UINT8_ELEMENTS:
   3077       case UINT8_ELEMENTS:
   3078       case UINT8_CLAMPED_ELEMENTS:
   3079         __ movzx_b(result, operand);
   3080         break;
   3081       case EXTERNAL_INT16_ELEMENTS:
   3082       case INT16_ELEMENTS:
   3083         __ movsx_w(result, operand);
   3084         break;
   3085       case EXTERNAL_UINT16_ELEMENTS:
   3086       case UINT16_ELEMENTS:
   3087         __ movzx_w(result, operand);
   3088         break;
   3089       case EXTERNAL_INT32_ELEMENTS:
   3090       case INT32_ELEMENTS:
   3091         __ mov(result, operand);
   3092         break;
   3093       case EXTERNAL_UINT32_ELEMENTS:
   3094       case UINT32_ELEMENTS:
   3095         __ mov(result, operand);
   3096         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
   3097           __ test(result, Operand(result));
   3098           DeoptimizeIf(negative, instr->environment());
   3099         }
   3100         break;
   3101       case EXTERNAL_FLOAT32_ELEMENTS:
   3102       case EXTERNAL_FLOAT64_ELEMENTS:
   3103       case FLOAT32_ELEMENTS:
   3104       case FLOAT64_ELEMENTS:
   3105       case FAST_SMI_ELEMENTS:
   3106       case FAST_ELEMENTS:
   3107       case FAST_DOUBLE_ELEMENTS:
   3108       case FAST_HOLEY_SMI_ELEMENTS:
   3109       case FAST_HOLEY_ELEMENTS:
   3110       case FAST_HOLEY_DOUBLE_ELEMENTS:
   3111       case DICTIONARY_ELEMENTS:
   3112       case SLOPPY_ARGUMENTS_ELEMENTS:
   3113         UNREACHABLE();
   3114         break;
   3115     }
   3116   }
   3117 }
   3118 
   3119 
   3120 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
   3121   if (instr->hydrogen()->RequiresHoleCheck()) {
   3122     Operand hole_check_operand = BuildFastArrayOperand(
   3123         instr->elements(), instr->key(),
   3124         instr->hydrogen()->key()->representation(),
   3125         FAST_DOUBLE_ELEMENTS,
   3126         instr->base_offset() + sizeof(kHoleNanLower32));
   3127     __ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
   3128     DeoptimizeIf(equal, instr->environment());
   3129   }
   3130 
   3131   Operand double_load_operand = BuildFastArrayOperand(
   3132       instr->elements(),
   3133       instr->key(),
   3134       instr->hydrogen()->key()->representation(),
   3135       FAST_DOUBLE_ELEMENTS,
   3136       instr->base_offset());
   3137   XMMRegister result = ToDoubleRegister(instr->result());
   3138   __ movsd(result, double_load_operand);
   3139 }
   3140 
   3141 
   3142 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
   3143   Register result = ToRegister(instr->result());
   3144 
   3145   // Load the result.
   3146   __ mov(result,
   3147          BuildFastArrayOperand(instr->elements(),
   3148                                instr->key(),
   3149                                instr->hydrogen()->key()->representation(),
   3150                                FAST_ELEMENTS,
   3151                                instr->base_offset()));
   3152 
   3153   // Check for the hole value.
   3154   if (instr->hydrogen()->RequiresHoleCheck()) {
   3155     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
   3156       __ test(result, Immediate(kSmiTagMask));
   3157       DeoptimizeIf(not_equal, instr->environment());
   3158     } else {
   3159       __ cmp(result, factory()->the_hole_value());
   3160       DeoptimizeIf(equal, instr->environment());
   3161     }
   3162   }
   3163 }
   3164 
   3165 
   3166 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
   3167   if (instr->is_typed_elements()) {
   3168     DoLoadKeyedExternalArray(instr);
   3169   } else if (instr->hydrogen()->representation().IsDouble()) {
   3170     DoLoadKeyedFixedDoubleArray(instr);
   3171   } else {
   3172     DoLoadKeyedFixedArray(instr);
   3173   }
   3174 }
   3175 
   3176 
   3177 Operand LCodeGen::BuildFastArrayOperand(
   3178     LOperand* elements_pointer,
   3179     LOperand* key,
   3180     Representation key_representation,
   3181     ElementsKind elements_kind,
   3182     uint32_t base_offset) {
   3183   Register elements_pointer_reg = ToRegister(elements_pointer);
   3184   int element_shift_size = ElementsKindToShiftSize(elements_kind);
   3185   int shift_size = element_shift_size;
   3186   if (key->IsConstantOperand()) {
   3187     int constant_value = ToInteger32(LConstantOperand::cast(key));
   3188     if (constant_value & 0xF0000000) {
   3189       Abort(kArrayIndexConstantValueTooBig);
   3190     }
   3191     return Operand(elements_pointer_reg,
   3192                    ((constant_value) << shift_size)
   3193                        + base_offset);
   3194   } else {
   3195     // Take the tag bit into account while computing the shift size.
   3196     if (key_representation.IsSmi() && (shift_size >= 1)) {
   3197       shift_size -= kSmiTagSize;
   3198     }
   3199     ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
   3200     return Operand(elements_pointer_reg,
   3201                    ToRegister(key),
   3202                    scale_factor,
   3203                    base_offset);
   3204   }
   3205 }
   3206 
   3207 
   3208 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
   3209   ASSERT(ToRegister(instr->context()).is(esi));
   3210   ASSERT(ToRegister(instr->object()).is(edx));
   3211   ASSERT(ToRegister(instr->key()).is(ecx));
   3212 
   3213   Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
   3214   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3215 }
   3216 
   3217 
   3218 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
   3219   Register result = ToRegister(instr->result());
   3220 
   3221   if (instr->hydrogen()->from_inlined()) {
   3222     __ lea(result, Operand(esp, -2 * kPointerSize));
   3223   } else {
   3224     // Check for arguments adapter frame.
   3225     Label done, adapted;
   3226     __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   3227     __ mov(result, Operand(result, StandardFrameConstants::kContextOffset));
   3228     __ cmp(Operand(result),
   3229            Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   3230     __ j(equal, &adapted, Label::kNear);
   3231 
   3232     // No arguments adaptor frame.
   3233     __ mov(result, Operand(ebp));
   3234     __ jmp(&done, Label::kNear);
   3235 
   3236     // Arguments adaptor frame present.
   3237     __ bind(&adapted);
   3238     __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   3239 
   3240     // Result is the frame pointer for the frame if not adapted and for the real
   3241     // frame below the adaptor frame if adapted.
   3242     __ bind(&done);
   3243   }
   3244 }
   3245 
   3246 
   3247 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
   3248   Operand elem = ToOperand(instr->elements());
   3249   Register result = ToRegister(instr->result());
   3250 
   3251   Label done;
   3252 
   3253   // If no arguments adaptor frame the number of arguments is fixed.
   3254   __ cmp(ebp, elem);
   3255   __ mov(result, Immediate(scope()->num_parameters()));
   3256   __ j(equal, &done, Label::kNear);
   3257 
   3258   // Arguments adaptor frame present. Get argument length from there.
   3259   __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   3260   __ mov(result, Operand(result,
   3261                          ArgumentsAdaptorFrameConstants::kLengthOffset));
   3262   __ SmiUntag(result);
   3263 
   3264   // Argument length is in result register.
   3265   __ bind(&done);
   3266 }
   3267 
   3268 
   3269 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
   3270   Register receiver = ToRegister(instr->receiver());
   3271   Register function = ToRegister(instr->function());
   3272 
   3273   // If the receiver is null or undefined, we have to pass the global
   3274   // object as a receiver to normal functions. Values have to be
   3275   // passed unchanged to builtins and strict-mode functions.
   3276   Label receiver_ok, global_object;
   3277   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
   3278   Register scratch = ToRegister(instr->temp());
   3279 
   3280   if (!instr->hydrogen()->known_function()) {
   3281     // Do not transform the receiver to object for strict mode
   3282     // functions.
   3283     __ mov(scratch,
   3284            FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
   3285     __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset),
   3286               1 << SharedFunctionInfo::kStrictModeBitWithinByte);
   3287     __ j(not_equal, &receiver_ok, dist);
   3288 
   3289     // Do not transform the receiver to object for builtins.
   3290     __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset),
   3291               1 << SharedFunctionInfo::kNativeBitWithinByte);
   3292     __ j(not_equal, &receiver_ok, dist);
   3293   }
   3294 
   3295   // Normal function. Replace undefined or null with global receiver.
   3296   __ cmp(receiver, factory()->null_value());
   3297   __ j(equal, &global_object, Label::kNear);
   3298   __ cmp(receiver, factory()->undefined_value());
   3299   __ j(equal, &global_object, Label::kNear);
   3300 
   3301   // The receiver should be a JS object.
   3302   __ test(receiver, Immediate(kSmiTagMask));
   3303   DeoptimizeIf(equal, instr->environment());
   3304   __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, scratch);
   3305   DeoptimizeIf(below, instr->environment());
   3306 
   3307   __ jmp(&receiver_ok, Label::kNear);
   3308   __ bind(&global_object);
   3309   __ mov(receiver, FieldOperand(function, JSFunction::kContextOffset));
   3310   const int global_offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
   3311   __ mov(receiver, Operand(receiver, global_offset));
   3312   const int receiver_offset = GlobalObject::kGlobalReceiverOffset;
   3313   __ mov(receiver, FieldOperand(receiver, receiver_offset));
   3314   __ bind(&receiver_ok);
   3315 }
   3316 
   3317 
   3318 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
   3319   Register receiver = ToRegister(instr->receiver());
   3320   Register function = ToRegister(instr->function());
   3321   Register length = ToRegister(instr->length());
   3322   Register elements = ToRegister(instr->elements());
   3323   ASSERT(receiver.is(eax));  // Used for parameter count.
   3324   ASSERT(function.is(edi));  // Required by InvokeFunction.
   3325   ASSERT(ToRegister(instr->result()).is(eax));
   3326 
   3327   // Copy the arguments to this function possibly from the
   3328   // adaptor frame below it.
   3329   const uint32_t kArgumentsLimit = 1 * KB;
   3330   __ cmp(length, kArgumentsLimit);
   3331   DeoptimizeIf(above, instr->environment());
   3332 
   3333   __ push(receiver);
   3334   __ mov(receiver, length);
   3335 
   3336   // Loop through the arguments pushing them onto the execution
   3337   // stack.
   3338   Label invoke, loop;
   3339   // length is a small non-negative integer, due to the test above.
   3340   __ test(length, Operand(length));
   3341   __ j(zero, &invoke, Label::kNear);
   3342   __ bind(&loop);
   3343   __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
   3344   __ dec(length);
   3345   __ j(not_zero, &loop);
   3346 
   3347   // Invoke the function.
   3348   __ bind(&invoke);
   3349   ASSERT(instr->HasPointerMap());
   3350   LPointerMap* pointers = instr->pointer_map();
   3351   SafepointGenerator safepoint_generator(
   3352       this, pointers, Safepoint::kLazyDeopt);
   3353   ParameterCount actual(eax);
   3354   __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
   3355 }
   3356 
   3357 
   3358 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
   3359   __ int3();
   3360 }
   3361 
   3362 
   3363 void LCodeGen::DoPushArgument(LPushArgument* instr) {
   3364   LOperand* argument = instr->value();
   3365   EmitPushTaggedOperand(argument);
   3366 }
   3367 
   3368 
   3369 void LCodeGen::DoDrop(LDrop* instr) {
   3370   __ Drop(instr->count());
   3371 }
   3372 
   3373 
   3374 void LCodeGen::DoThisFunction(LThisFunction* instr) {
   3375   Register result = ToRegister(instr->result());
   3376   __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   3377 }
   3378 
   3379 
   3380 void LCodeGen::DoContext(LContext* instr) {
   3381   Register result = ToRegister(instr->result());
   3382   if (info()->IsOptimizing()) {
   3383     __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
   3384   } else {
   3385     // If there is no frame, the context must be in esi.
   3386     ASSERT(result.is(esi));
   3387   }
   3388 }
   3389 
   3390 
   3391 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
   3392   ASSERT(ToRegister(instr->context()).is(esi));
   3393   __ push(esi);  // The context is the first argument.
   3394   __ push(Immediate(instr->hydrogen()->pairs()));
   3395   __ push(Immediate(Smi::FromInt(instr->hydrogen()->flags())));
   3396   CallRuntime(Runtime::kHiddenDeclareGlobals, 3, instr);
   3397 }
   3398 
   3399 
   3400 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
   3401                                  int formal_parameter_count,
   3402                                  int arity,
   3403                                  LInstruction* instr,
   3404                                  EDIState edi_state) {
   3405   bool dont_adapt_arguments =
   3406       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   3407   bool can_invoke_directly =
   3408       dont_adapt_arguments || formal_parameter_count == arity;
   3409 
   3410   if (can_invoke_directly) {
   3411     if (edi_state == EDI_UNINITIALIZED) {
   3412       __ LoadHeapObject(edi, function);
   3413     }
   3414 
   3415     // Change context.
   3416     __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
   3417 
   3418     // Set eax to arguments count if adaption is not needed. Assumes that eax
   3419     // is available to write to at this point.
   3420     if (dont_adapt_arguments) {
   3421       __ mov(eax, arity);
   3422     }
   3423 
   3424     // Invoke function directly.
   3425     if (function.is_identical_to(info()->closure())) {
   3426       __ CallSelf();
   3427     } else {
   3428       __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
   3429     }
   3430     RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   3431   } else {
   3432     // We need to adapt arguments.
   3433     LPointerMap* pointers = instr->pointer_map();
   3434     SafepointGenerator generator(
   3435         this, pointers, Safepoint::kLazyDeopt);
   3436     ParameterCount count(arity);
   3437     ParameterCount expected(formal_parameter_count);
   3438     __ InvokeFunction(function, expected, count, CALL_FUNCTION, generator);
   3439   }
   3440 }
   3441 
   3442 
   3443 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
   3444   ASSERT(ToRegister(instr->result()).is(eax));
   3445 
   3446   LPointerMap* pointers = instr->pointer_map();
   3447   SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3448 
   3449   if (instr->target()->IsConstantOperand()) {
   3450     LConstantOperand* target = LConstantOperand::cast(instr->target());
   3451     Handle<Code> code = Handle<Code>::cast(ToHandle(target));
   3452     generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
   3453     __ call(code, RelocInfo::CODE_TARGET);
   3454   } else {
   3455     ASSERT(instr->target()->IsRegister());
   3456     Register target = ToRegister(instr->target());
   3457     generator.BeforeCall(__ CallSize(Operand(target)));
   3458     __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
   3459     __ call(target);
   3460   }
   3461   generator.AfterCall();
   3462 }
   3463 
   3464 
   3465 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
   3466   ASSERT(ToRegister(instr->function()).is(edi));
   3467   ASSERT(ToRegister(instr->result()).is(eax));
   3468 
   3469   if (instr->hydrogen()->pass_argument_count()) {
   3470     __ mov(eax, instr->arity());
   3471   }
   3472 
   3473   // Change context.
   3474   __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
   3475 
   3476   bool is_self_call = false;
   3477   if (instr->hydrogen()->function()->IsConstant()) {
   3478     HConstant* fun_const = HConstant::cast(instr->hydrogen()->function());
   3479     Handle<JSFunction> jsfun =
   3480       Handle<JSFunction>::cast(fun_const->handle(isolate()));
   3481     is_self_call = jsfun.is_identical_to(info()->closure());
   3482   }
   3483 
   3484   if (is_self_call) {
   3485     __ CallSelf();
   3486   } else {
   3487     __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
   3488   }
   3489 
   3490   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   3491 }
   3492 
   3493 
   3494 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
   3495   Register input_reg = ToRegister(instr->value());
   3496   __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   3497          factory()->heap_number_map());
   3498   DeoptimizeIf(not_equal, instr->environment());
   3499 
   3500   Label slow, allocated, done;
   3501   Register tmp = input_reg.is(eax) ? ecx : eax;
   3502   Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx;
   3503 
   3504   // Preserve the value of all registers.
   3505   PushSafepointRegistersScope scope(this);
   3506 
   3507   __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
   3508   // Check the sign of the argument. If the argument is positive, just
   3509   // return it. We do not need to patch the stack since |input| and
   3510   // |result| are the same register and |input| will be restored
   3511   // unchanged by popping safepoint registers.
   3512   __ test(tmp, Immediate(HeapNumber::kSignMask));
   3513   __ j(zero, &done, Label::kNear);
   3514 
   3515   __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
   3516   __ jmp(&allocated, Label::kNear);
   3517 
   3518   // Slow case: Call the runtime system to do the number allocation.
   3519   __ bind(&slow);
   3520   CallRuntimeFromDeferred(Runtime::kHiddenAllocateHeapNumber, 0,
   3521                           instr, instr->context());
   3522   // Set the pointer to the new heap number in tmp.
   3523   if (!tmp.is(eax)) __ mov(tmp, eax);
   3524   // Restore input_reg after call to runtime.
   3525   __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
   3526 
   3527   __ bind(&allocated);
   3528   __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
   3529   __ and_(tmp2, ~HeapNumber::kSignMask);
   3530   __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
   3531   __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
   3532   __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
   3533   __ StoreToSafepointRegisterSlot(input_reg, tmp);
   3534 
   3535   __ bind(&done);
   3536 }
   3537 
   3538 
   3539 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
   3540   Register input_reg = ToRegister(instr->value());
   3541   __ test(input_reg, Operand(input_reg));
   3542   Label is_positive;
   3543   __ j(not_sign, &is_positive, Label::kNear);
   3544   __ neg(input_reg);  // Sets flags.
   3545   DeoptimizeIf(negative, instr->environment());
   3546   __ bind(&is_positive);
   3547 }
   3548 
   3549 
   3550 void LCodeGen::DoMathAbs(LMathAbs* instr) {
   3551   // Class for deferred case.
   3552   class DeferredMathAbsTaggedHeapNumber V8_FINAL : public LDeferredCode {
   3553    public:
   3554     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
   3555                                     LMathAbs* instr)
   3556         : LDeferredCode(codegen), instr_(instr) { }
   3557     virtual void Generate() V8_OVERRIDE {
   3558       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
   3559     }
   3560     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   3561    private:
   3562     LMathAbs* instr_;
   3563   };
   3564 
   3565   ASSERT(instr->value()->Equals(instr->result()));
   3566   Representation r = instr->hydrogen()->value()->representation();
   3567 
   3568   if (r.IsDouble()) {
   3569     XMMRegister scratch = double_scratch0();
   3570     XMMRegister input_reg = ToDoubleRegister(instr->value());
   3571     __ xorps(scratch, scratch);
   3572     __ subsd(scratch, input_reg);
   3573     __ andps(input_reg, scratch);
   3574   } else if (r.IsSmiOrInteger32()) {
   3575     EmitIntegerMathAbs(instr);
   3576   } else {  // Tagged case.
   3577     DeferredMathAbsTaggedHeapNumber* deferred =
   3578         new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
   3579     Register input_reg = ToRegister(instr->value());
   3580     // Smi check.
   3581     __ JumpIfNotSmi(input_reg, deferred->entry());
   3582     EmitIntegerMathAbs(instr);
   3583     __ bind(deferred->exit());
   3584   }
   3585 }
   3586 
   3587 
   3588 void LCodeGen::DoMathFloor(LMathFloor* instr) {
   3589   XMMRegister xmm_scratch = double_scratch0();
   3590   Register output_reg = ToRegister(instr->result());
   3591   XMMRegister input_reg = ToDoubleRegister(instr->value());
   3592 
   3593   if (CpuFeatures::IsSupported(SSE4_1)) {
   3594     CpuFeatureScope scope(masm(), SSE4_1);
   3595     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3596       // Deoptimize on negative zero.
   3597       Label non_zero;
   3598       __ xorps(xmm_scratch, xmm_scratch);  // Zero the register.
   3599       __ ucomisd(input_reg, xmm_scratch);
   3600       __ j(not_equal, &non_zero, Label::kNear);
   3601       __ movmskpd(output_reg, input_reg);
   3602       __ test(output_reg, Immediate(1));
   3603       DeoptimizeIf(not_zero, instr->environment());
   3604       __ bind(&non_zero);
   3605     }
   3606     __ roundsd(xmm_scratch, input_reg, Assembler::kRoundDown);
   3607     __ cvttsd2si(output_reg, Operand(xmm_scratch));
   3608     // Overflow is signalled with minint.
   3609     __ cmp(output_reg, 0x1);
   3610     DeoptimizeIf(overflow, instr->environment());
   3611   } else {
   3612     Label negative_sign, done;
   3613     // Deoptimize on unordered.
   3614     __ xorps(xmm_scratch, xmm_scratch);  // Zero the register.
   3615     __ ucomisd(input_reg, xmm_scratch);
   3616     DeoptimizeIf(parity_even, instr->environment());
   3617     __ j(below, &negative_sign, Label::kNear);
   3618 
   3619     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3620       // Check for negative zero.
   3621       Label positive_sign;
   3622       __ j(above, &positive_sign, Label::kNear);
   3623       __ movmskpd(output_reg, input_reg);
   3624       __ test(output_reg, Immediate(1));
   3625       DeoptimizeIf(not_zero, instr->environment());
   3626       __ Move(output_reg, Immediate(0));
   3627       __ jmp(&done, Label::kNear);
   3628       __ bind(&positive_sign);
   3629     }
   3630 
   3631     // Use truncating instruction (OK because input is positive).
   3632     __ cvttsd2si(output_reg, Operand(input_reg));
   3633     // Overflow is signalled with minint.
   3634     __ cmp(output_reg, 0x1);
   3635     DeoptimizeIf(overflow, instr->environment());
   3636     __ jmp(&done, Label::kNear);
   3637 
   3638     // Non-zero negative reaches here.
   3639     __ bind(&negative_sign);
   3640     // Truncate, then compare and compensate.
   3641     __ cvttsd2si(output_reg, Operand(input_reg));
   3642     __ Cvtsi2sd(xmm_scratch, output_reg);
   3643     __ ucomisd(input_reg, xmm_scratch);
   3644     __ j(equal, &done, Label::kNear);
   3645     __ sub(output_reg, Immediate(1));
   3646     DeoptimizeIf(overflow, instr->environment());
   3647 
   3648     __ bind(&done);
   3649   }
   3650 }
   3651 
   3652 
   3653 void LCodeGen::DoMathRound(LMathRound* instr) {
   3654   Register output_reg = ToRegister(instr->result());
   3655   XMMRegister input_reg = ToDoubleRegister(instr->value());
   3656   XMMRegister xmm_scratch = double_scratch0();
   3657   XMMRegister input_temp = ToDoubleRegister(instr->temp());
   3658   ExternalReference one_half = ExternalReference::address_of_one_half();
   3659   ExternalReference minus_one_half =
   3660       ExternalReference::address_of_minus_one_half();
   3661 
   3662   Label done, round_to_zero, below_one_half, do_not_compensate;
   3663   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
   3664 
   3665   __ movsd(xmm_scratch, Operand::StaticVariable(one_half));
   3666   __ ucomisd(xmm_scratch, input_reg);
   3667   __ j(above, &below_one_half, Label::kNear);
   3668 
   3669   // CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x).
   3670   __ addsd(xmm_scratch, input_reg);
   3671   __ cvttsd2si(output_reg, Operand(xmm_scratch));
   3672   // Overflow is signalled with minint.
   3673   __ cmp(output_reg, 0x1);
   3674   __ RecordComment("D2I conversion overflow");
   3675   DeoptimizeIf(overflow, instr->environment());
   3676   __ jmp(&done, dist);
   3677 
   3678   __ bind(&below_one_half);
   3679   __ movsd(xmm_scratch, Operand::StaticVariable(minus_one_half));
   3680   __ ucomisd(xmm_scratch, input_reg);
   3681   __ j(below_equal, &round_to_zero, Label::kNear);
   3682 
   3683   // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then
   3684   // compare and compensate.
   3685   __ movaps(input_temp, input_reg);  // Do not alter input_reg.
   3686   __ subsd(input_temp, xmm_scratch);
   3687   __ cvttsd2si(output_reg, Operand(input_temp));
   3688   // Catch minint due to overflow, and to prevent overflow when compensating.
   3689   __ cmp(output_reg, 0x1);
   3690   __ RecordComment("D2I conversion overflow");
   3691   DeoptimizeIf(overflow, instr->environment());
   3692 
   3693   __ Cvtsi2sd(xmm_scratch, output_reg);
   3694   __ ucomisd(xmm_scratch, input_temp);
   3695   __ j(equal, &done, dist);
   3696   __ sub(output_reg, Immediate(1));
   3697   // No overflow because we already ruled out minint.
   3698   __ jmp(&done, dist);
   3699 
   3700   __ bind(&round_to_zero);
   3701   // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
   3702   // we can ignore the difference between a result of -0 and +0.
   3703   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3704     // If the sign is positive, we return +0.
   3705     __ movmskpd(output_reg, input_reg);
   3706     __ test(output_reg, Immediate(1));
   3707     __ RecordComment("Minus zero");
   3708     DeoptimizeIf(not_zero, instr->environment());
   3709   }
   3710   __ Move(output_reg, Immediate(0));
   3711   __ bind(&done);
   3712 }
   3713 
   3714 
   3715 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
   3716   Operand input = ToOperand(instr->value());
   3717   XMMRegister output = ToDoubleRegister(instr->result());
   3718   __ sqrtsd(output, input);
   3719 }
   3720 
   3721 
   3722 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
   3723   XMMRegister xmm_scratch = double_scratch0();
   3724   XMMRegister input_reg = ToDoubleRegister(instr->value());
   3725   Register scratch = ToRegister(instr->temp());
   3726   ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
   3727 
   3728   // Note that according to ECMA-262 15.8.2.13:
   3729   // Math.pow(-Infinity, 0.5) == Infinity
   3730   // Math.sqrt(-Infinity) == NaN
   3731   Label done, sqrt;
   3732   // Check base for -Infinity.  According to IEEE-754, single-precision
   3733   // -Infinity has the highest 9 bits set and the lowest 23 bits cleared.
   3734   __ mov(scratch, 0xFF800000);
   3735   __ movd(xmm_scratch, scratch);
   3736   __ cvtss2sd(xmm_scratch, xmm_scratch);
   3737   __ ucomisd(input_reg, xmm_scratch);
   3738   // Comparing -Infinity with NaN results in "unordered", which sets the
   3739   // zero flag as if both were equal.  However, it also sets the carry flag.
   3740   __ j(not_equal, &sqrt, Label::kNear);
   3741   __ j(carry, &sqrt, Label::kNear);
   3742   // If input is -Infinity, return Infinity.
   3743   __ xorps(input_reg, input_reg);
   3744   __ subsd(input_reg, xmm_scratch);
   3745   __ jmp(&done, Label::kNear);
   3746 
   3747   // Square root.
   3748   __ bind(&sqrt);
   3749   __ xorps(xmm_scratch, xmm_scratch);
   3750   __ addsd(input_reg, xmm_scratch);  // Convert -0 to +0.
   3751   __ sqrtsd(input_reg, input_reg);
   3752   __ bind(&done);
   3753 }
   3754 
   3755 
   3756 void LCodeGen::DoPower(LPower* instr) {
   3757   Representation exponent_type = instr->hydrogen()->right()->representation();
   3758   // Having marked this as a call, we can use any registers.
   3759   // Just make sure that the input/output registers are the expected ones.
   3760   ASSERT(!instr->right()->IsDoubleRegister() ||
   3761          ToDoubleRegister(instr->right()).is(xmm1));
   3762   ASSERT(!instr->right()->IsRegister() ||
   3763          ToRegister(instr->right()).is(eax));
   3764   ASSERT(ToDoubleRegister(instr->left()).is(xmm2));
   3765   ASSERT(ToDoubleRegister(instr->result()).is(xmm3));
   3766 
   3767   if (exponent_type.IsSmi()) {
   3768     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   3769     __ CallStub(&stub);
   3770   } else if (exponent_type.IsTagged()) {
   3771     Label no_deopt;
   3772     __ JumpIfSmi(eax, &no_deopt);
   3773     __ CmpObjectType(eax, HEAP_NUMBER_TYPE, ecx);
   3774     DeoptimizeIf(not_equal, instr->environment());
   3775     __ bind(&no_deopt);
   3776     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   3777     __ CallStub(&stub);
   3778   } else if (exponent_type.IsInteger32()) {
   3779     MathPowStub stub(isolate(), MathPowStub::INTEGER);
   3780     __ CallStub(&stub);
   3781   } else {
   3782     ASSERT(exponent_type.IsDouble());
   3783     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
   3784     __ CallStub(&stub);
   3785   }
   3786 }
   3787 
   3788 
   3789 void LCodeGen::DoMathLog(LMathLog* instr) {
   3790   ASSERT(instr->value()->Equals(instr->result()));
   3791   XMMRegister input_reg = ToDoubleRegister(instr->value());
   3792   XMMRegister xmm_scratch = double_scratch0();
   3793   Label positive, done, zero;
   3794   __ xorps(xmm_scratch, xmm_scratch);
   3795   __ ucomisd(input_reg, xmm_scratch);
   3796   __ j(above, &positive, Label::kNear);
   3797   __ j(not_carry, &zero, Label::kNear);
   3798   ExternalReference nan =
   3799       ExternalReference::address_of_canonical_non_hole_nan();
   3800   __ movsd(input_reg, Operand::StaticVariable(nan));
   3801   __ jmp(&done, Label::kNear);
   3802   __ bind(&zero);
   3803   ExternalReference ninf =
   3804       ExternalReference::address_of_negative_infinity();
   3805   __ movsd(input_reg, Operand::StaticVariable(ninf));
   3806   __ jmp(&done, Label::kNear);
   3807   __ bind(&positive);
   3808   __ fldln2();
   3809   __ sub(Operand(esp), Immediate(kDoubleSize));
   3810   __ movsd(Operand(esp, 0), input_reg);
   3811   __ fld_d(Operand(esp, 0));
   3812   __ fyl2x();
   3813   __ fstp_d(Operand(esp, 0));
   3814   __ movsd(input_reg, Operand(esp, 0));
   3815   __ add(Operand(esp), Immediate(kDoubleSize));
   3816   __ bind(&done);
   3817 }
   3818 
   3819 
   3820 void LCodeGen::DoMathClz32(LMathClz32* instr) {
   3821   Register input = ToRegister(instr->value());
   3822   Register result = ToRegister(instr->result());
   3823   Label not_zero_input;
   3824   __ bsr(result, input);
   3825 
   3826   __ j(not_zero, &not_zero_input);
   3827   __ Move(result, Immediate(63));  // 63^31 == 32
   3828 
   3829   __ bind(&not_zero_input);
   3830   __ xor_(result, Immediate(31));  // for x in [0..31], 31^x == 31-x.
   3831 }
   3832 
   3833 
   3834 void LCodeGen::DoMathExp(LMathExp* instr) {
   3835   XMMRegister input = ToDoubleRegister(instr->value());
   3836   XMMRegister result = ToDoubleRegister(instr->result());
   3837   XMMRegister temp0 = double_scratch0();
   3838   Register temp1 = ToRegister(instr->temp1());
   3839   Register temp2 = ToRegister(instr->temp2());
   3840 
   3841   MathExpGenerator::EmitMathExp(masm(), input, result, temp0, temp1, temp2);
   3842 }
   3843 
   3844 
   3845 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
   3846   ASSERT(ToRegister(instr->context()).is(esi));
   3847   ASSERT(ToRegister(instr->function()).is(edi));
   3848   ASSERT(instr->HasPointerMap());
   3849 
   3850   Handle<JSFunction> known_function = instr->hydrogen()->known_function();
   3851   if (known_function.is_null()) {
   3852     LPointerMap* pointers = instr->pointer_map();
   3853     SafepointGenerator generator(
   3854         this, pointers, Safepoint::kLazyDeopt);
   3855     ParameterCount count(instr->arity());
   3856     __ InvokeFunction(edi, count, CALL_FUNCTION, generator);
   3857   } else {
   3858     CallKnownFunction(known_function,
   3859                       instr->hydrogen()->formal_parameter_count(),
   3860                       instr->arity(),
   3861                       instr,
   3862                       EDI_CONTAINS_TARGET);
   3863   }
   3864 }
   3865 
   3866 
   3867 void LCodeGen::DoCallFunction(LCallFunction* instr) {
   3868   ASSERT(ToRegister(instr->context()).is(esi));
   3869   ASSERT(ToRegister(instr->function()).is(edi));
   3870   ASSERT(ToRegister(instr->result()).is(eax));
   3871 
   3872   int arity = instr->arity();
   3873   CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
   3874   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   3875 }
   3876 
   3877 
   3878 void LCodeGen::DoCallNew(LCallNew* instr) {
   3879   ASSERT(ToRegister(instr->context()).is(esi));
   3880   ASSERT(ToRegister(instr->constructor()).is(edi));
   3881   ASSERT(ToRegister(instr->result()).is(eax));
   3882 
   3883   // No cell in ebx for construct type feedback in optimized code
   3884   __ mov(ebx, isolate()->factory()->undefined_value());
   3885   CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
   3886   __ Move(eax, Immediate(instr->arity()));
   3887   CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   3888 }
   3889 
   3890 
   3891 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
   3892   ASSERT(ToRegister(instr->context()).is(esi));
   3893   ASSERT(ToRegister(instr->constructor()).is(edi));
   3894   ASSERT(ToRegister(instr->result()).is(eax));
   3895 
   3896   __ Move(eax, Immediate(instr->arity()));
   3897   __ mov(ebx, isolate()->factory()->undefined_value());
   3898   ElementsKind kind = instr->hydrogen()->elements_kind();
   3899   AllocationSiteOverrideMode override_mode =
   3900       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
   3901           ? DISABLE_ALLOCATION_SITES
   3902           : DONT_OVERRIDE;
   3903 
   3904   if (instr->arity() == 0) {
   3905     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
   3906     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   3907   } else if (instr->arity() == 1) {
   3908     Label done;
   3909     if (IsFastPackedElementsKind(kind)) {
   3910       Label packed_case;
   3911       // We might need a change here
   3912       // look at the first argument
   3913       __ mov(ecx, Operand(esp, 0));
   3914       __ test(ecx, ecx);
   3915       __ j(zero, &packed_case, Label::kNear);
   3916 
   3917       ElementsKind holey_kind = GetHoleyElementsKind(kind);
   3918       ArraySingleArgumentConstructorStub stub(isolate(),
   3919                                               holey_kind,
   3920                                               override_mode);
   3921       CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   3922       __ jmp(&done, Label::kNear);
   3923       __ bind(&packed_case);
   3924     }
   3925 
   3926     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
   3927     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   3928     __ bind(&done);
   3929   } else {
   3930     ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
   3931     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   3932   }
   3933 }
   3934 
   3935 
   3936 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
   3937   ASSERT(ToRegister(instr->context()).is(esi));
   3938   CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
   3939 }
   3940 
   3941 
   3942 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
   3943   Register function = ToRegister(instr->function());
   3944   Register code_object = ToRegister(instr->code_object());
   3945   __ lea(code_object, FieldOperand(code_object, Code::kHeaderSize));
   3946   __ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
   3947 }
   3948 
   3949 
   3950 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
   3951   Register result = ToRegister(instr->result());
   3952   Register base = ToRegister(instr->base_object());
   3953   if (instr->offset()->IsConstantOperand()) {
   3954     LConstantOperand* offset = LConstantOperand::cast(instr->offset());
   3955     __ lea(result, Operand(base, ToInteger32(offset)));
   3956   } else {
   3957     Register offset = ToRegister(instr->offset());
   3958     __ lea(result, Operand(base, offset, times_1, 0));
   3959   }
   3960 }
   3961 
   3962 
   3963 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
   3964   Representation representation = instr->hydrogen()->field_representation();
   3965 
   3966   HObjectAccess access = instr->hydrogen()->access();
   3967   int offset = access.offset();
   3968 
   3969   if (access.IsExternalMemory()) {
   3970     ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
   3971     MemOperand operand = instr->object()->IsConstantOperand()
   3972         ? MemOperand::StaticVariable(
   3973             ToExternalReference(LConstantOperand::cast(instr->object())))
   3974         : MemOperand(ToRegister(instr->object()), offset);
   3975     if (instr->value()->IsConstantOperand()) {
   3976       LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
   3977       __ mov(operand, Immediate(ToInteger32(operand_value)));
   3978     } else {
   3979       Register value = ToRegister(instr->value());
   3980       __ Store(value, operand, representation);
   3981     }
   3982     return;
   3983   }
   3984 
   3985   Register object = ToRegister(instr->object());
   3986   __ AssertNotSmi(object);
   3987 
   3988   ASSERT(!representation.IsSmi() ||
   3989          !instr->value()->IsConstantOperand() ||
   3990          IsSmi(LConstantOperand::cast(instr->value())));
   3991   if (representation.IsDouble()) {
   3992     ASSERT(access.IsInobject());
   3993     ASSERT(!instr->hydrogen()->has_transition());
   3994     ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
   3995     XMMRegister value = ToDoubleRegister(instr->value());
   3996     __ movsd(FieldOperand(object, offset), value);
   3997     return;
   3998   }
   3999 
   4000   if (instr->hydrogen()->has_transition()) {
   4001     Handle<Map> transition = instr->hydrogen()->transition_map();
   4002     AddDeprecationDependency(transition);
   4003     __ mov(FieldOperand(object, HeapObject::kMapOffset), transition);
   4004     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
   4005       Register temp = ToRegister(instr->temp());
   4006       Register temp_map = ToRegister(instr->temp_map());
   4007       // Update the write barrier for the map field.
   4008       __ RecordWriteForMap(object, transition, temp_map, temp, kSaveFPRegs);
   4009     }
   4010   }
   4011 
   4012   // Do the store.
   4013   Register write_register = object;
   4014   if (!access.IsInobject()) {
   4015     write_register = ToRegister(instr->temp());
   4016     __ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
   4017   }
   4018 
   4019   MemOperand operand = FieldOperand(write_register, offset);
   4020   if (instr->value()->IsConstantOperand()) {
   4021     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
   4022     if (operand_value->IsRegister()) {
   4023       Register value = ToRegister(operand_value);
   4024       __ Store(value, operand, representation);
   4025     } else if (representation.IsInteger32()) {
   4026       Immediate immediate = ToImmediate(operand_value, representation);
   4027       ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
   4028       __ mov(operand, immediate);
   4029     } else {
   4030       Handle<Object> handle_value = ToHandle(operand_value);
   4031       ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
   4032       __ mov(operand, handle_value);
   4033     }
   4034   } else {
   4035     Register value = ToRegister(instr->value());
   4036     __ Store(value, operand, representation);
   4037   }
   4038 
   4039   if (instr->hydrogen()->NeedsWriteBarrier()) {
   4040     Register value = ToRegister(instr->value());
   4041     Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
   4042     // Update the write barrier for the object for in-object properties.
   4043     __ RecordWriteField(write_register,
   4044                         offset,
   4045                         value,
   4046                         temp,
   4047                         kSaveFPRegs,
   4048                         EMIT_REMEMBERED_SET,
   4049                         instr->hydrogen()->SmiCheckForWriteBarrier(),
   4050                         instr->hydrogen()->PointersToHereCheckForValue());
   4051   }
   4052 }
   4053 
   4054 
   4055 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
   4056   ASSERT(ToRegister(instr->context()).is(esi));
   4057   ASSERT(ToRegister(instr->object()).is(edx));
   4058   ASSERT(ToRegister(instr->value()).is(eax));
   4059 
   4060   __ mov(ecx, instr->name());
   4061   Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
   4062   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   4063 }
   4064 
   4065 
   4066 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
   4067   Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal;
   4068   if (instr->index()->IsConstantOperand()) {
   4069     __ cmp(ToOperand(instr->length()),
   4070            ToImmediate(LConstantOperand::cast(instr->index()),
   4071                        instr->hydrogen()->length()->representation()));
   4072     cc = CommuteCondition(cc);
   4073   } else if (instr->length()->IsConstantOperand()) {
   4074     __ cmp(ToOperand(instr->index()),
   4075            ToImmediate(LConstantOperand::cast(instr->length()),
   4076                        instr->hydrogen()->index()->representation()));
   4077   } else {
   4078     __ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
   4079   }
   4080   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
   4081     Label done;
   4082     __ j(NegateCondition(cc), &done, Label::kNear);
   4083     __ int3();
   4084     __ bind(&done);
   4085   } else {
   4086     DeoptimizeIf(cc, instr->environment());
   4087   }
   4088 }
   4089 
   4090 
   4091 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
   4092   ElementsKind elements_kind = instr->elements_kind();
   4093   LOperand* key = instr->key();
   4094   if (!key->IsConstantOperand() &&
   4095       ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
   4096                                   elements_kind)) {
   4097     __ SmiUntag(ToRegister(key));
   4098   }
   4099   Operand operand(BuildFastArrayOperand(
   4100       instr->elements(),
   4101       key,
   4102       instr->hydrogen()->key()->representation(),
   4103       elements_kind,
   4104       instr->base_offset()));
   4105   if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
   4106       elements_kind == FLOAT32_ELEMENTS) {
   4107     XMMRegister xmm_scratch = double_scratch0();
   4108     __ cvtsd2ss(xmm_scratch, ToDoubleRegister(instr->value()));
   4109     __ movss(operand, xmm_scratch);
   4110   } else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
   4111              elements_kind == FLOAT64_ELEMENTS) {
   4112     __ movsd(operand, ToDoubleRegister(instr->value()));
   4113   } else {
   4114     Register value = ToRegister(instr->value());
   4115     switch (elements_kind) {
   4116       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
   4117       case EXTERNAL_UINT8_ELEMENTS:
   4118       case EXTERNAL_INT8_ELEMENTS:
   4119       case UINT8_ELEMENTS:
   4120       case INT8_ELEMENTS:
   4121       case UINT8_CLAMPED_ELEMENTS:
   4122         __ mov_b(operand, value);
   4123         break;
   4124       case EXTERNAL_INT16_ELEMENTS:
   4125       case EXTERNAL_UINT16_ELEMENTS:
   4126       case UINT16_ELEMENTS:
   4127       case INT16_ELEMENTS:
   4128         __ mov_w(operand, value);
   4129         break;
   4130       case EXTERNAL_INT32_ELEMENTS:
   4131       case EXTERNAL_UINT32_ELEMENTS:
   4132       case UINT32_ELEMENTS:
   4133       case INT32_ELEMENTS:
   4134         __ mov(operand, value);
   4135         break;
   4136       case EXTERNAL_FLOAT32_ELEMENTS:
   4137       case EXTERNAL_FLOAT64_ELEMENTS:
   4138       case FLOAT32_ELEMENTS:
   4139       case FLOAT64_ELEMENTS:
   4140       case FAST_SMI_ELEMENTS:
   4141       case FAST_ELEMENTS:
   4142       case FAST_DOUBLE_ELEMENTS:
   4143       case FAST_HOLEY_SMI_ELEMENTS:
   4144       case FAST_HOLEY_ELEMENTS:
   4145       case FAST_HOLEY_DOUBLE_ELEMENTS:
   4146       case DICTIONARY_ELEMENTS:
   4147       case SLOPPY_ARGUMENTS_ELEMENTS:
   4148         UNREACHABLE();
   4149         break;
   4150     }
   4151   }
   4152 }
   4153 
   4154 
   4155 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
   4156   ExternalReference canonical_nan_reference =
   4157       ExternalReference::address_of_canonical_non_hole_nan();
   4158   Operand double_store_operand = BuildFastArrayOperand(
   4159       instr->elements(),
   4160       instr->key(),
   4161       instr->hydrogen()->key()->representation(),
   4162       FAST_DOUBLE_ELEMENTS,
   4163       instr->base_offset());
   4164 
   4165   XMMRegister value = ToDoubleRegister(instr->value());
   4166 
   4167   if (instr->NeedsCanonicalization()) {
   4168     Label have_value;
   4169 
   4170     __ ucomisd(value, value);
   4171     __ j(parity_odd, &have_value, Label::kNear);  // NaN.
   4172 
   4173     __ movsd(value, Operand::StaticVariable(canonical_nan_reference));
   4174     __ bind(&have_value);
   4175   }
   4176 
   4177   __ movsd(double_store_operand, value);
   4178 }
   4179 
   4180 
   4181 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
   4182   Register elements = ToRegister(instr->elements());
   4183   Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
   4184 
   4185   Operand operand = BuildFastArrayOperand(
   4186       instr->elements(),
   4187       instr->key(),
   4188       instr->hydrogen()->key()->representation(),
   4189       FAST_ELEMENTS,
   4190       instr->base_offset());
   4191   if (instr->value()->IsRegister()) {
   4192     __ mov(operand, ToRegister(instr->value()));
   4193   } else {
   4194     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
   4195     if (IsSmi(operand_value)) {
   4196       Immediate immediate = ToImmediate(operand_value, Representation::Smi());
   4197       __ mov(operand, immediate);
   4198     } else {
   4199       ASSERT(!IsInteger32(operand_value));
   4200       Handle<Object> handle_value = ToHandle(operand_value);
   4201       __ mov(operand, handle_value);
   4202     }
   4203   }
   4204 
   4205   if (instr->hydrogen()->NeedsWriteBarrier()) {
   4206     ASSERT(instr->value()->IsRegister());
   4207     Register value = ToRegister(instr->value());
   4208     ASSERT(!instr->key()->IsConstantOperand());
   4209     SmiCheck check_needed =
   4210         instr->hydrogen()->value()->type().IsHeapObject()
   4211           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   4212     // Compute address of modified element and store it into key register.
   4213     __ lea(key, operand);
   4214     __ RecordWrite(elements,
   4215                    key,
   4216                    value,
   4217                    kSaveFPRegs,
   4218                    EMIT_REMEMBERED_SET,
   4219                    check_needed,
   4220                    instr->hydrogen()->PointersToHereCheckForValue());
   4221   }
   4222 }
   4223 
   4224 
   4225 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
   4226   // By cases...external, fast-double, fast
   4227   if (instr->is_typed_elements()) {
   4228     DoStoreKeyedExternalArray(instr);
   4229   } else if (instr->hydrogen()->value()->representation().IsDouble()) {
   4230     DoStoreKeyedFixedDoubleArray(instr);
   4231   } else {
   4232     DoStoreKeyedFixedArray(instr);
   4233   }
   4234 }
   4235 
   4236 
   4237 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
   4238   ASSERT(ToRegister(instr->context()).is(esi));
   4239   ASSERT(ToRegister(instr->object()).is(edx));
   4240   ASSERT(ToRegister(instr->key()).is(ecx));
   4241   ASSERT(ToRegister(instr->value()).is(eax));
   4242 
   4243   Handle<Code> ic = instr->strict_mode() == STRICT
   4244       ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
   4245       : isolate()->builtins()->KeyedStoreIC_Initialize();
   4246   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   4247 }
   4248 
   4249 
   4250 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
   4251   Register object = ToRegister(instr->object());
   4252   Register temp = ToRegister(instr->temp());
   4253   Label no_memento_found;
   4254   __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
   4255   DeoptimizeIf(equal, instr->environment());
   4256   __ bind(&no_memento_found);
   4257 }
   4258 
   4259 
   4260 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
   4261   Register object_reg = ToRegister(instr->object());
   4262 
   4263   Handle<Map> from_map = instr->original_map();
   4264   Handle<Map> to_map = instr->transitioned_map();
   4265   ElementsKind from_kind = instr->from_kind();
   4266   ElementsKind to_kind = instr->to_kind();
   4267 
   4268   Label not_applicable;
   4269   bool is_simple_map_transition =
   4270       IsSimpleMapChangeTransition(from_kind, to_kind);
   4271   Label::Distance branch_distance =
   4272       is_simple_map_transition ? Label::kNear : Label::kFar;
   4273   __ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
   4274   __ j(not_equal, &not_applicable, branch_distance);
   4275   if (is_simple_map_transition) {
   4276     Register new_map_reg = ToRegister(instr->new_map_temp());
   4277     __ mov(FieldOperand(object_reg, HeapObject::kMapOffset),
   4278            Immediate(to_map));
   4279     // Write barrier.
   4280     ASSERT_NE(instr->temp(), NULL);
   4281     __ RecordWriteForMap(object_reg, to_map, new_map_reg,
   4282                          ToRegister(instr->temp()),
   4283                          kDontSaveFPRegs);
   4284   } else {
   4285     ASSERT(ToRegister(instr->context()).is(esi));
   4286     ASSERT(object_reg.is(eax));
   4287     PushSafepointRegistersScope scope(this);
   4288     __ mov(ebx, to_map);
   4289     bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
   4290     TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
   4291     __ CallStub(&stub);
   4292     RecordSafepointWithLazyDeopt(instr,
   4293         RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   4294   }
   4295   __ bind(&not_applicable);
   4296 }
   4297 
   4298 
   4299 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
   4300   class DeferredStringCharCodeAt V8_FINAL : public LDeferredCode {
   4301    public:
   4302     DeferredStringCharCodeAt(LCodeGen* codegen,
   4303                              LStringCharCodeAt* instr)
   4304         : LDeferredCode(codegen), instr_(instr) { }
   4305     virtual void Generate() V8_OVERRIDE {
   4306       codegen()->DoDeferredStringCharCodeAt(instr_);
   4307     }
   4308     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   4309    private:
   4310     LStringCharCodeAt* instr_;
   4311   };
   4312 
   4313   DeferredStringCharCodeAt* deferred =
   4314       new(zone()) DeferredStringCharCodeAt(this, instr);
   4315 
   4316   StringCharLoadGenerator::Generate(masm(),
   4317                                     factory(),
   4318                                     ToRegister(instr->string()),
   4319                                     ToRegister(instr->index()),
   4320                                     ToRegister(instr->result()),
   4321                                     deferred->entry());
   4322   __ bind(deferred->exit());
   4323 }
   4324 
   4325 
   4326 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
   4327   Register string = ToRegister(instr->string());
   4328   Register result = ToRegister(instr->result());
   4329 
   4330   // TODO(3095996): Get rid of this. For now, we need to make the
   4331   // result register contain a valid pointer because it is already
   4332   // contained in the register pointer map.
   4333   __ Move(result, Immediate(0));
   4334 
   4335   PushSafepointRegistersScope scope(this);
   4336   __ push(string);
   4337   // Push the index as a smi. This is safe because of the checks in
   4338   // DoStringCharCodeAt above.
   4339   STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
   4340   if (instr->index()->IsConstantOperand()) {
   4341     Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()),
   4342                                       Representation::Smi());
   4343     __ push(immediate);
   4344   } else {
   4345     Register index = ToRegister(instr->index());
   4346     __ SmiTag(index);
   4347     __ push(index);
   4348   }
   4349   CallRuntimeFromDeferred(Runtime::kHiddenStringCharCodeAt, 2,
   4350                           instr, instr->context());
   4351   __ AssertSmi(eax);
   4352   __ SmiUntag(eax);
   4353   __ StoreToSafepointRegisterSlot(result, eax);
   4354 }
   4355 
   4356 
   4357 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
   4358   class DeferredStringCharFromCode V8_FINAL : public LDeferredCode {
   4359    public:
   4360     DeferredStringCharFromCode(LCodeGen* codegen,
   4361                                LStringCharFromCode* instr)
   4362         : LDeferredCode(codegen), instr_(instr) { }
   4363     virtual void Generate() V8_OVERRIDE {
   4364       codegen()->DoDeferredStringCharFromCode(instr_);
   4365     }
   4366     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   4367    private:
   4368     LStringCharFromCode* instr_;
   4369   };
   4370 
   4371   DeferredStringCharFromCode* deferred =
   4372       new(zone()) DeferredStringCharFromCode(this, instr);
   4373 
   4374   ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
   4375   Register char_code = ToRegister(instr->char_code());
   4376   Register result = ToRegister(instr->result());
   4377   ASSERT(!char_code.is(result));
   4378 
   4379   __ cmp(char_code, String::kMaxOneByteCharCode);
   4380   __ j(above, deferred->entry());
   4381   __ Move(result, Immediate(factory()->single_character_string_cache()));
   4382   __ mov(result, FieldOperand(result,
   4383                               char_code, times_pointer_size,
   4384                               FixedArray::kHeaderSize));
   4385   __ cmp(result, factory()->undefined_value());
   4386   __ j(equal, deferred->entry());
   4387   __ bind(deferred->exit());
   4388 }
   4389 
   4390 
   4391 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
   4392   Register char_code = ToRegister(instr->char_code());
   4393   Register result = ToRegister(instr->result());
   4394 
   4395   // TODO(3095996): Get rid of this. For now, we need to make the
   4396   // result register contain a valid pointer because it is already
   4397   // contained in the register pointer map.
   4398   __ Move(result, Immediate(0));
   4399 
   4400   PushSafepointRegistersScope scope(this);
   4401   __ SmiTag(char_code);
   4402   __ push(char_code);
   4403   CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
   4404   __ StoreToSafepointRegisterSlot(result, eax);
   4405 }
   4406 
   4407 
   4408 void LCodeGen::DoStringAdd(LStringAdd* instr) {
   4409   ASSERT(ToRegister(instr->context()).is(esi));
   4410   ASSERT(ToRegister(instr->left()).is(edx));
   4411   ASSERT(ToRegister(instr->right()).is(eax));
   4412   StringAddStub stub(isolate(),
   4413                      instr->hydrogen()->flags(),
   4414                      instr->hydrogen()->pretenure_flag());
   4415   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   4416 }
   4417 
   4418 
   4419 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
   4420   LOperand* input = instr->value();
   4421   LOperand* output = instr->result();
   4422   ASSERT(input->IsRegister() || input->IsStackSlot());
   4423   ASSERT(output->IsDoubleRegister());
   4424   __ Cvtsi2sd(ToDoubleRegister(output), ToOperand(input));
   4425 }
   4426 
   4427 
   4428 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
   4429   LOperand* input = instr->value();
   4430   LOperand* output = instr->result();
   4431   __ LoadUint32(ToDoubleRegister(output), ToRegister(input));
   4432 }
   4433 
   4434 
   4435 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
   4436   class DeferredNumberTagI V8_FINAL : public LDeferredCode {
   4437    public:
   4438     DeferredNumberTagI(LCodeGen* codegen,
   4439                        LNumberTagI* instr)
   4440         : LDeferredCode(codegen), instr_(instr) { }
   4441     virtual void Generate() V8_OVERRIDE {
   4442       codegen()->DoDeferredNumberTagIU(
   4443           instr_, instr_->value(), instr_->temp(), SIGNED_INT32);
   4444     }
   4445     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   4446    private:
   4447     LNumberTagI* instr_;
   4448   };
   4449 
   4450   LOperand* input = instr->value();
   4451   ASSERT(input->IsRegister() && input->Equals(instr->result()));
   4452   Register reg = ToRegister(input);
   4453 
   4454   DeferredNumberTagI* deferred =
   4455       new(zone()) DeferredNumberTagI(this, instr);
   4456   __ SmiTag(reg);
   4457   __ j(overflow, deferred->entry());
   4458   __ bind(deferred->exit());
   4459 }
   4460 
   4461 
   4462 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
   4463   class DeferredNumberTagU V8_FINAL : public LDeferredCode {
   4464    public:
   4465     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
   4466         : LDeferredCode(codegen), instr_(instr) { }
   4467     virtual void Generate() V8_OVERRIDE {
   4468       codegen()->DoDeferredNumberTagIU(
   4469           instr_, instr_->value(), instr_->temp(), UNSIGNED_INT32);
   4470     }
   4471     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   4472    private:
   4473     LNumberTagU* instr_;
   4474   };
   4475 
   4476   LOperand* input = instr->value();
   4477   ASSERT(input->IsRegister() && input->Equals(instr->result()));
   4478   Register reg = ToRegister(input);
   4479 
   4480   DeferredNumberTagU* deferred =
   4481       new(zone()) DeferredNumberTagU(this, instr);
   4482   __ cmp(reg, Immediate(Smi::kMaxValue));
   4483   __ j(above, deferred->entry());
   4484   __ SmiTag(reg);
   4485   __ bind(deferred->exit());
   4486 }
   4487 
   4488 
   4489 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
   4490                                      LOperand* value,
   4491                                      LOperand* temp,
   4492                                      IntegerSignedness signedness) {
   4493   Label done, slow;
   4494   Register reg = ToRegister(value);
   4495   Register tmp = ToRegister(temp);
   4496   XMMRegister xmm_scratch = double_scratch0();
   4497 
   4498   if (signedness == SIGNED_INT32) {
   4499     // There was overflow, so bits 30 and 31 of the original integer
   4500     // disagree. Try to allocate a heap number in new space and store
   4501     // the value in there. If that fails, call the runtime system.
   4502     __ SmiUntag(reg);
   4503     __ xor_(reg, 0x80000000);
   4504     __ Cvtsi2sd(xmm_scratch, Operand(reg));
   4505   } else {
   4506     __ LoadUint32(xmm_scratch, reg);
   4507   }
   4508 
   4509   if (FLAG_inline_new) {
   4510     __ AllocateHeapNumber(reg, tmp, no_reg, &slow);
   4511     __ jmp(&done, Label::kNear);
   4512   }
   4513 
   4514   // Slow case: Call the runtime system to do the number allocation.
   4515   __ bind(&slow);
   4516   {
   4517     // TODO(3095996): Put a valid pointer value in the stack slot where the
   4518     // result register is stored, as this register is in the pointer map, but
   4519     // contains an integer value.
   4520     __ Move(reg, Immediate(0));
   4521 
   4522     // Preserve the value of all registers.
   4523     PushSafepointRegistersScope scope(this);
   4524 
   4525     // NumberTagI and NumberTagD use the context from the frame, rather than
   4526     // the environment's HContext or HInlinedContext value.
   4527     // They only call Runtime::kHiddenAllocateHeapNumber.
   4528     // The corresponding HChange instructions are added in a phase that does
   4529     // not have easy access to the local context.
   4530     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   4531     __ CallRuntimeSaveDoubles(Runtime::kHiddenAllocateHeapNumber);
   4532     RecordSafepointWithRegisters(
   4533         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4534     __ StoreToSafepointRegisterSlot(reg, eax);
   4535   }
   4536 
   4537   // Done. Put the value in xmm_scratch into the value of the allocated heap
   4538   // number.
   4539   __ bind(&done);
   4540   __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), xmm_scratch);
   4541 }
   4542 
   4543 
   4544 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
   4545   class DeferredNumberTagD V8_FINAL : public LDeferredCode {
   4546    public:
   4547     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
   4548         : LDeferredCode(codegen), instr_(instr) { }
   4549     virtual void Generate() V8_OVERRIDE {
   4550       codegen()->DoDeferredNumberTagD(instr_);
   4551     }
   4552     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   4553    private:
   4554     LNumberTagD* instr_;
   4555   };
   4556 
   4557   Register reg = ToRegister(instr->result());
   4558 
   4559   DeferredNumberTagD* deferred =
   4560       new(zone()) DeferredNumberTagD(this, instr);
   4561   if (FLAG_inline_new) {
   4562     Register tmp = ToRegister(instr->temp());
   4563     __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
   4564   } else {
   4565     __ jmp(deferred->entry());
   4566   }
   4567   __ bind(deferred->exit());
   4568   XMMRegister input_reg = ToDoubleRegister(instr->value());
   4569   __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
   4570 }
   4571 
   4572 
   4573 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
   4574   // TODO(3095996): Get rid of this. For now, we need to make the
   4575   // result register contain a valid pointer because it is already
   4576   // contained in the register pointer map.
   4577   Register reg = ToRegister(instr->result());
   4578   __ Move(reg, Immediate(0));
   4579 
   4580   PushSafepointRegistersScope scope(this);
   4581   // NumberTagI and NumberTagD use the context from the frame, rather than
   4582   // the environment's HContext or HInlinedContext value.
   4583   // They only call Runtime::kHiddenAllocateHeapNumber.
   4584   // The corresponding HChange instructions are added in a phase that does
   4585   // not have easy access to the local context.
   4586   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   4587   __ CallRuntimeSaveDoubles(Runtime::kHiddenAllocateHeapNumber);
   4588   RecordSafepointWithRegisters(
   4589       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4590   __ StoreToSafepointRegisterSlot(reg, eax);
   4591 }
   4592 
   4593 
   4594 void LCodeGen::DoSmiTag(LSmiTag* instr) {
   4595   HChange* hchange = instr->hydrogen();
   4596   Register input = ToRegister(instr->value());
   4597   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   4598       hchange->value()->CheckFlag(HValue::kUint32)) {
   4599     __ test(input, Immediate(0xc0000000));
   4600     DeoptimizeIf(not_zero, instr->environment());
   4601   }
   4602   __ SmiTag(input);
   4603   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   4604       !hchange->value()->CheckFlag(HValue::kUint32)) {
   4605     DeoptimizeIf(overflow, instr->environment());
   4606   }
   4607 }
   4608 
   4609 
   4610 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
   4611   LOperand* input = instr->value();
   4612   Register result = ToRegister(input);
   4613   ASSERT(input->IsRegister() && input->Equals(instr->result()));
   4614   if (instr->needs_check()) {
   4615     __ test(result, Immediate(kSmiTagMask));
   4616     DeoptimizeIf(not_zero, instr->environment());
   4617   } else {
   4618     __ AssertSmi(result);
   4619   }
   4620   __ SmiUntag(result);
   4621 }
   4622 
   4623 
   4624 void LCodeGen::EmitNumberUntagD(Register input_reg,
   4625                                 Register temp_reg,
   4626                                 XMMRegister result_reg,
   4627                                 bool can_convert_undefined_to_nan,
   4628                                 bool deoptimize_on_minus_zero,
   4629                                 LEnvironment* env,
   4630                                 NumberUntagDMode mode) {
   4631   Label convert, load_smi, done;
   4632 
   4633   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
   4634     // Smi check.
   4635     __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
   4636 
   4637     // Heap number map check.
   4638     __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   4639            factory()->heap_number_map());
   4640     if (can_convert_undefined_to_nan) {
   4641       __ j(not_equal, &convert, Label::kNear);
   4642     } else {
   4643       DeoptimizeIf(not_equal, env);
   4644     }
   4645 
   4646     // Heap number to XMM conversion.
   4647     __ movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
   4648 
   4649     if (deoptimize_on_minus_zero) {
   4650       XMMRegister xmm_scratch = double_scratch0();
   4651       __ xorps(xmm_scratch, xmm_scratch);
   4652       __ ucomisd(result_reg, xmm_scratch);
   4653       __ j(not_zero, &done, Label::kNear);
   4654       __ movmskpd(temp_reg, result_reg);
   4655       __ test_b(temp_reg, 1);
   4656       DeoptimizeIf(not_zero, env);
   4657     }
   4658     __ jmp(&done, Label::kNear);
   4659 
   4660     if (can_convert_undefined_to_nan) {
   4661       __ bind(&convert);
   4662 
   4663       // Convert undefined (and hole) to NaN.
   4664       __ cmp(input_reg, factory()->undefined_value());
   4665       DeoptimizeIf(not_equal, env);
   4666 
   4667       ExternalReference nan =
   4668           ExternalReference::address_of_canonical_non_hole_nan();
   4669       __ movsd(result_reg, Operand::StaticVariable(nan));
   4670       __ jmp(&done, Label::kNear);
   4671     }
   4672   } else {
   4673     ASSERT(mode == NUMBER_CANDIDATE_IS_SMI);
   4674   }
   4675 
   4676   __ bind(&load_smi);
   4677   // Smi to XMM conversion. Clobbering a temp is faster than re-tagging the
   4678   // input register since we avoid dependencies.
   4679   __ mov(temp_reg, input_reg);
   4680   __ SmiUntag(temp_reg);  // Untag smi before converting to float.
   4681   __ Cvtsi2sd(result_reg, Operand(temp_reg));
   4682   __ bind(&done);
   4683 }
   4684 
   4685 
   4686 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
   4687   Register input_reg = ToRegister(instr->value());
   4688 
   4689   // The input was optimistically untagged; revert it.
   4690   STATIC_ASSERT(kSmiTagSize == 1);
   4691   __ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag));
   4692 
   4693   if (instr->truncating()) {
   4694     Label no_heap_number, check_bools, check_false;
   4695 
   4696     // Heap number map check.
   4697     __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   4698            factory()->heap_number_map());
   4699     __ j(not_equal, &no_heap_number, Label::kNear);
   4700     __ TruncateHeapNumberToI(input_reg, input_reg);
   4701     __ jmp(done);
   4702 
   4703     __ bind(&no_heap_number);
   4704     // Check for Oddballs. Undefined/False is converted to zero and True to one
   4705     // for truncating conversions.
   4706     __ cmp(input_reg, factory()->undefined_value());
   4707     __ j(not_equal, &check_bools, Label::kNear);
   4708     __ Move(input_reg, Immediate(0));
   4709     __ jmp(done);
   4710 
   4711     __ bind(&check_bools);
   4712     __ cmp(input_reg, factory()->true_value());
   4713     __ j(not_equal, &check_false, Label::kNear);
   4714     __ Move(input_reg, Immediate(1));
   4715     __ jmp(done);
   4716 
   4717     __ bind(&check_false);
   4718     __ cmp(input_reg, factory()->false_value());
   4719     __ RecordComment("Deferred TaggedToI: cannot truncate");
   4720     DeoptimizeIf(not_equal, instr->environment());
   4721     __ Move(input_reg, Immediate(0));
   4722   } else {
   4723     Label bailout;
   4724     XMMRegister scratch = (instr->temp() != NULL)
   4725         ? ToDoubleRegister(instr->temp())
   4726         : no_xmm_reg;
   4727     __ TaggedToI(input_reg, input_reg, scratch,
   4728                  instr->hydrogen()->GetMinusZeroMode(), &bailout);
   4729     __ jmp(done);
   4730     __ bind(&bailout);
   4731     DeoptimizeIf(no_condition, instr->environment());
   4732   }
   4733 }
   4734 
   4735 
   4736 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
   4737   class DeferredTaggedToI V8_FINAL : public LDeferredCode {
   4738    public:
   4739     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
   4740         : LDeferredCode(codegen), instr_(instr) { }
   4741     virtual void Generate() V8_OVERRIDE {
   4742       codegen()->DoDeferredTaggedToI(instr_, done());
   4743     }
   4744     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   4745    private:
   4746     LTaggedToI* instr_;
   4747   };
   4748 
   4749   LOperand* input = instr->value();
   4750   ASSERT(input->IsRegister());
   4751   Register input_reg = ToRegister(input);
   4752   ASSERT(input_reg.is(ToRegister(instr->result())));
   4753 
   4754   if (instr->hydrogen()->value()->representation().IsSmi()) {
   4755     __ SmiUntag(input_reg);
   4756   } else {
   4757     DeferredTaggedToI* deferred =
   4758         new(zone()) DeferredTaggedToI(this, instr);
   4759     // Optimistically untag the input.
   4760     // If the input is a HeapObject, SmiUntag will set the carry flag.
   4761     STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   4762     __ SmiUntag(input_reg);
   4763     // Branch to deferred code if the input was tagged.
   4764     // The deferred code will take care of restoring the tag.
   4765     __ j(carry, deferred->entry());
   4766     __ bind(deferred->exit());
   4767   }
   4768 }
   4769 
   4770 
   4771 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
   4772   LOperand* input = instr->value();
   4773   ASSERT(input->IsRegister());
   4774   LOperand* temp = instr->temp();
   4775   ASSERT(temp->IsRegister());
   4776   LOperand* result = instr->result();
   4777   ASSERT(result->IsDoubleRegister());
   4778 
   4779   Register input_reg = ToRegister(input);
   4780   bool deoptimize_on_minus_zero =
   4781       instr->hydrogen()->deoptimize_on_minus_zero();
   4782   Register temp_reg = ToRegister(temp);
   4783 
   4784   HValue* value = instr->hydrogen()->value();
   4785   NumberUntagDMode mode = value->representation().IsSmi()
   4786       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
   4787 
   4788   XMMRegister result_reg = ToDoubleRegister(result);
   4789   EmitNumberUntagD(input_reg,
   4790                    temp_reg,
   4791                    result_reg,
   4792                    instr->hydrogen()->can_convert_undefined_to_nan(),
   4793                    deoptimize_on_minus_zero,
   4794                    instr->environment(),
   4795                    mode);
   4796 }
   4797 
   4798 
   4799 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
   4800   LOperand* input = instr->value();
   4801   ASSERT(input->IsDoubleRegister());
   4802   LOperand* result = instr->result();
   4803   ASSERT(result->IsRegister());
   4804   Register result_reg = ToRegister(result);
   4805 
   4806   if (instr->truncating()) {
   4807     XMMRegister input_reg = ToDoubleRegister(input);
   4808     __ TruncateDoubleToI(result_reg, input_reg);
   4809   } else {
   4810     Label bailout, done;
   4811     XMMRegister input_reg = ToDoubleRegister(input);
   4812     XMMRegister xmm_scratch = double_scratch0();
   4813      __ DoubleToI(result_reg, input_reg, xmm_scratch,
   4814          instr->hydrogen()->GetMinusZeroMode(), &bailout, Label::kNear);
   4815     __ jmp(&done, Label::kNear);
   4816     __ bind(&bailout);
   4817     DeoptimizeIf(no_condition, instr->environment());
   4818     __ bind(&done);
   4819   }
   4820 }
   4821 
   4822 
   4823 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
   4824   LOperand* input = instr->value();
   4825   ASSERT(input->IsDoubleRegister());
   4826   LOperand* result = instr->result();
   4827   ASSERT(result->IsRegister());
   4828   Register result_reg = ToRegister(result);
   4829 
   4830   Label bailout, done;
   4831   XMMRegister input_reg = ToDoubleRegister(input);
   4832   XMMRegister xmm_scratch = double_scratch0();
   4833   __ DoubleToI(result_reg, input_reg, xmm_scratch,
   4834       instr->hydrogen()->GetMinusZeroMode(), &bailout, Label::kNear);
   4835   __ jmp(&done, Label::kNear);
   4836   __ bind(&bailout);
   4837   DeoptimizeIf(no_condition, instr->environment());
   4838   __ bind(&done);
   4839 
   4840   __ SmiTag(result_reg);
   4841   DeoptimizeIf(overflow, instr->environment());
   4842 }
   4843 
   4844 
   4845 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
   4846   LOperand* input = instr->value();
   4847   __ test(ToOperand(input), Immediate(kSmiTagMask));
   4848   DeoptimizeIf(not_zero, instr->environment());
   4849 }
   4850 
   4851 
   4852 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
   4853   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   4854     LOperand* input = instr->value();
   4855     __ test(ToOperand(input), Immediate(kSmiTagMask));
   4856     DeoptimizeIf(zero, instr->environment());
   4857   }
   4858 }
   4859 
   4860 
   4861 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
   4862   Register input = ToRegister(instr->value());
   4863   Register temp = ToRegister(instr->temp());
   4864 
   4865   __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
   4866 
   4867   if (instr->hydrogen()->is_interval_check()) {
   4868     InstanceType first;
   4869     InstanceType last;
   4870     instr->hydrogen()->GetCheckInterval(&first, &last);
   4871 
   4872     __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
   4873             static_cast<int8_t>(first));
   4874 
   4875     // If there is only one type in the interval check for equality.
   4876     if (first == last) {
   4877       DeoptimizeIf(not_equal, instr->environment());
   4878     } else {
   4879       DeoptimizeIf(below, instr->environment());
   4880       // Omit check for the last type.
   4881       if (last != LAST_TYPE) {
   4882         __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
   4883                 static_cast<int8_t>(last));
   4884         DeoptimizeIf(above, instr->environment());
   4885       }
   4886     }
   4887   } else {
   4888     uint8_t mask;
   4889     uint8_t tag;
   4890     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
   4891 
   4892     if (IsPowerOf2(mask)) {
   4893       ASSERT(tag == 0 || IsPowerOf2(tag));
   4894       __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), mask);
   4895       DeoptimizeIf(tag == 0 ? not_zero : zero, instr->environment());
   4896     } else {
   4897       __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
   4898       __ and_(temp, mask);
   4899       __ cmp(temp, tag);
   4900       DeoptimizeIf(not_equal, instr->environment());
   4901     }
   4902   }
   4903 }
   4904 
   4905 
   4906 void LCodeGen::DoCheckValue(LCheckValue* instr) {
   4907   Handle<HeapObject> object = instr->hydrogen()->object().handle();
   4908   if (instr->hydrogen()->object_in_new_space()) {
   4909     Register reg = ToRegister(instr->value());
   4910     Handle<Cell> cell = isolate()->factory()->NewCell(object);
   4911     __ cmp(reg, Operand::ForCell(cell));
   4912   } else {
   4913     Operand operand = ToOperand(instr->value());
   4914     __ cmp(operand, object);
   4915   }
   4916   DeoptimizeIf(not_equal, instr->environment());
   4917 }
   4918 
   4919 
   4920 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
   4921   {
   4922     PushSafepointRegistersScope scope(this);
   4923     __ push(object);
   4924     __ xor_(esi, esi);
   4925     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
   4926     RecordSafepointWithRegisters(
   4927         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
   4928 
   4929     __ test(eax, Immediate(kSmiTagMask));
   4930   }
   4931   DeoptimizeIf(zero, instr->environment());
   4932 }
   4933 
   4934 
   4935 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
   4936   class DeferredCheckMaps V8_FINAL : public LDeferredCode {
   4937    public:
   4938     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr,  Register object)
   4939         : LDeferredCode(codegen), instr_(instr), object_(object) {
   4940       SetExit(check_maps());
   4941     }
   4942     virtual void Generate() V8_OVERRIDE {
   4943       codegen()->DoDeferredInstanceMigration(instr_, object_);
   4944     }
   4945     Label* check_maps() { return &check_maps_; }
   4946     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   4947    private:
   4948     LCheckMaps* instr_;
   4949     Label check_maps_;
   4950     Register object_;
   4951   };
   4952 
   4953   if (instr->hydrogen()->IsStabilityCheck()) {
   4954     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   4955     for (int i = 0; i < maps->size(); ++i) {
   4956       AddStabilityDependency(maps->at(i).handle());
   4957     }
   4958     return;
   4959   }
   4960 
   4961   LOperand* input = instr->value();
   4962   ASSERT(input->IsRegister());
   4963   Register reg = ToRegister(input);
   4964 
   4965   DeferredCheckMaps* deferred = NULL;
   4966   if (instr->hydrogen()->HasMigrationTarget()) {
   4967     deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
   4968     __ bind(deferred->check_maps());
   4969   }
   4970 
   4971   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   4972   Label success;
   4973   for (int i = 0; i < maps->size() - 1; i++) {
   4974     Handle<Map> map = maps->at(i).handle();
   4975     __ CompareMap(reg, map);
   4976     __ j(equal, &success, Label::kNear);
   4977   }
   4978 
   4979   Handle<Map> map = maps->at(maps->size() - 1).handle();
   4980   __ CompareMap(reg, map);
   4981   if (instr->hydrogen()->HasMigrationTarget()) {
   4982     __ j(not_equal, deferred->entry());
   4983   } else {
   4984     DeoptimizeIf(not_equal, instr->environment());
   4985   }
   4986 
   4987   __ bind(&success);
   4988 }
   4989 
   4990 
   4991 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
   4992   XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
   4993   XMMRegister xmm_scratch = double_scratch0();
   4994   Register result_reg = ToRegister(instr->result());
   4995   __ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg);
   4996 }
   4997 
   4998 
   4999 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
   5000   ASSERT(instr->unclamped()->Equals(instr->result()));
   5001   Register value_reg = ToRegister(instr->result());
   5002   __ ClampUint8(value_reg);
   5003 }
   5004 
   5005 
   5006 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
   5007   ASSERT(instr->unclamped()->Equals(instr->result()));
   5008   Register input_reg = ToRegister(instr->unclamped());
   5009   XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm());
   5010   XMMRegister xmm_scratch = double_scratch0();
   5011   Label is_smi, done, heap_number;
   5012 
   5013   __ JumpIfSmi(input_reg, &is_smi);
   5014 
   5015   // Check for heap number
   5016   __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   5017          factory()->heap_number_map());
   5018   __ j(equal, &heap_number, Label::kNear);
   5019 
   5020   // Check for undefined. Undefined is converted to zero for clamping
   5021   // conversions.
   5022   __ cmp(input_reg, factory()->undefined_value());
   5023   DeoptimizeIf(not_equal, instr->environment());
   5024   __ mov(input_reg, 0);
   5025   __ jmp(&done, Label::kNear);
   5026 
   5027   // Heap number
   5028   __ bind(&heap_number);
   5029   __ movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset));
   5030   __ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg);
   5031   __ jmp(&done, Label::kNear);
   5032 
   5033   // smi
   5034   __ bind(&is_smi);
   5035   __ SmiUntag(input_reg);
   5036   __ ClampUint8(input_reg);
   5037   __ bind(&done);
   5038 }
   5039 
   5040 
   5041 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
   5042   XMMRegister value_reg = ToDoubleRegister(instr->value());
   5043   Register result_reg = ToRegister(instr->result());
   5044   if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
   5045     if (CpuFeatures::IsSupported(SSE4_1)) {
   5046       CpuFeatureScope scope2(masm(), SSE4_1);
   5047       __ pextrd(result_reg, value_reg, 1);
   5048     } else {
   5049       XMMRegister xmm_scratch = double_scratch0();
   5050       __ pshufd(xmm_scratch, value_reg, 1);
   5051       __ movd(result_reg, xmm_scratch);
   5052     }
   5053   } else {
   5054     __ movd(result_reg, value_reg);
   5055   }
   5056 }
   5057 
   5058 
   5059 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
   5060   Register hi_reg = ToRegister(instr->hi());
   5061   Register lo_reg = ToRegister(instr->lo());
   5062   XMMRegister result_reg = ToDoubleRegister(instr->result());
   5063 
   5064   if (CpuFeatures::IsSupported(SSE4_1)) {
   5065     CpuFeatureScope scope2(masm(), SSE4_1);
   5066     __ movd(result_reg, lo_reg);
   5067     __ pinsrd(result_reg, hi_reg, 1);
   5068   } else {
   5069     XMMRegister xmm_scratch = double_scratch0();
   5070     __ movd(result_reg, hi_reg);
   5071     __ psllq(result_reg, 32);
   5072     __ movd(xmm_scratch, lo_reg);
   5073     __ orps(result_reg, xmm_scratch);
   5074   }
   5075 }
   5076 
   5077 
   5078 void LCodeGen::DoAllocate(LAllocate* instr) {
   5079   class DeferredAllocate V8_FINAL : public LDeferredCode {
   5080    public:
   5081     DeferredAllocate(LCodeGen* codegen,  LAllocate* instr)
   5082         : LDeferredCode(codegen), instr_(instr) { }
   5083     virtual void Generate() V8_OVERRIDE {
   5084       codegen()->DoDeferredAllocate(instr_);
   5085     }
   5086     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   5087    private:
   5088     LAllocate* instr_;
   5089   };
   5090 
   5091   DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
   5092 
   5093   Register result = ToRegister(instr->result());
   5094   Register temp = ToRegister(instr->temp());
   5095 
   5096   // Allocate memory for the object.
   5097   AllocationFlags flags = TAG_OBJECT;
   5098   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
   5099     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
   5100   }
   5101   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
   5102     ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
   5103     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
   5104     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
   5105   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
   5106     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
   5107     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
   5108   }
   5109 
   5110   if (instr->size()->IsConstantOperand()) {
   5111     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5112     if (size <= Page::kMaxRegularHeapObjectSize) {
   5113       __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
   5114     } else {
   5115       __ jmp(deferred->entry());
   5116     }
   5117   } else {
   5118     Register size = ToRegister(instr->size());
   5119     __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
   5120   }
   5121 
   5122   __ bind(deferred->exit());
   5123 
   5124   if (instr->hydrogen()->MustPrefillWithFiller()) {
   5125     if (instr->size()->IsConstantOperand()) {
   5126       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5127       __ mov(temp, (size / kPointerSize) - 1);
   5128     } else {
   5129       temp = ToRegister(instr->size());
   5130       __ shr(temp, kPointerSizeLog2);
   5131       __ dec(temp);
   5132     }
   5133     Label loop;
   5134     __ bind(&loop);
   5135     __ mov(FieldOperand(result, temp, times_pointer_size, 0),
   5136         isolate()->factory()->one_pointer_filler_map());
   5137     __ dec(temp);
   5138     __ j(not_zero, &loop);
   5139   }
   5140 }
   5141 
   5142 
   5143 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
   5144   Register result = ToRegister(instr->result());
   5145 
   5146   // TODO(3095996): Get rid of this. For now, we need to make the
   5147   // result register contain a valid pointer because it is already
   5148   // contained in the register pointer map.
   5149   __ Move(result, Immediate(Smi::FromInt(0)));
   5150 
   5151   PushSafepointRegistersScope scope(this);
   5152   if (instr->size()->IsRegister()) {
   5153     Register size = ToRegister(instr->size());
   5154     ASSERT(!size.is(result));
   5155     __ SmiTag(ToRegister(instr->size()));
   5156     __ push(size);
   5157   } else {
   5158     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5159     if (size >= 0 && size <= Smi::kMaxValue) {
   5160       __ push(Immediate(Smi::FromInt(size)));
   5161     } else {
   5162       // We should never get here at runtime => abort
   5163       __ int3();
   5164       return;
   5165     }
   5166   }
   5167 
   5168   int flags = AllocateDoubleAlignFlag::encode(
   5169       instr->hydrogen()->MustAllocateDoubleAligned());
   5170   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
   5171     ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
   5172     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
   5173     flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
   5174   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
   5175     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
   5176     flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
   5177   } else {
   5178     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
   5179   }
   5180   __ push(Immediate(Smi::FromInt(flags)));
   5181 
   5182   CallRuntimeFromDeferred(
   5183       Runtime::kHiddenAllocateInTargetSpace, 2, instr, instr->context());
   5184   __ StoreToSafepointRegisterSlot(result, eax);
   5185 }
   5186 
   5187 
   5188 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
   5189   ASSERT(ToRegister(instr->value()).is(eax));
   5190   __ push(eax);
   5191   CallRuntime(Runtime::kToFastProperties, 1, instr);
   5192 }
   5193 
   5194 
   5195 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
   5196   ASSERT(ToRegister(instr->context()).is(esi));
   5197   Label materialized;
   5198   // Registers will be used as follows:
   5199   // ecx = literals array.
   5200   // ebx = regexp literal.
   5201   // eax = regexp literal clone.
   5202   // esi = context.
   5203   int literal_offset =
   5204       FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
   5205   __ LoadHeapObject(ecx, instr->hydrogen()->literals());
   5206   __ mov(ebx, FieldOperand(ecx, literal_offset));
   5207   __ cmp(ebx, factory()->undefined_value());
   5208   __ j(not_equal, &materialized, Label::kNear);
   5209 
   5210   // Create regexp literal using runtime function
   5211   // Result will be in eax.
   5212   __ push(ecx);
   5213   __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
   5214   __ push(Immediate(instr->hydrogen()->pattern()));
   5215   __ push(Immediate(instr->hydrogen()->flags()));
   5216   CallRuntime(Runtime::kHiddenMaterializeRegExpLiteral, 4, instr);
   5217   __ mov(ebx, eax);
   5218 
   5219   __ bind(&materialized);
   5220   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
   5221   Label allocated, runtime_allocate;
   5222   __ Allocate(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
   5223   __ jmp(&allocated, Label::kNear);
   5224 
   5225   __ bind(&runtime_allocate);
   5226   __ push(ebx);
   5227   __ push(Immediate(Smi::FromInt(size)));
   5228   CallRuntime(Runtime::kHiddenAllocateInNewSpace, 1, instr);
   5229   __ pop(ebx);
   5230 
   5231   __ bind(&allocated);
   5232   // Copy the content into the newly allocated memory.
   5233   // (Unroll copy loop once for better throughput).
   5234   for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
   5235     __ mov(edx, FieldOperand(ebx, i));
   5236     __ mov(ecx, FieldOperand(ebx, i + kPointerSize));
   5237     __ mov(FieldOperand(eax, i), edx);
   5238     __ mov(FieldOperand(eax, i + kPointerSize), ecx);
   5239   }
   5240   if ((size % (2 * kPointerSize)) != 0) {
   5241     __ mov(edx, FieldOperand(ebx, size - kPointerSize));
   5242     __ mov(FieldOperand(eax, size - kPointerSize), edx);
   5243   }
   5244 }
   5245 
   5246 
   5247 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
   5248   ASSERT(ToRegister(instr->context()).is(esi));
   5249   // Use the fast case closure allocation code that allocates in new
   5250   // space for nested functions that don't need literals cloning.
   5251   bool pretenure = instr->hydrogen()->pretenure();
   5252   if (!pretenure && instr->hydrogen()->has_no_literals()) {
   5253     FastNewClosureStub stub(isolate(),
   5254                             instr->hydrogen()->strict_mode(),
   5255                             instr->hydrogen()->is_generator());
   5256     __ mov(ebx, Immediate(instr->hydrogen()->shared_info()));
   5257     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   5258   } else {
   5259     __ push(esi);
   5260     __ push(Immediate(instr->hydrogen()->shared_info()));
   5261     __ push(Immediate(pretenure ? factory()->true_value()
   5262                                 : factory()->false_value()));
   5263     CallRuntime(Runtime::kHiddenNewClosure, 3, instr);
   5264   }
   5265 }
   5266 
   5267 
   5268 void LCodeGen::DoTypeof(LTypeof* instr) {
   5269   ASSERT(ToRegister(instr->context()).is(esi));
   5270   LOperand* input = instr->value();
   5271   EmitPushTaggedOperand(input);
   5272   CallRuntime(Runtime::kTypeof, 1, instr);
   5273 }
   5274 
   5275 
   5276 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
   5277   Register input = ToRegister(instr->value());
   5278   Condition final_branch_condition = EmitTypeofIs(instr, input);
   5279   if (final_branch_condition != no_condition) {
   5280     EmitBranch(instr, final_branch_condition);
   5281   }
   5282 }
   5283 
   5284 
   5285 Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
   5286   Label* true_label = instr->TrueLabel(chunk_);
   5287   Label* false_label = instr->FalseLabel(chunk_);
   5288   Handle<String> type_name = instr->type_literal();
   5289   int left_block = instr->TrueDestination(chunk_);
   5290   int right_block = instr->FalseDestination(chunk_);
   5291   int next_block = GetNextEmittedBlock();
   5292 
   5293   Label::Distance true_distance = left_block == next_block ? Label::kNear
   5294                                                            : Label::kFar;
   5295   Label::Distance false_distance = right_block == next_block ? Label::kNear
   5296                                                              : Label::kFar;
   5297   Condition final_branch_condition = no_condition;
   5298   if (String::Equals(type_name, factory()->number_string())) {
   5299     __ JumpIfSmi(input, true_label, true_distance);
   5300     __ cmp(FieldOperand(input, HeapObject::kMapOffset),
   5301            factory()->heap_number_map());
   5302     final_branch_condition = equal;
   5303 
   5304   } else if (String::Equals(type_name, factory()->string_string())) {
   5305     __ JumpIfSmi(input, false_label, false_distance);
   5306     __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
   5307     __ j(above_equal, false_label, false_distance);
   5308     __ test_b(FieldOperand(input, Map::kBitFieldOffset),
   5309               1 << Map::kIsUndetectable);
   5310     final_branch_condition = zero;
   5311 
   5312   } else if (String::Equals(type_name, factory()->symbol_string())) {
   5313     __ JumpIfSmi(input, false_label, false_distance);
   5314     __ CmpObjectType(input, SYMBOL_TYPE, input);
   5315     final_branch_condition = equal;
   5316 
   5317   } else if (String::Equals(type_name, factory()->boolean_string())) {
   5318     __ cmp(input, factory()->true_value());
   5319     __ j(equal, true_label, true_distance);
   5320     __ cmp(input, factory()->false_value());
   5321     final_branch_condition = equal;
   5322 
   5323   } else if (FLAG_harmony_typeof &&
   5324              String::Equals(type_name, factory()->null_string())) {
   5325     __ cmp(input, factory()->null_value());
   5326     final_branch_condition = equal;
   5327 
   5328   } else if (String::Equals(type_name, factory()->undefined_string())) {
   5329     __ cmp(input, factory()->undefined_value());
   5330     __ j(equal, true_label, true_distance);
   5331     __ JumpIfSmi(input, false_label, false_distance);
   5332     // Check for undetectable objects => true.
   5333     __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
   5334     __ test_b(FieldOperand(input, Map::kBitFieldOffset),
   5335               1 << Map::kIsUndetectable);
   5336     final_branch_condition = not_zero;
   5337 
   5338   } else if (String::Equals(type_name, factory()->function_string())) {
   5339     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   5340     __ JumpIfSmi(input, false_label, false_distance);
   5341     __ CmpObjectType(input, JS_FUNCTION_TYPE, input);
   5342     __ j(equal, true_label, true_distance);
   5343     __ CmpInstanceType(input, JS_FUNCTION_PROXY_TYPE);
   5344     final_branch_condition = equal;
   5345 
   5346   } else if (String::Equals(type_name, factory()->object_string())) {
   5347     __ JumpIfSmi(input, false_label, false_distance);
   5348     if (!FLAG_harmony_typeof) {
   5349       __ cmp(input, factory()->null_value());
   5350       __ j(equal, true_label, true_distance);
   5351     }
   5352     __ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input);
   5353     __ j(below, false_label, false_distance);
   5354     __ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
   5355     __ j(above, false_label, false_distance);
   5356     // Check for undetectable objects => false.
   5357     __ test_b(FieldOperand(input, Map::kBitFieldOffset),
   5358               1 << Map::kIsUndetectable);
   5359     final_branch_condition = zero;
   5360 
   5361   } else {
   5362     __ jmp(false_label, false_distance);
   5363   }
   5364   return final_branch_condition;
   5365 }
   5366 
   5367 
   5368 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
   5369   Register temp = ToRegister(instr->temp());
   5370 
   5371   EmitIsConstructCall(temp);
   5372   EmitBranch(instr, equal);
   5373 }
   5374 
   5375 
   5376 void LCodeGen::EmitIsConstructCall(Register temp) {
   5377   // Get the frame pointer for the calling frame.
   5378   __ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   5379 
   5380   // Skip the arguments adaptor frame if it exists.
   5381   Label check_frame_marker;
   5382   __ cmp(Operand(temp, StandardFrameConstants::kContextOffset),
   5383          Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   5384   __ j(not_equal, &check_frame_marker, Label::kNear);
   5385   __ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset));
   5386 
   5387   // Check the marker in the calling frame.
   5388   __ bind(&check_frame_marker);
   5389   __ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
   5390          Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
   5391 }
   5392 
   5393 
   5394 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
   5395   if (!info()->IsStub()) {
   5396     // Ensure that we have enough space after the previous lazy-bailout
   5397     // instruction for patching the code here.
   5398     int current_pc = masm()->pc_offset();
   5399     if (current_pc < last_lazy_deopt_pc_ + space_needed) {
   5400       int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
   5401       __ Nop(padding_size);
   5402     }
   5403   }
   5404   last_lazy_deopt_pc_ = masm()->pc_offset();
   5405 }
   5406 
   5407 
   5408 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
   5409   last_lazy_deopt_pc_ = masm()->pc_offset();
   5410   ASSERT(instr->HasEnvironment());
   5411   LEnvironment* env = instr->environment();
   5412   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   5413   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   5414 }
   5415 
   5416 
   5417 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
   5418   Deoptimizer::BailoutType type = instr->hydrogen()->type();
   5419   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
   5420   // needed return address), even though the implementation of LAZY and EAGER is
   5421   // now identical. When LAZY is eventually completely folded into EAGER, remove
   5422   // the special case below.
   5423   if (info()->IsStub() && type == Deoptimizer::EAGER) {
   5424     type = Deoptimizer::LAZY;
   5425   }
   5426   Comment(";;; deoptimize: %s", instr->hydrogen()->reason());
   5427   DeoptimizeIf(no_condition, instr->environment(), type);
   5428 }
   5429 
   5430 
   5431 void LCodeGen::DoDummy(LDummy* instr) {
   5432   // Nothing to see here, move on!
   5433 }
   5434 
   5435 
   5436 void LCodeGen::DoDummyUse(LDummyUse* instr) {
   5437   // Nothing to see here, move on!
   5438 }
   5439 
   5440 
   5441 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
   5442   PushSafepointRegistersScope scope(this);
   5443   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   5444   __ CallRuntimeSaveDoubles(Runtime::kHiddenStackGuard);
   5445   RecordSafepointWithLazyDeopt(
   5446       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   5447   ASSERT(instr->HasEnvironment());
   5448   LEnvironment* env = instr->environment();
   5449   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   5450 }
   5451 
   5452 
   5453 void LCodeGen::DoStackCheck(LStackCheck* instr) {
   5454   class DeferredStackCheck V8_FINAL : public LDeferredCode {
   5455    public:
   5456     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
   5457         : LDeferredCode(codegen), instr_(instr) { }
   5458     virtual void Generate() V8_OVERRIDE {
   5459       codegen()->DoDeferredStackCheck(instr_);
   5460     }
   5461     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   5462    private:
   5463     LStackCheck* instr_;
   5464   };
   5465 
   5466   ASSERT(instr->HasEnvironment());
   5467   LEnvironment* env = instr->environment();
   5468   // There is no LLazyBailout instruction for stack-checks. We have to
   5469   // prepare for lazy deoptimization explicitly here.
   5470   if (instr->hydrogen()->is_function_entry()) {
   5471     // Perform stack overflow check.
   5472     Label done;
   5473     ExternalReference stack_limit =
   5474         ExternalReference::address_of_stack_limit(isolate());
   5475     __ cmp(esp, Operand::StaticVariable(stack_limit));
   5476     __ j(above_equal, &done, Label::kNear);
   5477 
   5478     ASSERT(instr->context()->IsRegister());
   5479     ASSERT(ToRegister(instr->context()).is(esi));
   5480     CallCode(isolate()->builtins()->StackCheck(),
   5481              RelocInfo::CODE_TARGET,
   5482              instr);
   5483     __ bind(&done);
   5484   } else {
   5485     ASSERT(instr->hydrogen()->is_backwards_branch());
   5486     // Perform stack overflow check if this goto needs it before jumping.
   5487     DeferredStackCheck* deferred_stack_check =
   5488         new(zone()) DeferredStackCheck(this, instr);
   5489     ExternalReference stack_limit =
   5490         ExternalReference::address_of_stack_limit(isolate());
   5491     __ cmp(esp, Operand::StaticVariable(stack_limit));
   5492     __ j(below, deferred_stack_check->entry());
   5493     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
   5494     __ bind(instr->done_label());
   5495     deferred_stack_check->SetExit(instr->done_label());
   5496     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   5497     // Don't record a deoptimization index for the safepoint here.
   5498     // This will be done explicitly when emitting call and the safepoint in
   5499     // the deferred code.
   5500   }
   5501 }
   5502 
   5503 
   5504 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
   5505   // This is a pseudo-instruction that ensures that the environment here is
   5506   // properly registered for deoptimization and records the assembler's PC
   5507   // offset.
   5508   LEnvironment* environment = instr->environment();
   5509 
   5510   // If the environment were already registered, we would have no way of
   5511   // backpatching it with the spill slot operands.
   5512   ASSERT(!environment->HasBeenRegistered());
   5513   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
   5514 
   5515   GenerateOsrPrologue();
   5516 }
   5517 
   5518 
   5519 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
   5520   ASSERT(ToRegister(instr->context()).is(esi));
   5521   __ cmp(eax, isolate()->factory()->undefined_value());
   5522   DeoptimizeIf(equal, instr->environment());
   5523 
   5524   __ cmp(eax, isolate()->factory()->null_value());
   5525   DeoptimizeIf(equal, instr->environment());
   5526 
   5527   __ test(eax, Immediate(kSmiTagMask));
   5528   DeoptimizeIf(zero, instr->environment());
   5529 
   5530   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
   5531   __ CmpObjectType(eax, LAST_JS_PROXY_TYPE, ecx);
   5532   DeoptimizeIf(below_equal, instr->environment());
   5533 
   5534   Label use_cache, call_runtime;
   5535   __ CheckEnumCache(&call_runtime);
   5536 
   5537   __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
   5538   __ jmp(&use_cache, Label::kNear);
   5539 
   5540   // Get the set of properties to enumerate.
   5541   __ bind(&call_runtime);
   5542   __ push(eax);
   5543   CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
   5544 
   5545   __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
   5546          isolate()->factory()->meta_map());
   5547   DeoptimizeIf(not_equal, instr->environment());
   5548   __ bind(&use_cache);
   5549 }
   5550 
   5551 
   5552 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
   5553   Register map = ToRegister(instr->map());
   5554   Register result = ToRegister(instr->result());
   5555   Label load_cache, done;
   5556   __ EnumLength(result, map);
   5557   __ cmp(result, Immediate(Smi::FromInt(0)));
   5558   __ j(not_equal, &load_cache, Label::kNear);
   5559   __ mov(result, isolate()->factory()->empty_fixed_array());
   5560   __ jmp(&done, Label::kNear);
   5561 
   5562   __ bind(&load_cache);
   5563   __ LoadInstanceDescriptors(map, result);
   5564   __ mov(result,
   5565          FieldOperand(result, DescriptorArray::kEnumCacheOffset));
   5566   __ mov(result,
   5567          FieldOperand(result, FixedArray::SizeFor(instr->idx())));
   5568   __ bind(&done);
   5569   __ test(result, result);
   5570   DeoptimizeIf(equal, instr->environment());
   5571 }
   5572 
   5573 
   5574 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
   5575   Register object = ToRegister(instr->value());
   5576   __ cmp(ToRegister(instr->map()),
   5577          FieldOperand(object, HeapObject::kMapOffset));
   5578   DeoptimizeIf(not_equal, instr->environment());
   5579 }
   5580 
   5581 
   5582 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
   5583                                            Register object,
   5584                                            Register index) {
   5585   PushSafepointRegistersScope scope(this);
   5586   __ push(object);
   5587   __ push(index);
   5588   __ xor_(esi, esi);
   5589   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
   5590   RecordSafepointWithRegisters(
   5591       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
   5592   __ StoreToSafepointRegisterSlot(object, eax);
   5593 }
   5594 
   5595 
   5596 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
   5597   class DeferredLoadMutableDouble V8_FINAL : public LDeferredCode {
   5598    public:
   5599     DeferredLoadMutableDouble(LCodeGen* codegen,
   5600                               LLoadFieldByIndex* instr,
   5601                               Register object,
   5602                               Register index)
   5603         : LDeferredCode(codegen),
   5604           instr_(instr),
   5605           object_(object),
   5606           index_(index) {
   5607     }
   5608     virtual void Generate() V8_OVERRIDE {
   5609       codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
   5610     }
   5611     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
   5612    private:
   5613     LLoadFieldByIndex* instr_;
   5614     Register object_;
   5615     Register index_;
   5616   };
   5617 
   5618   Register object = ToRegister(instr->object());
   5619   Register index = ToRegister(instr->index());
   5620 
   5621   DeferredLoadMutableDouble* deferred;
   5622   deferred = new(zone()) DeferredLoadMutableDouble(
   5623       this, instr, object, index);
   5624 
   5625   Label out_of_object, done;
   5626   __ test(index, Immediate(Smi::FromInt(1)));
   5627   __ j(not_zero, deferred->entry());
   5628 
   5629   __ sar(index, 1);
   5630 
   5631   __ cmp(index, Immediate(0));
   5632   __ j(less, &out_of_object, Label::kNear);
   5633   __ mov(object, FieldOperand(object,
   5634                               index,
   5635                               times_half_pointer_size,
   5636                               JSObject::kHeaderSize));
   5637   __ jmp(&done, Label::kNear);
   5638 
   5639   __ bind(&out_of_object);
   5640   __ mov(object, FieldOperand(object, JSObject::kPropertiesOffset));
   5641   __ neg(index);
   5642   // Index is now equal to out of object property index plus 1.
   5643   __ mov(object, FieldOperand(object,
   5644                               index,
   5645                               times_half_pointer_size,
   5646                               FixedArray::kHeaderSize - kPointerSize));
   5647   __ bind(deferred->exit());
   5648   __ bind(&done);
   5649 }
   5650 
   5651 
   5652 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
   5653   Register context = ToRegister(instr->context());
   5654   __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), context);
   5655 }
   5656 
   5657 
   5658 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
   5659   Handle<ScopeInfo> scope_info = instr->scope_info();
   5660   __ Push(scope_info);
   5661   __ push(ToRegister(instr->function()));
   5662   CallRuntime(Runtime::kHiddenPushBlockContext, 2, instr);
   5663   RecordSafepoint(Safepoint::kNoLazyDeopt);
   5664 }
   5665 
   5666 
   5667 #undef __
   5668 
   5669 } }  // namespace v8::internal
   5670 
   5671 #endif  // V8_TARGET_ARCH_IA32
   5672