Home | History | Annotate | Download | only in ia32
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
      6 #define V8_IA32_MACRO_ASSEMBLER_IA32_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/frames.h"
     10 #include "src/globals.h"
     11 
     12 namespace v8 {
     13 namespace internal {
     14 
     15 // Convenience for platform-independent signatures.  We do not normally
     16 // distinguish memory operands from other operands on ia32.
     17 typedef Operand MemOperand;
     18 
     19 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     20 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     21 enum PointersToHereCheck {
     22   kPointersToHereMaybeInteresting,
     23   kPointersToHereAreAlwaysInteresting
     24 };
     25 
     26 
     27 enum RegisterValueType {
     28   REGISTER_VALUE_IS_SMI,
     29   REGISTER_VALUE_IS_INT32
     30 };
     31 
     32 
     33 bool AreAliased(Register r1, Register r2, Register r3, Register r4);
     34 
     35 
     36 // MacroAssembler implements a collection of frequently used macros.
     37 class MacroAssembler: public Assembler {
     38  public:
     39   // The isolate parameter can be NULL if the macro assembler should
     40   // not use isolate-dependent functionality. In this case, it's the
     41   // responsibility of the caller to never invoke such function on the
     42   // macro assembler.
     43   MacroAssembler(Isolate* isolate, void* buffer, int size);
     44 
     45   void Load(Register dst, const Operand& src, Representation r);
     46   void Store(Register src, const Operand& dst, Representation r);
     47 
     48   // Operations on roots in the root-array.
     49   void LoadRoot(Register destination, Heap::RootListIndex index);
     50   void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
     51   void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
     52   // These methods can only be used with constant roots (i.e. non-writable
     53   // and not in new space).
     54   void CompareRoot(Register with, Heap::RootListIndex index);
     55   void CompareRoot(const Operand& with, Heap::RootListIndex index);
     56 
     57   // ---------------------------------------------------------------------------
     58   // GC Support
     59   enum RememberedSetFinalAction {
     60     kReturnAtEnd,
     61     kFallThroughAtEnd
     62   };
     63 
     64   // Record in the remembered set the fact that we have a pointer to new space
     65   // at the address pointed to by the addr register.  Only works if addr is not
     66   // in new space.
     67   void RememberedSetHelper(Register object,  // Used for debug code.
     68                            Register addr,
     69                            Register scratch,
     70                            SaveFPRegsMode save_fp,
     71                            RememberedSetFinalAction and_then);
     72 
     73   void CheckPageFlag(Register object,
     74                      Register scratch,
     75                      int mask,
     76                      Condition cc,
     77                      Label* condition_met,
     78                      Label::Distance condition_met_distance = Label::kFar);
     79 
     80   void CheckPageFlagForMap(
     81       Handle<Map> map,
     82       int mask,
     83       Condition cc,
     84       Label* condition_met,
     85       Label::Distance condition_met_distance = Label::kFar);
     86 
     87   void CheckMapDeprecated(Handle<Map> map,
     88                           Register scratch,
     89                           Label* if_deprecated);
     90 
     91   // Check if object is in new space.  Jumps if the object is not in new space.
     92   // The register scratch can be object itself, but scratch will be clobbered.
     93   void JumpIfNotInNewSpace(Register object,
     94                            Register scratch,
     95                            Label* branch,
     96                            Label::Distance distance = Label::kFar) {
     97     InNewSpace(object, scratch, zero, branch, distance);
     98   }
     99 
    100   // Check if object is in new space.  Jumps if the object is in new space.
    101   // The register scratch can be object itself, but it will be clobbered.
    102   void JumpIfInNewSpace(Register object,
    103                         Register scratch,
    104                         Label* branch,
    105                         Label::Distance distance = Label::kFar) {
    106     InNewSpace(object, scratch, not_zero, branch, distance);
    107   }
    108 
    109   // Check if an object has a given incremental marking color.  Also uses ecx!
    110   void HasColor(Register object,
    111                 Register scratch0,
    112                 Register scratch1,
    113                 Label* has_color,
    114                 Label::Distance has_color_distance,
    115                 int first_bit,
    116                 int second_bit);
    117 
    118   void JumpIfBlack(Register object,
    119                    Register scratch0,
    120                    Register scratch1,
    121                    Label* on_black,
    122                    Label::Distance on_black_distance = Label::kFar);
    123 
    124   // Checks the color of an object.  If the object is already grey or black
    125   // then we just fall through, since it is already live.  If it is white and
    126   // we can determine that it doesn't need to be scanned, then we just mark it
    127   // black and fall through.  For the rest we jump to the label so the
    128   // incremental marker can fix its assumptions.
    129   void EnsureNotWhite(Register object,
    130                       Register scratch1,
    131                       Register scratch2,
    132                       Label* object_is_white_and_not_data,
    133                       Label::Distance distance);
    134 
    135   // Notify the garbage collector that we wrote a pointer into an object.
    136   // |object| is the object being stored into, |value| is the object being
    137   // stored.  value and scratch registers are clobbered by the operation.
    138   // The offset is the offset from the start of the object, not the offset from
    139   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
    140   void RecordWriteField(
    141       Register object,
    142       int offset,
    143       Register value,
    144       Register scratch,
    145       SaveFPRegsMode save_fp,
    146       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    147       SmiCheck smi_check = INLINE_SMI_CHECK,
    148       PointersToHereCheck pointers_to_here_check_for_value =
    149           kPointersToHereMaybeInteresting);
    150 
    151   // As above, but the offset has the tag presubtracted.  For use with
    152   // Operand(reg, off).
    153   void RecordWriteContextSlot(
    154       Register context,
    155       int offset,
    156       Register value,
    157       Register scratch,
    158       SaveFPRegsMode save_fp,
    159       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    160       SmiCheck smi_check = INLINE_SMI_CHECK,
    161       PointersToHereCheck pointers_to_here_check_for_value =
    162           kPointersToHereMaybeInteresting) {
    163     RecordWriteField(context,
    164                      offset + kHeapObjectTag,
    165                      value,
    166                      scratch,
    167                      save_fp,
    168                      remembered_set_action,
    169                      smi_check,
    170                      pointers_to_here_check_for_value);
    171   }
    172 
    173   // Notify the garbage collector that we wrote a pointer into a fixed array.
    174   // |array| is the array being stored into, |value| is the
    175   // object being stored.  |index| is the array index represented as a
    176   // Smi. All registers are clobbered by the operation RecordWriteArray
    177   // filters out smis so it does not update the write barrier if the
    178   // value is a smi.
    179   void RecordWriteArray(
    180       Register array,
    181       Register value,
    182       Register index,
    183       SaveFPRegsMode save_fp,
    184       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    185       SmiCheck smi_check = INLINE_SMI_CHECK,
    186       PointersToHereCheck pointers_to_here_check_for_value =
    187           kPointersToHereMaybeInteresting);
    188 
    189   // For page containing |object| mark region covering |address|
    190   // dirty. |object| is the object being stored into, |value| is the
    191   // object being stored. The address and value registers are clobbered by the
    192   // operation. RecordWrite filters out smis so it does not update the
    193   // write barrier if the value is a smi.
    194   void RecordWrite(
    195       Register object,
    196       Register address,
    197       Register value,
    198       SaveFPRegsMode save_fp,
    199       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    200       SmiCheck smi_check = INLINE_SMI_CHECK,
    201       PointersToHereCheck pointers_to_here_check_for_value =
    202           kPointersToHereMaybeInteresting);
    203 
    204   // For page containing |object| mark the region covering the object's map
    205   // dirty. |object| is the object being stored into, |map| is the Map object
    206   // that was stored.
    207   void RecordWriteForMap(
    208       Register object,
    209       Handle<Map> map,
    210       Register scratch1,
    211       Register scratch2,
    212       SaveFPRegsMode save_fp);
    213 
    214   // ---------------------------------------------------------------------------
    215   // Debugger Support
    216 
    217   void DebugBreak();
    218 
    219   // Generates function and stub prologue code.
    220   void StubPrologue();
    221   void Prologue(bool code_pre_aging);
    222 
    223   // Enter specific kind of exit frame. Expects the number of
    224   // arguments in register eax and sets up the number of arguments in
    225   // register edi and the pointer to the first argument in register
    226   // esi.
    227   void EnterExitFrame(bool save_doubles);
    228 
    229   void EnterApiExitFrame(int argc);
    230 
    231   // Leave the current exit frame. Expects the return value in
    232   // register eax:edx (untouched) and the pointer to the first
    233   // argument in register esi.
    234   void LeaveExitFrame(bool save_doubles);
    235 
    236   // Leave the current exit frame. Expects the return value in
    237   // register eax (untouched).
    238   void LeaveApiExitFrame(bool restore_context);
    239 
    240   // Find the function context up the context chain.
    241   void LoadContext(Register dst, int context_chain_length);
    242 
    243   // Conditionally load the cached Array transitioned map of type
    244   // transitioned_kind from the native context if the map in register
    245   // map_in_out is the cached Array map in the native context of
    246   // expected_kind.
    247   void LoadTransitionedArrayMapConditional(
    248       ElementsKind expected_kind,
    249       ElementsKind transitioned_kind,
    250       Register map_in_out,
    251       Register scratch,
    252       Label* no_map_match);
    253 
    254   // Load the global function with the given index.
    255   void LoadGlobalFunction(int index, Register function);
    256 
    257   // Load the initial map from the global function. The registers
    258   // function and map can be the same.
    259   void LoadGlobalFunctionInitialMap(Register function, Register map);
    260 
    261   // Push and pop the registers that can hold pointers.
    262   void PushSafepointRegisters() { pushad(); }
    263   void PopSafepointRegisters() { popad(); }
    264   // Store the value in register/immediate src in the safepoint
    265   // register stack slot for register dst.
    266   void StoreToSafepointRegisterSlot(Register dst, Register src);
    267   void StoreToSafepointRegisterSlot(Register dst, Immediate src);
    268   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    269 
    270   void LoadHeapObject(Register result, Handle<HeapObject> object);
    271   void CmpHeapObject(Register reg, Handle<HeapObject> object);
    272   void PushHeapObject(Handle<HeapObject> object);
    273 
    274   void LoadObject(Register result, Handle<Object> object) {
    275     AllowDeferredHandleDereference heap_object_check;
    276     if (object->IsHeapObject()) {
    277       LoadHeapObject(result, Handle<HeapObject>::cast(object));
    278     } else {
    279       Move(result, Immediate(object));
    280     }
    281   }
    282 
    283   void CmpObject(Register reg, Handle<Object> object) {
    284     AllowDeferredHandleDereference heap_object_check;
    285     if (object->IsHeapObject()) {
    286       CmpHeapObject(reg, Handle<HeapObject>::cast(object));
    287     } else {
    288       cmp(reg, Immediate(object));
    289     }
    290   }
    291 
    292   // ---------------------------------------------------------------------------
    293   // JavaScript invokes
    294 
    295   // Invoke the JavaScript function code by either calling or jumping.
    296   void InvokeCode(Register code,
    297                   const ParameterCount& expected,
    298                   const ParameterCount& actual,
    299                   InvokeFlag flag,
    300                   const CallWrapper& call_wrapper) {
    301     InvokeCode(Operand(code), expected, actual, flag, call_wrapper);
    302   }
    303 
    304   void InvokeCode(const Operand& code,
    305                   const ParameterCount& expected,
    306                   const ParameterCount& actual,
    307                   InvokeFlag flag,
    308                   const CallWrapper& call_wrapper);
    309 
    310   // Invoke the JavaScript function in the given register. Changes the
    311   // current context to the context in the function before invoking.
    312   void InvokeFunction(Register function,
    313                       const ParameterCount& actual,
    314                       InvokeFlag flag,
    315                       const CallWrapper& call_wrapper);
    316 
    317   void InvokeFunction(Register function,
    318                       const ParameterCount& expected,
    319                       const ParameterCount& actual,
    320                       InvokeFlag flag,
    321                       const CallWrapper& call_wrapper);
    322 
    323   void InvokeFunction(Handle<JSFunction> function,
    324                       const ParameterCount& expected,
    325                       const ParameterCount& actual,
    326                       InvokeFlag flag,
    327                       const CallWrapper& call_wrapper);
    328 
    329   // Invoke specified builtin JavaScript function. Adds an entry to
    330   // the unresolved list if the name does not resolve.
    331   void InvokeBuiltin(Builtins::JavaScript id,
    332                      InvokeFlag flag,
    333                      const CallWrapper& call_wrapper = NullCallWrapper());
    334 
    335   // Store the function for the given builtin in the target register.
    336   void GetBuiltinFunction(Register target, Builtins::JavaScript id);
    337 
    338   // Store the code object for the given builtin in the target register.
    339   void GetBuiltinEntry(Register target, Builtins::JavaScript id);
    340 
    341   // Expression support
    342   // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
    343   // hinders register renaming and makes dependence chains longer. So we use
    344   // xorps to clear the dst register before cvtsi2sd to solve this issue.
    345   void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
    346   void Cvtsi2sd(XMMRegister dst, const Operand& src);
    347 
    348   // Support for constant splitting.
    349   bool IsUnsafeImmediate(const Immediate& x);
    350   void SafeMove(Register dst, const Immediate& x);
    351   void SafePush(const Immediate& x);
    352 
    353   // Compare object type for heap object.
    354   // Incoming register is heap_object and outgoing register is map.
    355   void CmpObjectType(Register heap_object, InstanceType type, Register map);
    356 
    357   // Compare instance type for map.
    358   void CmpInstanceType(Register map, InstanceType type);
    359 
    360   // Check if a map for a JSObject indicates that the object has fast elements.
    361   // Jump to the specified label if it does not.
    362   void CheckFastElements(Register map,
    363                          Label* fail,
    364                          Label::Distance distance = Label::kFar);
    365 
    366   // Check if a map for a JSObject indicates that the object can have both smi
    367   // and HeapObject elements.  Jump to the specified label if it does not.
    368   void CheckFastObjectElements(Register map,
    369                                Label* fail,
    370                                Label::Distance distance = Label::kFar);
    371 
    372   // Check if a map for a JSObject indicates that the object has fast smi only
    373   // elements.  Jump to the specified label if it does not.
    374   void CheckFastSmiElements(Register map,
    375                             Label* fail,
    376                             Label::Distance distance = Label::kFar);
    377 
    378   // Check to see if maybe_number can be stored as a double in
    379   // FastDoubleElements. If it can, store it at the index specified by key in
    380   // the FastDoubleElements array elements, otherwise jump to fail.
    381   void StoreNumberToDoubleElements(Register maybe_number,
    382                                    Register elements,
    383                                    Register key,
    384                                    Register scratch1,
    385                                    XMMRegister scratch2,
    386                                    Label* fail,
    387                                    int offset = 0);
    388 
    389   // Compare an object's map with the specified map.
    390   void CompareMap(Register obj, Handle<Map> map);
    391 
    392   // Check if the map of an object is equal to a specified map and branch to
    393   // label if not. Skip the smi check if not required (object is known to be a
    394   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
    395   // against maps that are ElementsKind transition maps of the specified map.
    396   void CheckMap(Register obj,
    397                 Handle<Map> map,
    398                 Label* fail,
    399                 SmiCheckType smi_check_type);
    400 
    401   // Check if the map of an object is equal to a specified map and branch to a
    402   // specified target if equal. Skip the smi check if not required (object is
    403   // known to be a heap object)
    404   void DispatchMap(Register obj,
    405                    Register unused,
    406                    Handle<Map> map,
    407                    Handle<Code> success,
    408                    SmiCheckType smi_check_type);
    409 
    410   // Check if the object in register heap_object is a string. Afterwards the
    411   // register map contains the object map and the register instance_type
    412   // contains the instance_type. The registers map and instance_type can be the
    413   // same in which case it contains the instance type afterwards. Either of the
    414   // registers map and instance_type can be the same as heap_object.
    415   Condition IsObjectStringType(Register heap_object,
    416                                Register map,
    417                                Register instance_type);
    418 
    419   // Check if the object in register heap_object is a name. Afterwards the
    420   // register map contains the object map and the register instance_type
    421   // contains the instance_type. The registers map and instance_type can be the
    422   // same in which case it contains the instance type afterwards. Either of the
    423   // registers map and instance_type can be the same as heap_object.
    424   Condition IsObjectNameType(Register heap_object,
    425                              Register map,
    426                              Register instance_type);
    427 
    428   // Check if a heap object's type is in the JSObject range, not including
    429   // JSFunction.  The object's map will be loaded in the map register.
    430   // Any or all of the three registers may be the same.
    431   // The contents of the scratch register will always be overwritten.
    432   void IsObjectJSObjectType(Register heap_object,
    433                             Register map,
    434                             Register scratch,
    435                             Label* fail);
    436 
    437   // The contents of the scratch register will be overwritten.
    438   void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
    439 
    440   // FCmp is similar to integer cmp, but requires unsigned
    441   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
    442   void FCmp();
    443 
    444   void ClampUint8(Register reg);
    445 
    446   void ClampDoubleToUint8(XMMRegister input_reg,
    447                           XMMRegister scratch_reg,
    448                           Register result_reg);
    449 
    450   void SlowTruncateToI(Register result_reg, Register input_reg,
    451       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
    452 
    453   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
    454   void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
    455 
    456   void DoubleToI(Register result_reg, XMMRegister input_reg,
    457       XMMRegister scratch, MinusZeroMode minus_zero_mode,
    458       Label* conversion_failed, Label::Distance dst = Label::kFar);
    459 
    460   void TaggedToI(Register result_reg, Register input_reg, XMMRegister temp,
    461       MinusZeroMode minus_zero_mode, Label* lost_precision);
    462 
    463   // Smi tagging support.
    464   void SmiTag(Register reg) {
    465     STATIC_ASSERT(kSmiTag == 0);
    466     STATIC_ASSERT(kSmiTagSize == 1);
    467     add(reg, reg);
    468   }
    469   void SmiUntag(Register reg) {
    470     sar(reg, kSmiTagSize);
    471   }
    472 
    473   // Modifies the register even if it does not contain a Smi!
    474   void SmiUntag(Register reg, Label* is_smi) {
    475     STATIC_ASSERT(kSmiTagSize == 1);
    476     sar(reg, kSmiTagSize);
    477     STATIC_ASSERT(kSmiTag == 0);
    478     j(not_carry, is_smi);
    479   }
    480 
    481   void LoadUint32(XMMRegister dst, Register src);
    482 
    483   // Jump the register contains a smi.
    484   inline void JumpIfSmi(Register value,
    485                         Label* smi_label,
    486                         Label::Distance distance = Label::kFar) {
    487     test(value, Immediate(kSmiTagMask));
    488     j(zero, smi_label, distance);
    489   }
    490   // Jump if the operand is a smi.
    491   inline void JumpIfSmi(Operand value,
    492                         Label* smi_label,
    493                         Label::Distance distance = Label::kFar) {
    494     test(value, Immediate(kSmiTagMask));
    495     j(zero, smi_label, distance);
    496   }
    497   // Jump if register contain a non-smi.
    498   inline void JumpIfNotSmi(Register value,
    499                            Label* not_smi_label,
    500                            Label::Distance distance = Label::kFar) {
    501     test(value, Immediate(kSmiTagMask));
    502     j(not_zero, not_smi_label, distance);
    503   }
    504 
    505   void LoadInstanceDescriptors(Register map, Register descriptors);
    506   void EnumLength(Register dst, Register map);
    507   void NumberOfOwnDescriptors(Register dst, Register map);
    508 
    509   template<typename Field>
    510   void DecodeField(Register reg) {
    511     static const int shift = Field::kShift;
    512     static const int mask = Field::kMask >> Field::kShift;
    513     if (shift != 0) {
    514       sar(reg, shift);
    515     }
    516     and_(reg, Immediate(mask));
    517   }
    518 
    519   template<typename Field>
    520   void DecodeFieldToSmi(Register reg) {
    521     static const int shift = Field::kShift;
    522     static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
    523     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
    524     STATIC_ASSERT(kSmiTag == 0);
    525     if (shift < kSmiTagSize) {
    526       shl(reg, kSmiTagSize - shift);
    527     } else if (shift > kSmiTagSize) {
    528       sar(reg, shift - kSmiTagSize);
    529     }
    530     and_(reg, Immediate(mask));
    531   }
    532 
    533   void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
    534 
    535   // Abort execution if argument is not a number, enabled via --debug-code.
    536   void AssertNumber(Register object);
    537 
    538   // Abort execution if argument is not a smi, enabled via --debug-code.
    539   void AssertSmi(Register object);
    540 
    541   // Abort execution if argument is a smi, enabled via --debug-code.
    542   void AssertNotSmi(Register object);
    543 
    544   // Abort execution if argument is not a string, enabled via --debug-code.
    545   void AssertString(Register object);
    546 
    547   // Abort execution if argument is not a name, enabled via --debug-code.
    548   void AssertName(Register object);
    549 
    550   // Abort execution if argument is not undefined or an AllocationSite, enabled
    551   // via --debug-code.
    552   void AssertUndefinedOrAllocationSite(Register object);
    553 
    554   // ---------------------------------------------------------------------------
    555   // Exception handling
    556 
    557   // Push a new try handler and link it into try handler chain.
    558   void PushTryHandler(StackHandler::Kind kind, int handler_index);
    559 
    560   // Unlink the stack handler on top of the stack from the try handler chain.
    561   void PopTryHandler();
    562 
    563   // Throw to the top handler in the try hander chain.
    564   void Throw(Register value);
    565 
    566   // Throw past all JS frames to the top JS entry frame.
    567   void ThrowUncatchable(Register value);
    568 
    569   // ---------------------------------------------------------------------------
    570   // Inline caching support
    571 
    572   // Generate code for checking access rights - used for security checks
    573   // on access to global objects across environments. The holder register
    574   // is left untouched, but the scratch register is clobbered.
    575   void CheckAccessGlobalProxy(Register holder_reg,
    576                               Register scratch1,
    577                               Register scratch2,
    578                               Label* miss);
    579 
    580   void GetNumberHash(Register r0, Register scratch);
    581 
    582   void LoadFromNumberDictionary(Label* miss,
    583                                 Register elements,
    584                                 Register key,
    585                                 Register r0,
    586                                 Register r1,
    587                                 Register r2,
    588                                 Register result);
    589 
    590 
    591   // ---------------------------------------------------------------------------
    592   // Allocation support
    593 
    594   // Allocate an object in new space or old pointer space. If the given space
    595   // is exhausted control continues at the gc_required label. The allocated
    596   // object is returned in result and end of the new object is returned in
    597   // result_end. The register scratch can be passed as no_reg in which case
    598   // an additional object reference will be added to the reloc info. The
    599   // returned pointers in result and result_end have not yet been tagged as
    600   // heap objects. If result_contains_top_on_entry is true the content of
    601   // result is known to be the allocation top on entry (could be result_end
    602   // from a previous call). If result_contains_top_on_entry is true scratch
    603   // should be no_reg as it is never used.
    604   void Allocate(int object_size,
    605                 Register result,
    606                 Register result_end,
    607                 Register scratch,
    608                 Label* gc_required,
    609                 AllocationFlags flags);
    610 
    611   void Allocate(int header_size,
    612                 ScaleFactor element_size,
    613                 Register element_count,
    614                 RegisterValueType element_count_type,
    615                 Register result,
    616                 Register result_end,
    617                 Register scratch,
    618                 Label* gc_required,
    619                 AllocationFlags flags);
    620 
    621   void Allocate(Register object_size,
    622                 Register result,
    623                 Register result_end,
    624                 Register scratch,
    625                 Label* gc_required,
    626                 AllocationFlags flags);
    627 
    628   // Undo allocation in new space. The object passed and objects allocated after
    629   // it will no longer be allocated. Make sure that no pointers are left to the
    630   // object(s) no longer allocated as they would be invalid when allocation is
    631   // un-done.
    632   void UndoAllocationInNewSpace(Register object);
    633 
    634   // Allocate a heap number in new space with undefined value. The
    635   // register scratch2 can be passed as no_reg; the others must be
    636   // valid registers. Returns tagged pointer in result register, or
    637   // jumps to gc_required if new space is full.
    638   void AllocateHeapNumber(Register result,
    639                           Register scratch1,
    640                           Register scratch2,
    641                           Label* gc_required);
    642 
    643   // Allocate a sequential string. All the header fields of the string object
    644   // are initialized.
    645   void AllocateTwoByteString(Register result,
    646                              Register length,
    647                              Register scratch1,
    648                              Register scratch2,
    649                              Register scratch3,
    650                              Label* gc_required);
    651   void AllocateAsciiString(Register result,
    652                            Register length,
    653                            Register scratch1,
    654                            Register scratch2,
    655                            Register scratch3,
    656                            Label* gc_required);
    657   void AllocateAsciiString(Register result,
    658                            int length,
    659                            Register scratch1,
    660                            Register scratch2,
    661                            Label* gc_required);
    662 
    663   // Allocate a raw cons string object. Only the map field of the result is
    664   // initialized.
    665   void AllocateTwoByteConsString(Register result,
    666                           Register scratch1,
    667                           Register scratch2,
    668                           Label* gc_required);
    669   void AllocateAsciiConsString(Register result,
    670                                Register scratch1,
    671                                Register scratch2,
    672                                Label* gc_required);
    673 
    674   // Allocate a raw sliced string object. Only the map field of the result is
    675   // initialized.
    676   void AllocateTwoByteSlicedString(Register result,
    677                             Register scratch1,
    678                             Register scratch2,
    679                             Label* gc_required);
    680   void AllocateAsciiSlicedString(Register result,
    681                                  Register scratch1,
    682                                  Register scratch2,
    683                                  Label* gc_required);
    684 
    685   // Copy memory, byte-by-byte, from source to destination.  Not optimized for
    686   // long or aligned copies.
    687   // The contents of index and scratch are destroyed.
    688   void CopyBytes(Register source,
    689                  Register destination,
    690                  Register length,
    691                  Register scratch);
    692 
    693   // Initialize fields with filler values.  Fields starting at |start_offset|
    694   // not including end_offset are overwritten with the value in |filler|.  At
    695   // the end the loop, |start_offset| takes the value of |end_offset|.
    696   void InitializeFieldsWithFiller(Register start_offset,
    697                                   Register end_offset,
    698                                   Register filler);
    699 
    700   // ---------------------------------------------------------------------------
    701   // Support functions.
    702 
    703   // Check a boolean-bit of a Smi field.
    704   void BooleanBitTest(Register object, int field_offset, int bit_index);
    705 
    706   // Check if result is zero and op is negative.
    707   void NegativeZeroTest(Register result, Register op, Label* then_label);
    708 
    709   // Check if result is zero and any of op1 and op2 are negative.
    710   // Register scratch is destroyed, and it must be different from op2.
    711   void NegativeZeroTest(Register result, Register op1, Register op2,
    712                         Register scratch, Label* then_label);
    713 
    714   // Try to get function prototype of a function and puts the value in
    715   // the result register. Checks that the function really is a
    716   // function and jumps to the miss label if the fast checks fail. The
    717   // function register will be untouched; the other registers may be
    718   // clobbered.
    719   void TryGetFunctionPrototype(Register function,
    720                                Register result,
    721                                Register scratch,
    722                                Label* miss,
    723                                bool miss_on_bound_function = false);
    724 
    725   // Picks out an array index from the hash field.
    726   // Register use:
    727   //   hash - holds the index's hash. Clobbered.
    728   //   index - holds the overwritten index on exit.
    729   void IndexFromHash(Register hash, Register index);
    730 
    731   // ---------------------------------------------------------------------------
    732   // Runtime calls
    733 
    734   // Call a code stub.  Generate the code if necessary.
    735   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
    736 
    737   // Tail call a code stub (jump).  Generate the code if necessary.
    738   void TailCallStub(CodeStub* stub);
    739 
    740   // Return from a code stub after popping its arguments.
    741   void StubReturn(int argc);
    742 
    743   // Call a runtime routine.
    744   void CallRuntime(const Runtime::Function* f,
    745                    int num_arguments,
    746                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
    747   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
    748     const Runtime::Function* function = Runtime::FunctionForId(id);
    749     CallRuntime(function, function->nargs, kSaveFPRegs);
    750   }
    751 
    752   // Convenience function: Same as above, but takes the fid instead.
    753   void CallRuntime(Runtime::FunctionId id,
    754                    int num_arguments,
    755                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    756     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
    757   }
    758 
    759   // Convenience function: call an external reference.
    760   void CallExternalReference(ExternalReference ref, int num_arguments);
    761 
    762   // Tail call of a runtime routine (jump).
    763   // Like JumpToExternalReference, but also takes care of passing the number
    764   // of parameters.
    765   void TailCallExternalReference(const ExternalReference& ext,
    766                                  int num_arguments,
    767                                  int result_size);
    768 
    769   // Convenience function: tail call a runtime routine (jump).
    770   void TailCallRuntime(Runtime::FunctionId fid,
    771                        int num_arguments,
    772                        int result_size);
    773 
    774   // Before calling a C-function from generated code, align arguments on stack.
    775   // After aligning the frame, arguments must be stored in esp[0], esp[4],
    776   // etc., not pushed. The argument count assumes all arguments are word sized.
    777   // Some compilers/platforms require the stack to be aligned when calling
    778   // C++ code.
    779   // Needs a scratch register to do some arithmetic. This register will be
    780   // trashed.
    781   void PrepareCallCFunction(int num_arguments, Register scratch);
    782 
    783   // Calls a C function and cleans up the space for arguments allocated
    784   // by PrepareCallCFunction. The called function is not allowed to trigger a
    785   // garbage collection, since that might move the code and invalidate the
    786   // return address (unless this is somehow accounted for by the called
    787   // function).
    788   void CallCFunction(ExternalReference function, int num_arguments);
    789   void CallCFunction(Register function, int num_arguments);
    790 
    791   // Prepares stack to put arguments (aligns and so on). Reserves
    792   // space for return value if needed (assumes the return value is a handle).
    793   // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
    794   // etc. Saves context (esi). If space was reserved for return value then
    795   // stores the pointer to the reserved slot into esi.
    796   void PrepareCallApiFunction(int argc);
    797 
    798   // Calls an API function.  Allocates HandleScope, extracts returned value
    799   // from handle and propagates exceptions.  Clobbers ebx, edi and
    800   // caller-save registers.  Restores context.  On return removes
    801   // stack_space * kPointerSize (GCed).
    802   void CallApiFunctionAndReturn(Register function_address,
    803                                 ExternalReference thunk_ref,
    804                                 Operand thunk_last_arg,
    805                                 int stack_space,
    806                                 Operand return_value_operand,
    807                                 Operand* context_restore_operand);
    808 
    809   // Jump to a runtime routine.
    810   void JumpToExternalReference(const ExternalReference& ext);
    811 
    812   // ---------------------------------------------------------------------------
    813   // Utilities
    814 
    815   void Ret();
    816 
    817   // Return and drop arguments from stack, where the number of arguments
    818   // may be bigger than 2^16 - 1.  Requires a scratch register.
    819   void Ret(int bytes_dropped, Register scratch);
    820 
    821   // Emit code to discard a non-negative number of pointer-sized elements
    822   // from the stack, clobbering only the esp register.
    823   void Drop(int element_count);
    824 
    825   void Call(Label* target) { call(target); }
    826   void Push(Register src) { push(src); }
    827   void Pop(Register dst) { pop(dst); }
    828 
    829   // Emit call to the code we are currently generating.
    830   void CallSelf() {
    831     Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
    832     call(self, RelocInfo::CODE_TARGET);
    833   }
    834 
    835   // Move if the registers are not identical.
    836   void Move(Register target, Register source);
    837 
    838   // Move a constant into a destination using the most efficient encoding.
    839   void Move(Register dst, const Immediate& x);
    840   void Move(const Operand& dst, const Immediate& x);
    841 
    842   // Move an immediate into an XMM register.
    843   void Move(XMMRegister dst, double val);
    844 
    845   // Push a handle value.
    846   void Push(Handle<Object> handle) { push(Immediate(handle)); }
    847   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
    848 
    849   Handle<Object> CodeObject() {
    850     ASSERT(!code_object_.is_null());
    851     return code_object_;
    852   }
    853 
    854   // Emit code for a truncating division by a constant. The dividend register is
    855   // unchanged, the result is in edx, and eax gets clobbered.
    856   void TruncatingDiv(Register dividend, int32_t divisor);
    857 
    858   // ---------------------------------------------------------------------------
    859   // StatsCounter support
    860 
    861   void SetCounter(StatsCounter* counter, int value);
    862   void IncrementCounter(StatsCounter* counter, int value);
    863   void DecrementCounter(StatsCounter* counter, int value);
    864   void IncrementCounter(Condition cc, StatsCounter* counter, int value);
    865   void DecrementCounter(Condition cc, StatsCounter* counter, int value);
    866 
    867 
    868   // ---------------------------------------------------------------------------
    869   // Debugging
    870 
    871   // Calls Abort(msg) if the condition cc is not satisfied.
    872   // Use --debug_code to enable.
    873   void Assert(Condition cc, BailoutReason reason);
    874 
    875   void AssertFastElements(Register elements);
    876 
    877   // Like Assert(), but always enabled.
    878   void Check(Condition cc, BailoutReason reason);
    879 
    880   // Print a message to stdout and abort execution.
    881   void Abort(BailoutReason reason);
    882 
    883   // Check that the stack is aligned.
    884   void CheckStackAlignment();
    885 
    886   // Verify restrictions about code generated in stubs.
    887   void set_generating_stub(bool value) { generating_stub_ = value; }
    888   bool generating_stub() { return generating_stub_; }
    889   void set_has_frame(bool value) { has_frame_ = value; }
    890   bool has_frame() { return has_frame_; }
    891   inline bool AllowThisStubCall(CodeStub* stub);
    892 
    893   // ---------------------------------------------------------------------------
    894   // String utilities.
    895 
    896   // Generate code to do a lookup in the number string cache. If the number in
    897   // the register object is found in the cache the generated code falls through
    898   // with the result in the result register. The object and the result register
    899   // can be the same. If the number is not found in the cache the code jumps to
    900   // the label not_found with only the content of register object unchanged.
    901   void LookupNumberStringCache(Register object,
    902                                Register result,
    903                                Register scratch1,
    904                                Register scratch2,
    905                                Label* not_found);
    906 
    907   // Check whether the instance type represents a flat ASCII string. Jump to the
    908   // label if not. If the instance type can be scratched specify same register
    909   // for both instance type and scratch.
    910   void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,
    911                                               Register scratch,
    912                                               Label* on_not_flat_ascii_string);
    913 
    914   // Checks if both objects are sequential ASCII strings, and jumps to label
    915   // if either is not.
    916   void JumpIfNotBothSequentialAsciiStrings(Register object1,
    917                                            Register object2,
    918                                            Register scratch1,
    919                                            Register scratch2,
    920                                            Label* on_not_flat_ascii_strings);
    921 
    922   // Checks if the given register or operand is a unique name
    923   void JumpIfNotUniqueName(Register reg, Label* not_unique_name,
    924                            Label::Distance distance = Label::kFar) {
    925     JumpIfNotUniqueName(Operand(reg), not_unique_name, distance);
    926   }
    927 
    928   void JumpIfNotUniqueName(Operand operand, Label* not_unique_name,
    929                            Label::Distance distance = Label::kFar);
    930 
    931   void EmitSeqStringSetCharCheck(Register string,
    932                                  Register index,
    933                                  Register value,
    934                                  uint32_t encoding_mask);
    935 
    936   static int SafepointRegisterStackIndex(Register reg) {
    937     return SafepointRegisterStackIndex(reg.code());
    938   }
    939 
    940   // Activation support.
    941   void EnterFrame(StackFrame::Type type);
    942   void LeaveFrame(StackFrame::Type type);
    943 
    944   // Expects object in eax and returns map with validated enum cache
    945   // in eax.  Assumes that any other register can be used as a scratch.
    946   void CheckEnumCache(Label* call_runtime);
    947 
    948   // AllocationMemento support. Arrays may have an associated
    949   // AllocationMemento object that can be checked for in order to pretransition
    950   // to another type.
    951   // On entry, receiver_reg should point to the array object.
    952   // scratch_reg gets clobbered.
    953   // If allocation info is present, conditional code is set to equal.
    954   void TestJSArrayForAllocationMemento(Register receiver_reg,
    955                                        Register scratch_reg,
    956                                        Label* no_memento_found);
    957 
    958   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
    959                                          Register scratch_reg,
    960                                          Label* memento_found) {
    961     Label no_memento_found;
    962     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
    963                                     &no_memento_found);
    964     j(equal, memento_found);
    965     bind(&no_memento_found);
    966   }
    967 
    968   // Jumps to found label if a prototype map has dictionary elements.
    969   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
    970                                         Register scratch1, Label* found);
    971 
    972  private:
    973   bool generating_stub_;
    974   bool has_frame_;
    975   // This handle will be patched with the code object on installation.
    976   Handle<Object> code_object_;
    977 
    978   // Helper functions for generating invokes.
    979   void InvokePrologue(const ParameterCount& expected,
    980                       const ParameterCount& actual,
    981                       Handle<Code> code_constant,
    982                       const Operand& code_operand,
    983                       Label* done,
    984                       bool* definitely_mismatches,
    985                       InvokeFlag flag,
    986                       Label::Distance done_distance,
    987                       const CallWrapper& call_wrapper = NullCallWrapper());
    988 
    989   void EnterExitFramePrologue();
    990   void EnterExitFrameEpilogue(int argc, bool save_doubles);
    991 
    992   void LeaveExitFrameEpilogue(bool restore_context);
    993 
    994   // Allocation support helpers.
    995   void LoadAllocationTopHelper(Register result,
    996                                Register scratch,
    997                                AllocationFlags flags);
    998 
    999   void UpdateAllocationTopHelper(Register result_end,
   1000                                  Register scratch,
   1001                                  AllocationFlags flags);
   1002 
   1003   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1004   void InNewSpace(Register object,
   1005                   Register scratch,
   1006                   Condition cc,
   1007                   Label* condition_met,
   1008                   Label::Distance condition_met_distance = Label::kFar);
   1009 
   1010   // Helper for finding the mark bits for an address.  Afterwards, the
   1011   // bitmap register points at the word with the mark bits and the mask
   1012   // the position of the first bit.  Uses ecx as scratch and leaves addr_reg
   1013   // unchanged.
   1014   inline void GetMarkBits(Register addr_reg,
   1015                           Register bitmap_reg,
   1016                           Register mask_reg);
   1017 
   1018   // Helper for throwing exceptions.  Compute a handler address and jump to
   1019   // it.  See the implementation for register usage.
   1020   void JumpToHandlerEntry();
   1021 
   1022   // Compute memory operands for safepoint stack slots.
   1023   Operand SafepointRegisterSlot(Register reg);
   1024   static int SafepointRegisterStackIndex(int reg_code);
   1025 
   1026   // Needs access to SafepointRegisterStackIndex for compiled frame
   1027   // traversal.
   1028   friend class StandardFrame;
   1029 };
   1030 
   1031 
   1032 // The code patcher is used to patch (typically) small parts of code e.g. for
   1033 // debugging and other types of instrumentation. When using the code patcher
   1034 // the exact number of bytes specified must be emitted. Is not legal to emit
   1035 // relocation information. If any of these constraints are violated it causes
   1036 // an assertion.
   1037 class CodePatcher {
   1038  public:
   1039   CodePatcher(byte* address, int size);
   1040   virtual ~CodePatcher();
   1041 
   1042   // Macro assembler to emit code.
   1043   MacroAssembler* masm() { return &masm_; }
   1044 
   1045  private:
   1046   byte* address_;  // The address of the code being patched.
   1047   int size_;  // Number of bytes of the expected patch size.
   1048   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1049 };
   1050 
   1051 
   1052 // -----------------------------------------------------------------------------
   1053 // Static helper functions.
   1054 
   1055 // Generate an Operand for loading a field from an object.
   1056 inline Operand FieldOperand(Register object, int offset) {
   1057   return Operand(object, offset - kHeapObjectTag);
   1058 }
   1059 
   1060 
   1061 // Generate an Operand for loading an indexed field from an object.
   1062 inline Operand FieldOperand(Register object,
   1063                             Register index,
   1064                             ScaleFactor scale,
   1065                             int offset) {
   1066   return Operand(object, index, scale, offset - kHeapObjectTag);
   1067 }
   1068 
   1069 
   1070 inline Operand FixedArrayElementOperand(Register array,
   1071                                         Register index_as_smi,
   1072                                         int additional_offset = 0) {
   1073   int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
   1074   return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
   1075 }
   1076 
   1077 
   1078 inline Operand ContextOperand(Register context, int index) {
   1079   return Operand(context, Context::SlotOffset(index));
   1080 }
   1081 
   1082 
   1083 inline Operand GlobalObjectOperand() {
   1084   return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
   1085 }
   1086 
   1087 
   1088 // Generates an Operand for saving parameters after PrepareCallApiFunction.
   1089 Operand ApiParameterOperand(int index);
   1090 
   1091 
   1092 #ifdef GENERATED_CODE_COVERAGE
   1093 extern void LogGeneratedCodeCoverage(const char* file_line);
   1094 #define CODE_COVERAGE_STRINGIFY(x) #x
   1095 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
   1096 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
   1097 #define ACCESS_MASM(masm) {                                               \
   1098     byte* ia32_coverage_function =                                        \
   1099         reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
   1100     masm->pushfd();                                                       \
   1101     masm->pushad();                                                       \
   1102     masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
   1103     masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY);         \
   1104     masm->pop(eax);                                                       \
   1105     masm->popad();                                                        \
   1106     masm->popfd();                                                        \
   1107   }                                                                       \
   1108   masm->
   1109 #else
   1110 #define ACCESS_MASM(masm) masm->
   1111 #endif
   1112 
   1113 
   1114 } }  // namespace v8::internal
   1115 
   1116 #endif  // V8_IA32_MACRO_ASSEMBLER_IA32_H_
   1117