Home | History | Annotate | Download | only in mips
      1 
      2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      3 // All Rights Reserved.
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 // - Redistributions of source code must retain the above copyright notice,
     10 // this list of conditions and the following disclaimer.
     11 //
     12 // - Redistribution in binary form must reproduce the above copyright
     13 // notice, this list of conditions and the following disclaimer in the
     14 // documentation and/or other materials provided with the distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     31 
     32 // The original source code covered by the above license above has been
     33 // modified significantly by Google Inc.
     34 // Copyright 2012 the V8 project authors. All rights reserved.
     35 
     36 
     37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
     38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
     39 
     40 #include "src/mips/assembler-mips.h"
     41 
     42 #include "src/cpu.h"
     43 #include "src/debug.h"
     44 
     45 
     46 namespace v8 {
     47 namespace internal {
     48 
     49 
     50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
     51 
     52 
     53 // -----------------------------------------------------------------------------
     54 // Operand and MemOperand.
     55 
     56 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
     57   rm_ = no_reg;
     58   imm32_ = immediate;
     59   rmode_ = rmode;
     60 }
     61 
     62 
     63 Operand::Operand(const ExternalReference& f)  {
     64   rm_ = no_reg;
     65   imm32_ = reinterpret_cast<int32_t>(f.address());
     66   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
     67 }
     68 
     69 
     70 Operand::Operand(Smi* value) {
     71   rm_ = no_reg;
     72   imm32_ =  reinterpret_cast<intptr_t>(value);
     73   rmode_ = RelocInfo::NONE32;
     74 }
     75 
     76 
     77 Operand::Operand(Register rm) {
     78   rm_ = rm;
     79 }
     80 
     81 
     82 bool Operand::is_reg() const {
     83   return rm_.is_valid();
     84 }
     85 
     86 
     87 int Register::NumAllocatableRegisters() {
     88     return kMaxNumAllocatableRegisters;
     89 }
     90 
     91 
     92 int DoubleRegister::NumRegisters() {
     93     return FPURegister::kMaxNumRegisters;
     94 }
     95 
     96 
     97 int DoubleRegister::NumAllocatableRegisters() {
     98     return FPURegister::kMaxNumAllocatableRegisters;
     99 }
    100 
    101 
    102 int FPURegister::ToAllocationIndex(FPURegister reg) {
    103   ASSERT(reg.code() % 2 == 0);
    104   ASSERT(reg.code() / 2 < kMaxNumAllocatableRegisters);
    105   ASSERT(reg.is_valid());
    106   ASSERT(!reg.is(kDoubleRegZero));
    107   ASSERT(!reg.is(kLithiumScratchDouble));
    108   return (reg.code() / 2);
    109 }
    110 
    111 
    112 // -----------------------------------------------------------------------------
    113 // RelocInfo.
    114 
    115 void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) {
    116   if (IsCodeTarget(rmode_)) {
    117     uint32_t scope1 = (uint32_t) target_address() & ~kImm28Mask;
    118     uint32_t scope2 = reinterpret_cast<uint32_t>(pc_) & ~kImm28Mask;
    119 
    120     if (scope1 != scope2) {
    121       Assembler::JumpLabelToJumpRegister(pc_);
    122     }
    123   }
    124   if (IsInternalReference(rmode_)) {
    125     // Absolute code pointer inside code object moves with the code object.
    126     byte* p = reinterpret_cast<byte*>(pc_);
    127     int count = Assembler::RelocateInternalReference(p, delta);
    128     CPU::FlushICache(p, count * sizeof(uint32_t));
    129   }
    130 }
    131 
    132 
    133 Address RelocInfo::target_address() {
    134   ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
    135   return Assembler::target_address_at(pc_, host_);
    136 }
    137 
    138 
    139 Address RelocInfo::target_address_address() {
    140   ASSERT(IsCodeTarget(rmode_) ||
    141          IsRuntimeEntry(rmode_) ||
    142          rmode_ == EMBEDDED_OBJECT ||
    143          rmode_ == EXTERNAL_REFERENCE);
    144   // Read the address of the word containing the target_address in an
    145   // instruction stream.
    146   // The only architecture-independent user of this function is the serializer.
    147   // The serializer uses it to find out how many raw bytes of instruction to
    148   // output before the next target.
    149   // For an instruction like LUI/ORI where the target bits are mixed into the
    150   // instruction bits, the size of the target will be zero, indicating that the
    151   // serializer should not step forward in memory after a target is resolved
    152   // and written. In this case the target_address_address function should
    153   // return the end of the instructions to be patched, allowing the
    154   // deserializer to deserialize the instructions as raw bytes and put them in
    155   // place, ready to be patched with the target. After jump optimization,
    156   // that is the address of the instruction that follows J/JAL/JR/JALR
    157   // instruction.
    158   return reinterpret_cast<Address>(
    159     pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
    160 }
    161 
    162 
    163 Address RelocInfo::constant_pool_entry_address() {
    164   UNREACHABLE();
    165   return NULL;
    166 }
    167 
    168 
    169 int RelocInfo::target_address_size() {
    170   return Assembler::kSpecialTargetSize;
    171 }
    172 
    173 
    174 void RelocInfo::set_target_address(Address target,
    175                                    WriteBarrierMode write_barrier_mode,
    176                                    ICacheFlushMode icache_flush_mode) {
    177   ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
    178   Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
    179   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
    180       host() != NULL && IsCodeTarget(rmode_)) {
    181     Object* target_code = Code::GetCodeFromTargetAddress(target);
    182     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    183         host(), this, HeapObject::cast(target_code));
    184   }
    185 }
    186 
    187 
    188 Address Assembler::target_address_from_return_address(Address pc) {
    189   return pc - kCallTargetAddressOffset;
    190 }
    191 
    192 
    193 Object* RelocInfo::target_object() {
    194   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    195   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
    196 }
    197 
    198 
    199 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
    200   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    201   return Handle<Object>(reinterpret_cast<Object**>(
    202       Assembler::target_address_at(pc_, host_)));
    203 }
    204 
    205 
    206 void RelocInfo::set_target_object(Object* target,
    207                                   WriteBarrierMode write_barrier_mode,
    208                                   ICacheFlushMode icache_flush_mode) {
    209   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    210   ASSERT(!target->IsConsString());
    211   Assembler::set_target_address_at(pc_, host_,
    212                                    reinterpret_cast<Address>(target),
    213                                    icache_flush_mode);
    214   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
    215       host() != NULL &&
    216       target->IsHeapObject()) {
    217     host()->GetHeap()->incremental_marking()->RecordWrite(
    218         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
    219   }
    220 }
    221 
    222 
    223 Address RelocInfo::target_reference() {
    224   ASSERT(rmode_ == EXTERNAL_REFERENCE);
    225   return Assembler::target_address_at(pc_, host_);
    226 }
    227 
    228 
    229 Address RelocInfo::target_runtime_entry(Assembler* origin) {
    230   ASSERT(IsRuntimeEntry(rmode_));
    231   return target_address();
    232 }
    233 
    234 
    235 void RelocInfo::set_target_runtime_entry(Address target,
    236                                          WriteBarrierMode write_barrier_mode,
    237                                          ICacheFlushMode icache_flush_mode) {
    238   ASSERT(IsRuntimeEntry(rmode_));
    239   if (target_address() != target)
    240     set_target_address(target, write_barrier_mode, icache_flush_mode);
    241 }
    242 
    243 
    244 Handle<Cell> RelocInfo::target_cell_handle() {
    245   ASSERT(rmode_ == RelocInfo::CELL);
    246   Address address = Memory::Address_at(pc_);
    247   return Handle<Cell>(reinterpret_cast<Cell**>(address));
    248 }
    249 
    250 
    251 Cell* RelocInfo::target_cell() {
    252   ASSERT(rmode_ == RelocInfo::CELL);
    253   return Cell::FromValueAddress(Memory::Address_at(pc_));
    254 }
    255 
    256 
    257 void RelocInfo::set_target_cell(Cell* cell,
    258                                 WriteBarrierMode write_barrier_mode,
    259                                 ICacheFlushMode icache_flush_mode) {
    260   ASSERT(rmode_ == RelocInfo::CELL);
    261   Address address = cell->address() + Cell::kValueOffset;
    262   Memory::Address_at(pc_) = address;
    263   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
    264     // TODO(1550) We are passing NULL as a slot because cell can never be on
    265     // evacuation candidate.
    266     host()->GetHeap()->incremental_marking()->RecordWrite(
    267         host(), NULL, cell);
    268   }
    269 }
    270 
    271 
    272 static const int kNoCodeAgeSequenceLength = 7 * Assembler::kInstrSize;
    273 
    274 
    275 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
    276   UNREACHABLE();  // This should never be reached on Arm.
    277   return Handle<Object>();
    278 }
    279 
    280 
    281 Code* RelocInfo::code_age_stub() {
    282   ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    283   return Code::GetCodeFromTargetAddress(
    284       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
    285 }
    286 
    287 
    288 void RelocInfo::set_code_age_stub(Code* stub,
    289                                   ICacheFlushMode icache_flush_mode) {
    290   ASSERT(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    291   Assembler::set_target_address_at(pc_ + Assembler::kInstrSize,
    292                                    host_,
    293                                    stub->instruction_start());
    294 }
    295 
    296 
    297 Address RelocInfo::call_address() {
    298   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
    299          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
    300   // The pc_ offset of 0 assumes mips patched return sequence per
    301   // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
    302   // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
    303   return Assembler::target_address_at(pc_, host_);
    304 }
    305 
    306 
    307 void RelocInfo::set_call_address(Address target) {
    308   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
    309          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
    310   // The pc_ offset of 0 assumes mips patched return sequence per
    311   // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
    312   // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
    313   Assembler::set_target_address_at(pc_, host_, target);
    314   if (host() != NULL) {
    315     Object* target_code = Code::GetCodeFromTargetAddress(target);
    316     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    317         host(), this, HeapObject::cast(target_code));
    318   }
    319 }
    320 
    321 
    322 Object* RelocInfo::call_object() {
    323   return *call_object_address();
    324 }
    325 
    326 
    327 Object** RelocInfo::call_object_address() {
    328   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
    329          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
    330   return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
    331 }
    332 
    333 
    334 void RelocInfo::set_call_object(Object* target) {
    335   *call_object_address() = target;
    336 }
    337 
    338 
    339 void RelocInfo::WipeOut() {
    340   ASSERT(IsEmbeddedObject(rmode_) ||
    341          IsCodeTarget(rmode_) ||
    342          IsRuntimeEntry(rmode_) ||
    343          IsExternalReference(rmode_));
    344   Assembler::set_target_address_at(pc_, host_, NULL);
    345 }
    346 
    347 
    348 bool RelocInfo::IsPatchedReturnSequence() {
    349   Instr instr0 = Assembler::instr_at(pc_);
    350   Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
    351   Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize);
    352   bool patched_return = ((instr0 & kOpcodeMask) == LUI &&
    353                          (instr1 & kOpcodeMask) == ORI &&
    354                          ((instr2 & kOpcodeMask) == JAL ||
    355                           ((instr2 & kOpcodeMask) == SPECIAL &&
    356                            (instr2 & kFunctionFieldMask) == JALR)));
    357   return patched_return;
    358 }
    359 
    360 
    361 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
    362   Instr current_instr = Assembler::instr_at(pc_);
    363   return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
    364 }
    365 
    366 
    367 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
    368   RelocInfo::Mode mode = rmode();
    369   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    370     visitor->VisitEmbeddedPointer(this);
    371   } else if (RelocInfo::IsCodeTarget(mode)) {
    372     visitor->VisitCodeTarget(this);
    373   } else if (mode == RelocInfo::CELL) {
    374     visitor->VisitCell(this);
    375   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    376     visitor->VisitExternalReference(this);
    377   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    378     visitor->VisitCodeAgeSequence(this);
    379   } else if (((RelocInfo::IsJSReturn(mode) &&
    380               IsPatchedReturnSequence()) ||
    381              (RelocInfo::IsDebugBreakSlot(mode) &&
    382              IsPatchedDebugBreakSlotSequence())) &&
    383              isolate->debug()->has_break_points()) {
    384     visitor->VisitDebugTarget(this);
    385   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    386     visitor->VisitRuntimeEntry(this);
    387   }
    388 }
    389 
    390 
    391 template<typename StaticVisitor>
    392 void RelocInfo::Visit(Heap* heap) {
    393   RelocInfo::Mode mode = rmode();
    394   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    395     StaticVisitor::VisitEmbeddedPointer(heap, this);
    396   } else if (RelocInfo::IsCodeTarget(mode)) {
    397     StaticVisitor::VisitCodeTarget(heap, this);
    398   } else if (mode == RelocInfo::CELL) {
    399     StaticVisitor::VisitCell(heap, this);
    400   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    401     StaticVisitor::VisitExternalReference(this);
    402   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    403     StaticVisitor::VisitCodeAgeSequence(heap, this);
    404   } else if (heap->isolate()->debug()->has_break_points() &&
    405              ((RelocInfo::IsJSReturn(mode) &&
    406               IsPatchedReturnSequence()) ||
    407              (RelocInfo::IsDebugBreakSlot(mode) &&
    408               IsPatchedDebugBreakSlotSequence()))) {
    409     StaticVisitor::VisitDebugTarget(heap, this);
    410   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    411     StaticVisitor::VisitRuntimeEntry(this);
    412   }
    413 }
    414 
    415 
    416 // -----------------------------------------------------------------------------
    417 // Assembler.
    418 
    419 
    420 void Assembler::CheckBuffer() {
    421   if (buffer_space() <= kGap) {
    422     GrowBuffer();
    423   }
    424 }
    425 
    426 
    427 void Assembler::CheckTrampolinePoolQuick() {
    428   if (pc_offset() >= next_buffer_check_) {
    429     CheckTrampolinePool();
    430   }
    431 }
    432 
    433 
    434 void Assembler::emit(Instr x) {
    435   if (!is_buffer_growth_blocked()) {
    436     CheckBuffer();
    437   }
    438   *reinterpret_cast<Instr*>(pc_) = x;
    439   pc_ += kInstrSize;
    440   CheckTrampolinePoolQuick();
    441 }
    442 
    443 
    444 } }  // namespace v8::internal
    445 
    446 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
    447