1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/v8.h" 6 7 #include "src/accessors.h" 8 #include "src/api.h" 9 #include "src/bootstrapper.h" 10 #include "src/deoptimizer.h" 11 #include "src/execution.h" 12 #include "src/global-handles.h" 13 #include "src/ic-inl.h" 14 #include "src/natives.h" 15 #include "src/platform.h" 16 #include "src/runtime.h" 17 #include "src/serialize.h" 18 #include "src/snapshot.h" 19 #include "src/stub-cache.h" 20 #include "src/v8threads.h" 21 22 namespace v8 { 23 namespace internal { 24 25 26 // ----------------------------------------------------------------------------- 27 // Coding of external references. 28 29 // The encoding of an external reference. The type is in the high word. 30 // The id is in the low word. 31 static uint32_t EncodeExternal(TypeCode type, uint16_t id) { 32 return static_cast<uint32_t>(type) << 16 | id; 33 } 34 35 36 static int* GetInternalPointer(StatsCounter* counter) { 37 // All counters refer to dummy_counter, if deserializing happens without 38 // setting up counters. 39 static int dummy_counter = 0; 40 return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter; 41 } 42 43 44 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) { 45 ExternalReferenceTable* external_reference_table = 46 isolate->external_reference_table(); 47 if (external_reference_table == NULL) { 48 external_reference_table = new ExternalReferenceTable(isolate); 49 isolate->set_external_reference_table(external_reference_table); 50 } 51 return external_reference_table; 52 } 53 54 55 void ExternalReferenceTable::AddFromId(TypeCode type, 56 uint16_t id, 57 const char* name, 58 Isolate* isolate) { 59 Address address; 60 switch (type) { 61 case C_BUILTIN: { 62 ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate); 63 address = ref.address(); 64 break; 65 } 66 case BUILTIN: { 67 ExternalReference ref(static_cast<Builtins::Name>(id), isolate); 68 address = ref.address(); 69 break; 70 } 71 case RUNTIME_FUNCTION: { 72 ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate); 73 address = ref.address(); 74 break; 75 } 76 case IC_UTILITY: { 77 ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)), 78 isolate); 79 address = ref.address(); 80 break; 81 } 82 default: 83 UNREACHABLE(); 84 return; 85 } 86 Add(address, type, id, name); 87 } 88 89 90 void ExternalReferenceTable::Add(Address address, 91 TypeCode type, 92 uint16_t id, 93 const char* name) { 94 ASSERT_NE(NULL, address); 95 ExternalReferenceEntry entry; 96 entry.address = address; 97 entry.code = EncodeExternal(type, id); 98 entry.name = name; 99 ASSERT_NE(0, entry.code); 100 refs_.Add(entry); 101 if (id > max_id_[type]) max_id_[type] = id; 102 } 103 104 105 void ExternalReferenceTable::PopulateTable(Isolate* isolate) { 106 for (int type_code = 0; type_code < kTypeCodeCount; type_code++) { 107 max_id_[type_code] = 0; 108 } 109 110 // The following populates all of the different type of external references 111 // into the ExternalReferenceTable. 112 // 113 // NOTE: This function was originally 100k of code. It has since been 114 // rewritten to be mostly table driven, as the callback macro style tends to 115 // very easily cause code bloat. Please be careful in the future when adding 116 // new references. 117 118 struct RefTableEntry { 119 TypeCode type; 120 uint16_t id; 121 const char* name; 122 }; 123 124 static const RefTableEntry ref_table[] = { 125 // Builtins 126 #define DEF_ENTRY_C(name, ignored) \ 127 { C_BUILTIN, \ 128 Builtins::c_##name, \ 129 "Builtins::" #name }, 130 131 BUILTIN_LIST_C(DEF_ENTRY_C) 132 #undef DEF_ENTRY_C 133 134 #define DEF_ENTRY_C(name, ignored) \ 135 { BUILTIN, \ 136 Builtins::k##name, \ 137 "Builtins::" #name }, 138 #define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored) 139 140 BUILTIN_LIST_C(DEF_ENTRY_C) 141 BUILTIN_LIST_A(DEF_ENTRY_A) 142 BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A) 143 #undef DEF_ENTRY_C 144 #undef DEF_ENTRY_A 145 146 // Runtime functions 147 #define RUNTIME_ENTRY(name, nargs, ressize) \ 148 { RUNTIME_FUNCTION, \ 149 Runtime::k##name, \ 150 "Runtime::" #name }, 151 152 RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY) 153 INLINE_OPTIMIZED_FUNCTION_LIST(RUNTIME_ENTRY) 154 #undef RUNTIME_ENTRY 155 156 #define RUNTIME_HIDDEN_ENTRY(name, nargs, ressize) \ 157 { RUNTIME_FUNCTION, \ 158 Runtime::kHidden##name, \ 159 "Runtime::Hidden" #name }, 160 161 RUNTIME_HIDDEN_FUNCTION_LIST(RUNTIME_HIDDEN_ENTRY) 162 #undef RUNTIME_HIDDEN_ENTRY 163 164 #define INLINE_OPTIMIZED_ENTRY(name, nargs, ressize) \ 165 { RUNTIME_FUNCTION, \ 166 Runtime::kInlineOptimized##name, \ 167 "Runtime::" #name }, 168 169 INLINE_OPTIMIZED_FUNCTION_LIST(INLINE_OPTIMIZED_ENTRY) 170 #undef INLINE_OPTIMIZED_ENTRY 171 172 // IC utilities 173 #define IC_ENTRY(name) \ 174 { IC_UTILITY, \ 175 IC::k##name, \ 176 "IC::" #name }, 177 178 IC_UTIL_LIST(IC_ENTRY) 179 #undef IC_ENTRY 180 }; // end of ref_table[]. 181 182 for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) { 183 AddFromId(ref_table[i].type, 184 ref_table[i].id, 185 ref_table[i].name, 186 isolate); 187 } 188 189 // Stat counters 190 struct StatsRefTableEntry { 191 StatsCounter* (Counters::*counter)(); 192 uint16_t id; 193 const char* name; 194 }; 195 196 const StatsRefTableEntry stats_ref_table[] = { 197 #define COUNTER_ENTRY(name, caption) \ 198 { &Counters::name, \ 199 Counters::k_##name, \ 200 "Counters::" #name }, 201 202 STATS_COUNTER_LIST_1(COUNTER_ENTRY) 203 STATS_COUNTER_LIST_2(COUNTER_ENTRY) 204 #undef COUNTER_ENTRY 205 }; // end of stats_ref_table[]. 206 207 Counters* counters = isolate->counters(); 208 for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) { 209 Add(reinterpret_cast<Address>(GetInternalPointer( 210 (counters->*(stats_ref_table[i].counter))())), 211 STATS_COUNTER, 212 stats_ref_table[i].id, 213 stats_ref_table[i].name); 214 } 215 216 // Top addresses 217 218 const char* AddressNames[] = { 219 #define BUILD_NAME_LITERAL(CamelName, hacker_name) \ 220 "Isolate::" #hacker_name "_address", 221 FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) 222 NULL 223 #undef BUILD_NAME_LITERAL 224 }; 225 226 for (uint16_t i = 0; i < Isolate::kIsolateAddressCount; ++i) { 227 Add(isolate->get_address_from_id((Isolate::AddressId)i), 228 TOP_ADDRESS, i, AddressNames[i]); 229 } 230 231 // Accessors 232 #define ACCESSOR_INFO_DECLARATION(name) \ 233 Add(FUNCTION_ADDR(&Accessors::name##Getter), \ 234 ACCESSOR, \ 235 Accessors::k##name##Getter, \ 236 "Accessors::" #name "Getter"); \ 237 Add(FUNCTION_ADDR(&Accessors::name##Setter), \ 238 ACCESSOR, \ 239 Accessors::k##name##Setter, \ 240 "Accessors::" #name "Setter"); 241 ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION) 242 #undef ACCESSOR_INFO_DECLARATION 243 244 StubCache* stub_cache = isolate->stub_cache(); 245 246 // Stub cache tables 247 Add(stub_cache->key_reference(StubCache::kPrimary).address(), 248 STUB_CACHE_TABLE, 249 1, 250 "StubCache::primary_->key"); 251 Add(stub_cache->value_reference(StubCache::kPrimary).address(), 252 STUB_CACHE_TABLE, 253 2, 254 "StubCache::primary_->value"); 255 Add(stub_cache->map_reference(StubCache::kPrimary).address(), 256 STUB_CACHE_TABLE, 257 3, 258 "StubCache::primary_->map"); 259 Add(stub_cache->key_reference(StubCache::kSecondary).address(), 260 STUB_CACHE_TABLE, 261 4, 262 "StubCache::secondary_->key"); 263 Add(stub_cache->value_reference(StubCache::kSecondary).address(), 264 STUB_CACHE_TABLE, 265 5, 266 "StubCache::secondary_->value"); 267 Add(stub_cache->map_reference(StubCache::kSecondary).address(), 268 STUB_CACHE_TABLE, 269 6, 270 "StubCache::secondary_->map"); 271 272 // Runtime entries 273 Add(ExternalReference::delete_handle_scope_extensions(isolate).address(), 274 RUNTIME_ENTRY, 275 4, 276 "HandleScope::DeleteExtensions"); 277 Add(ExternalReference:: 278 incremental_marking_record_write_function(isolate).address(), 279 RUNTIME_ENTRY, 280 5, 281 "IncrementalMarking::RecordWrite"); 282 Add(ExternalReference::store_buffer_overflow_function(isolate).address(), 283 RUNTIME_ENTRY, 284 6, 285 "StoreBuffer::StoreBufferOverflow"); 286 287 // Miscellaneous 288 Add(ExternalReference::roots_array_start(isolate).address(), 289 UNCLASSIFIED, 290 3, 291 "Heap::roots_array_start()"); 292 Add(ExternalReference::address_of_stack_limit(isolate).address(), 293 UNCLASSIFIED, 294 4, 295 "StackGuard::address_of_jslimit()"); 296 Add(ExternalReference::address_of_real_stack_limit(isolate).address(), 297 UNCLASSIFIED, 298 5, 299 "StackGuard::address_of_real_jslimit()"); 300 #ifndef V8_INTERPRETED_REGEXP 301 Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(), 302 UNCLASSIFIED, 303 6, 304 "RegExpStack::limit_address()"); 305 Add(ExternalReference::address_of_regexp_stack_memory_address( 306 isolate).address(), 307 UNCLASSIFIED, 308 7, 309 "RegExpStack::memory_address()"); 310 Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(), 311 UNCLASSIFIED, 312 8, 313 "RegExpStack::memory_size()"); 314 Add(ExternalReference::address_of_static_offsets_vector(isolate).address(), 315 UNCLASSIFIED, 316 9, 317 "OffsetsVector::static_offsets_vector"); 318 #endif // V8_INTERPRETED_REGEXP 319 Add(ExternalReference::new_space_start(isolate).address(), 320 UNCLASSIFIED, 321 10, 322 "Heap::NewSpaceStart()"); 323 Add(ExternalReference::new_space_mask(isolate).address(), 324 UNCLASSIFIED, 325 11, 326 "Heap::NewSpaceMask()"); 327 Add(ExternalReference::new_space_allocation_limit_address(isolate).address(), 328 UNCLASSIFIED, 329 14, 330 "Heap::NewSpaceAllocationLimitAddress()"); 331 Add(ExternalReference::new_space_allocation_top_address(isolate).address(), 332 UNCLASSIFIED, 333 15, 334 "Heap::NewSpaceAllocationTopAddress()"); 335 Add(ExternalReference::debug_break(isolate).address(), 336 UNCLASSIFIED, 337 16, 338 "Debug::Break()"); 339 Add(ExternalReference::debug_step_in_fp_address(isolate).address(), 340 UNCLASSIFIED, 341 17, 342 "Debug::step_in_fp_addr()"); 343 Add(ExternalReference::mod_two_doubles_operation(isolate).address(), 344 UNCLASSIFIED, 345 22, 346 "mod_two_doubles"); 347 #ifndef V8_INTERPRETED_REGEXP 348 Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(), 349 UNCLASSIFIED, 350 24, 351 "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()"); 352 Add(ExternalReference::re_check_stack_guard_state(isolate).address(), 353 UNCLASSIFIED, 354 25, 355 "RegExpMacroAssembler*::CheckStackGuardState()"); 356 Add(ExternalReference::re_grow_stack(isolate).address(), 357 UNCLASSIFIED, 358 26, 359 "NativeRegExpMacroAssembler::GrowStack()"); 360 Add(ExternalReference::re_word_character_map().address(), 361 UNCLASSIFIED, 362 27, 363 "NativeRegExpMacroAssembler::word_character_map"); 364 #endif // V8_INTERPRETED_REGEXP 365 // Keyed lookup cache. 366 Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(), 367 UNCLASSIFIED, 368 28, 369 "KeyedLookupCache::keys()"); 370 Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(), 371 UNCLASSIFIED, 372 29, 373 "KeyedLookupCache::field_offsets()"); 374 Add(ExternalReference::handle_scope_next_address(isolate).address(), 375 UNCLASSIFIED, 376 31, 377 "HandleScope::next"); 378 Add(ExternalReference::handle_scope_limit_address(isolate).address(), 379 UNCLASSIFIED, 380 32, 381 "HandleScope::limit"); 382 Add(ExternalReference::handle_scope_level_address(isolate).address(), 383 UNCLASSIFIED, 384 33, 385 "HandleScope::level"); 386 Add(ExternalReference::new_deoptimizer_function(isolate).address(), 387 UNCLASSIFIED, 388 34, 389 "Deoptimizer::New()"); 390 Add(ExternalReference::compute_output_frames_function(isolate).address(), 391 UNCLASSIFIED, 392 35, 393 "Deoptimizer::ComputeOutputFrames()"); 394 Add(ExternalReference::address_of_min_int().address(), 395 UNCLASSIFIED, 396 36, 397 "LDoubleConstant::min_int"); 398 Add(ExternalReference::address_of_one_half().address(), 399 UNCLASSIFIED, 400 37, 401 "LDoubleConstant::one_half"); 402 Add(ExternalReference::isolate_address(isolate).address(), 403 UNCLASSIFIED, 404 38, 405 "isolate"); 406 Add(ExternalReference::address_of_minus_zero().address(), 407 UNCLASSIFIED, 408 39, 409 "LDoubleConstant::minus_zero"); 410 Add(ExternalReference::address_of_negative_infinity().address(), 411 UNCLASSIFIED, 412 40, 413 "LDoubleConstant::negative_infinity"); 414 Add(ExternalReference::power_double_double_function(isolate).address(), 415 UNCLASSIFIED, 416 41, 417 "power_double_double_function"); 418 Add(ExternalReference::power_double_int_function(isolate).address(), 419 UNCLASSIFIED, 420 42, 421 "power_double_int_function"); 422 Add(ExternalReference::store_buffer_top(isolate).address(), 423 UNCLASSIFIED, 424 43, 425 "store_buffer_top"); 426 Add(ExternalReference::address_of_canonical_non_hole_nan().address(), 427 UNCLASSIFIED, 428 44, 429 "canonical_nan"); 430 Add(ExternalReference::address_of_the_hole_nan().address(), 431 UNCLASSIFIED, 432 45, 433 "the_hole_nan"); 434 Add(ExternalReference::get_date_field_function(isolate).address(), 435 UNCLASSIFIED, 436 46, 437 "JSDate::GetField"); 438 Add(ExternalReference::date_cache_stamp(isolate).address(), 439 UNCLASSIFIED, 440 47, 441 "date_cache_stamp"); 442 Add(ExternalReference::address_of_pending_message_obj(isolate).address(), 443 UNCLASSIFIED, 444 48, 445 "address_of_pending_message_obj"); 446 Add(ExternalReference::address_of_has_pending_message(isolate).address(), 447 UNCLASSIFIED, 448 49, 449 "address_of_has_pending_message"); 450 Add(ExternalReference::address_of_pending_message_script(isolate).address(), 451 UNCLASSIFIED, 452 50, 453 "pending_message_script"); 454 Add(ExternalReference::get_make_code_young_function(isolate).address(), 455 UNCLASSIFIED, 456 51, 457 "Code::MakeCodeYoung"); 458 Add(ExternalReference::cpu_features().address(), 459 UNCLASSIFIED, 460 52, 461 "cpu_features"); 462 Add(ExternalReference(Runtime::kHiddenAllocateInNewSpace, isolate).address(), 463 UNCLASSIFIED, 464 53, 465 "Runtime::AllocateInNewSpace"); 466 Add(ExternalReference( 467 Runtime::kHiddenAllocateInTargetSpace, isolate).address(), 468 UNCLASSIFIED, 469 54, 470 "Runtime::AllocateInTargetSpace"); 471 Add(ExternalReference::old_pointer_space_allocation_top_address( 472 isolate).address(), 473 UNCLASSIFIED, 474 55, 475 "Heap::OldPointerSpaceAllocationTopAddress"); 476 Add(ExternalReference::old_pointer_space_allocation_limit_address( 477 isolate).address(), 478 UNCLASSIFIED, 479 56, 480 "Heap::OldPointerSpaceAllocationLimitAddress"); 481 Add(ExternalReference::old_data_space_allocation_top_address( 482 isolate).address(), 483 UNCLASSIFIED, 484 57, 485 "Heap::OldDataSpaceAllocationTopAddress"); 486 Add(ExternalReference::old_data_space_allocation_limit_address( 487 isolate).address(), 488 UNCLASSIFIED, 489 58, 490 "Heap::OldDataSpaceAllocationLimitAddress"); 491 Add(ExternalReference::allocation_sites_list_address(isolate).address(), 492 UNCLASSIFIED, 493 59, 494 "Heap::allocation_sites_list_address()"); 495 Add(ExternalReference::address_of_uint32_bias().address(), 496 UNCLASSIFIED, 497 60, 498 "uint32_bias"); 499 Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(), 500 UNCLASSIFIED, 501 61, 502 "Code::MarkCodeAsExecuted"); 503 504 Add(ExternalReference::is_profiling_address(isolate).address(), 505 UNCLASSIFIED, 506 62, 507 "CpuProfiler::is_profiling"); 508 509 Add(ExternalReference::scheduled_exception_address(isolate).address(), 510 UNCLASSIFIED, 511 63, 512 "Isolate::scheduled_exception"); 513 514 Add(ExternalReference::invoke_function_callback(isolate).address(), 515 UNCLASSIFIED, 516 64, 517 "InvokeFunctionCallback"); 518 519 Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(), 520 UNCLASSIFIED, 521 65, 522 "InvokeAccessorGetterCallback"); 523 524 // Debug addresses 525 Add(ExternalReference::debug_after_break_target_address(isolate).address(), 526 UNCLASSIFIED, 527 66, 528 "Debug::after_break_target_address()"); 529 530 Add(ExternalReference::debug_restarter_frame_function_pointer_address( 531 isolate).address(), 532 UNCLASSIFIED, 533 67, 534 "Debug::restarter_frame_function_pointer_address()"); 535 536 // Add a small set of deopt entry addresses to encoder without generating the 537 // deopt table code, which isn't possible at deserialization time. 538 HandleScope scope(isolate); 539 for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) { 540 Address address = Deoptimizer::GetDeoptimizationEntry( 541 isolate, 542 entry, 543 Deoptimizer::LAZY, 544 Deoptimizer::CALCULATE_ENTRY_ADDRESS); 545 Add(address, LAZY_DEOPTIMIZATION, entry, "lazy_deopt"); 546 } 547 } 548 549 550 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) 551 : encodings_(HashMap::PointersMatch), 552 isolate_(isolate) { 553 ExternalReferenceTable* external_references = 554 ExternalReferenceTable::instance(isolate_); 555 for (int i = 0; i < external_references->size(); ++i) { 556 Put(external_references->address(i), i); 557 } 558 } 559 560 561 uint32_t ExternalReferenceEncoder::Encode(Address key) const { 562 int index = IndexOf(key); 563 ASSERT(key == NULL || index >= 0); 564 return index >= 0 ? 565 ExternalReferenceTable::instance(isolate_)->code(index) : 0; 566 } 567 568 569 const char* ExternalReferenceEncoder::NameOfAddress(Address key) const { 570 int index = IndexOf(key); 571 return index >= 0 ? 572 ExternalReferenceTable::instance(isolate_)->name(index) : NULL; 573 } 574 575 576 int ExternalReferenceEncoder::IndexOf(Address key) const { 577 if (key == NULL) return -1; 578 HashMap::Entry* entry = 579 const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false); 580 return entry == NULL 581 ? -1 582 : static_cast<int>(reinterpret_cast<intptr_t>(entry->value)); 583 } 584 585 586 void ExternalReferenceEncoder::Put(Address key, int index) { 587 HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true); 588 entry->value = reinterpret_cast<void*>(index); 589 } 590 591 592 ExternalReferenceDecoder::ExternalReferenceDecoder(Isolate* isolate) 593 : encodings_(NewArray<Address*>(kTypeCodeCount)), 594 isolate_(isolate) { 595 ExternalReferenceTable* external_references = 596 ExternalReferenceTable::instance(isolate_); 597 for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) { 598 int max = external_references->max_id(type) + 1; 599 encodings_[type] = NewArray<Address>(max + 1); 600 } 601 for (int i = 0; i < external_references->size(); ++i) { 602 Put(external_references->code(i), external_references->address(i)); 603 } 604 } 605 606 607 ExternalReferenceDecoder::~ExternalReferenceDecoder() { 608 for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) { 609 DeleteArray(encodings_[type]); 610 } 611 DeleteArray(encodings_); 612 } 613 614 615 class CodeAddressMap: public CodeEventLogger { 616 public: 617 explicit CodeAddressMap(Isolate* isolate) 618 : isolate_(isolate) { 619 isolate->logger()->addCodeEventListener(this); 620 } 621 622 virtual ~CodeAddressMap() { 623 isolate_->logger()->removeCodeEventListener(this); 624 } 625 626 virtual void CodeMoveEvent(Address from, Address to) { 627 address_to_name_map_.Move(from, to); 628 } 629 630 virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) { 631 } 632 633 virtual void CodeDeleteEvent(Address from) { 634 address_to_name_map_.Remove(from); 635 } 636 637 const char* Lookup(Address address) { 638 return address_to_name_map_.Lookup(address); 639 } 640 641 private: 642 class NameMap { 643 public: 644 NameMap() : impl_(HashMap::PointersMatch) {} 645 646 ~NameMap() { 647 for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) { 648 DeleteArray(static_cast<const char*>(p->value)); 649 } 650 } 651 652 void Insert(Address code_address, const char* name, int name_size) { 653 HashMap::Entry* entry = FindOrCreateEntry(code_address); 654 if (entry->value == NULL) { 655 entry->value = CopyName(name, name_size); 656 } 657 } 658 659 const char* Lookup(Address code_address) { 660 HashMap::Entry* entry = FindEntry(code_address); 661 return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL; 662 } 663 664 void Remove(Address code_address) { 665 HashMap::Entry* entry = FindEntry(code_address); 666 if (entry != NULL) { 667 DeleteArray(static_cast<char*>(entry->value)); 668 RemoveEntry(entry); 669 } 670 } 671 672 void Move(Address from, Address to) { 673 if (from == to) return; 674 HashMap::Entry* from_entry = FindEntry(from); 675 ASSERT(from_entry != NULL); 676 void* value = from_entry->value; 677 RemoveEntry(from_entry); 678 HashMap::Entry* to_entry = FindOrCreateEntry(to); 679 ASSERT(to_entry->value == NULL); 680 to_entry->value = value; 681 } 682 683 private: 684 static char* CopyName(const char* name, int name_size) { 685 char* result = NewArray<char>(name_size + 1); 686 for (int i = 0; i < name_size; ++i) { 687 char c = name[i]; 688 if (c == '\0') c = ' '; 689 result[i] = c; 690 } 691 result[name_size] = '\0'; 692 return result; 693 } 694 695 HashMap::Entry* FindOrCreateEntry(Address code_address) { 696 return impl_.Lookup(code_address, ComputePointerHash(code_address), true); 697 } 698 699 HashMap::Entry* FindEntry(Address code_address) { 700 return impl_.Lookup(code_address, 701 ComputePointerHash(code_address), 702 false); 703 } 704 705 void RemoveEntry(HashMap::Entry* entry) { 706 impl_.Remove(entry->key, entry->hash); 707 } 708 709 HashMap impl_; 710 711 DISALLOW_COPY_AND_ASSIGN(NameMap); 712 }; 713 714 virtual void LogRecordedBuffer(Code* code, 715 SharedFunctionInfo*, 716 const char* name, 717 int length) { 718 address_to_name_map_.Insert(code->address(), name, length); 719 } 720 721 NameMap address_to_name_map_; 722 Isolate* isolate_; 723 }; 724 725 726 Deserializer::Deserializer(SnapshotByteSource* source) 727 : isolate_(NULL), 728 source_(source), 729 external_reference_decoder_(NULL) { 730 for (int i = 0; i < LAST_SPACE + 1; i++) { 731 reservations_[i] = kUninitializedReservation; 732 } 733 } 734 735 736 void Deserializer::FlushICacheForNewCodeObjects() { 737 PageIterator it(isolate_->heap()->code_space()); 738 while (it.has_next()) { 739 Page* p = it.next(); 740 CPU::FlushICache(p->area_start(), p->area_end() - p->area_start()); 741 } 742 } 743 744 745 void Deserializer::Deserialize(Isolate* isolate) { 746 isolate_ = isolate; 747 ASSERT(isolate_ != NULL); 748 isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]); 749 // No active threads. 750 ASSERT_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse()); 751 // No active handles. 752 ASSERT(isolate_->handle_scope_implementer()->blocks()->is_empty()); 753 ASSERT_EQ(NULL, external_reference_decoder_); 754 external_reference_decoder_ = new ExternalReferenceDecoder(isolate); 755 isolate_->heap()->IterateSmiRoots(this); 756 isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); 757 isolate_->heap()->RepairFreeListsAfterBoot(); 758 isolate_->heap()->IterateWeakRoots(this, VISIT_ALL); 759 760 isolate_->heap()->set_native_contexts_list( 761 isolate_->heap()->undefined_value()); 762 isolate_->heap()->set_array_buffers_list( 763 isolate_->heap()->undefined_value()); 764 765 // The allocation site list is build during root iteration, but if no sites 766 // were encountered then it needs to be initialized to undefined. 767 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { 768 isolate_->heap()->set_allocation_sites_list( 769 isolate_->heap()->undefined_value()); 770 } 771 772 isolate_->heap()->InitializeWeakObjectToCodeTable(); 773 774 // Update data pointers to the external strings containing natives sources. 775 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { 776 Object* source = isolate_->heap()->natives_source_cache()->get(i); 777 if (!source->IsUndefined()) { 778 ExternalAsciiString::cast(source)->update_data_cache(); 779 } 780 } 781 782 FlushICacheForNewCodeObjects(); 783 784 // Issue code events for newly deserialized code objects. 785 LOG_CODE_EVENT(isolate_, LogCodeObjects()); 786 LOG_CODE_EVENT(isolate_, LogCompiledFunctions()); 787 } 788 789 790 void Deserializer::DeserializePartial(Isolate* isolate, Object** root) { 791 isolate_ = isolate; 792 for (int i = NEW_SPACE; i < kNumberOfSpaces; i++) { 793 ASSERT(reservations_[i] != kUninitializedReservation); 794 } 795 isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]); 796 if (external_reference_decoder_ == NULL) { 797 external_reference_decoder_ = new ExternalReferenceDecoder(isolate); 798 } 799 800 // Keep track of the code space start and end pointers in case new 801 // code objects were unserialized 802 OldSpace* code_space = isolate_->heap()->code_space(); 803 Address start_address = code_space->top(); 804 VisitPointer(root); 805 806 // There's no code deserialized here. If this assert fires 807 // then that's changed and logging should be added to notify 808 // the profiler et al of the new code. 809 CHECK_EQ(start_address, code_space->top()); 810 } 811 812 813 Deserializer::~Deserializer() { 814 // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed. 815 // ASSERT(source_->AtEOF()); 816 if (external_reference_decoder_) { 817 delete external_reference_decoder_; 818 external_reference_decoder_ = NULL; 819 } 820 } 821 822 823 // This is called on the roots. It is the driver of the deserialization 824 // process. It is also called on the body of each function. 825 void Deserializer::VisitPointers(Object** start, Object** end) { 826 // The space must be new space. Any other space would cause ReadChunk to try 827 // to update the remembered using NULL as the address. 828 ReadChunk(start, end, NEW_SPACE, NULL); 829 } 830 831 832 void Deserializer::RelinkAllocationSite(AllocationSite* site) { 833 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { 834 site->set_weak_next(isolate_->heap()->undefined_value()); 835 } else { 836 site->set_weak_next(isolate_->heap()->allocation_sites_list()); 837 } 838 isolate_->heap()->set_allocation_sites_list(site); 839 } 840 841 842 // This routine writes the new object into the pointer provided and then 843 // returns true if the new object was in young space and false otherwise. 844 // The reason for this strange interface is that otherwise the object is 845 // written very late, which means the FreeSpace map is not set up by the 846 // time we need to use it to mark the space at the end of a page free. 847 void Deserializer::ReadObject(int space_number, 848 Object** write_back) { 849 int size = source_->GetInt() << kObjectAlignmentBits; 850 Address address = Allocate(space_number, size); 851 HeapObject* obj = HeapObject::FromAddress(address); 852 *write_back = obj; 853 Object** current = reinterpret_cast<Object**>(address); 854 Object** limit = current + (size >> kPointerSizeLog2); 855 if (FLAG_log_snapshot_positions) { 856 LOG(isolate_, SnapshotPositionEvent(address, source_->position())); 857 } 858 ReadChunk(current, limit, space_number, address); 859 860 // TODO(mvstanton): consider treating the heap()->allocation_sites_list() 861 // as a (weak) root. If this root is relocated correctly, 862 // RelinkAllocationSite() isn't necessary. 863 if (obj->IsAllocationSite()) { 864 RelinkAllocationSite(AllocationSite::cast(obj)); 865 } 866 867 #ifdef DEBUG 868 bool is_codespace = (space_number == CODE_SPACE); 869 ASSERT(obj->IsCode() == is_codespace); 870 #endif 871 } 872 873 void Deserializer::ReadChunk(Object** current, 874 Object** limit, 875 int source_space, 876 Address current_object_address) { 877 Isolate* const isolate = isolate_; 878 // Write barrier support costs around 1% in startup time. In fact there 879 // are no new space objects in current boot snapshots, so it's not needed, 880 // but that may change. 881 bool write_barrier_needed = (current_object_address != NULL && 882 source_space != NEW_SPACE && 883 source_space != CELL_SPACE && 884 source_space != PROPERTY_CELL_SPACE && 885 source_space != CODE_SPACE && 886 source_space != OLD_DATA_SPACE); 887 while (current < limit) { 888 int data = source_->Get(); 889 switch (data) { 890 #define CASE_STATEMENT(where, how, within, space_number) \ 891 case where + how + within + space_number: \ 892 ASSERT((where & ~kPointedToMask) == 0); \ 893 ASSERT((how & ~kHowToCodeMask) == 0); \ 894 ASSERT((within & ~kWhereToPointMask) == 0); \ 895 ASSERT((space_number & ~kSpaceMask) == 0); 896 897 #define CASE_BODY(where, how, within, space_number_if_any) \ 898 { \ 899 bool emit_write_barrier = false; \ 900 bool current_was_incremented = false; \ 901 int space_number = space_number_if_any == kAnyOldSpace ? \ 902 (data & kSpaceMask) : space_number_if_any; \ 903 if (where == kNewObject && how == kPlain && within == kStartOfObject) {\ 904 ReadObject(space_number, current); \ 905 emit_write_barrier = (space_number == NEW_SPACE); \ 906 } else { \ 907 Object* new_object = NULL; /* May not be a real Object pointer. */ \ 908 if (where == kNewObject) { \ 909 ReadObject(space_number, &new_object); \ 910 } else if (where == kRootArray) { \ 911 int root_id = source_->GetInt(); \ 912 new_object = isolate->heap()->roots_array_start()[root_id]; \ 913 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ 914 } else if (where == kPartialSnapshotCache) { \ 915 int cache_index = source_->GetInt(); \ 916 new_object = isolate->serialize_partial_snapshot_cache() \ 917 [cache_index]; \ 918 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ 919 } else if (where == kExternalReference) { \ 920 int skip = source_->GetInt(); \ 921 current = reinterpret_cast<Object**>(reinterpret_cast<Address>( \ 922 current) + skip); \ 923 int reference_id = source_->GetInt(); \ 924 Address address = external_reference_decoder_-> \ 925 Decode(reference_id); \ 926 new_object = reinterpret_cast<Object*>(address); \ 927 } else if (where == kBackref) { \ 928 emit_write_barrier = (space_number == NEW_SPACE); \ 929 new_object = GetAddressFromEnd(data & kSpaceMask); \ 930 } else { \ 931 ASSERT(where == kBackrefWithSkip); \ 932 int skip = source_->GetInt(); \ 933 current = reinterpret_cast<Object**>( \ 934 reinterpret_cast<Address>(current) + skip); \ 935 emit_write_barrier = (space_number == NEW_SPACE); \ 936 new_object = GetAddressFromEnd(data & kSpaceMask); \ 937 } \ 938 if (within == kInnerPointer) { \ 939 if (space_number != CODE_SPACE || new_object->IsCode()) { \ 940 Code* new_code_object = reinterpret_cast<Code*>(new_object); \ 941 new_object = reinterpret_cast<Object*>( \ 942 new_code_object->instruction_start()); \ 943 } else { \ 944 ASSERT(space_number == CODE_SPACE); \ 945 Cell* cell = Cell::cast(new_object); \ 946 new_object = reinterpret_cast<Object*>( \ 947 cell->ValueAddress()); \ 948 } \ 949 } \ 950 if (how == kFromCode) { \ 951 Address location_of_branch_data = \ 952 reinterpret_cast<Address>(current); \ 953 Assembler::deserialization_set_special_target_at( \ 954 location_of_branch_data, \ 955 Code::cast(HeapObject::FromAddress(current_object_address)), \ 956 reinterpret_cast<Address>(new_object)); \ 957 location_of_branch_data += Assembler::kSpecialTargetSize; \ 958 current = reinterpret_cast<Object**>(location_of_branch_data); \ 959 current_was_incremented = true; \ 960 } else { \ 961 *current = new_object; \ 962 } \ 963 } \ 964 if (emit_write_barrier && write_barrier_needed) { \ 965 Address current_address = reinterpret_cast<Address>(current); \ 966 isolate->heap()->RecordWrite( \ 967 current_object_address, \ 968 static_cast<int>(current_address - current_object_address)); \ 969 } \ 970 if (!current_was_incremented) { \ 971 current++; \ 972 } \ 973 break; \ 974 } \ 975 976 // This generates a case and a body for the new space (which has to do extra 977 // write barrier handling) and handles the other spaces with 8 fall-through 978 // cases and one body. 979 #define ALL_SPACES(where, how, within) \ 980 CASE_STATEMENT(where, how, within, NEW_SPACE) \ 981 CASE_BODY(where, how, within, NEW_SPACE) \ 982 CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \ 983 CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \ 984 CASE_STATEMENT(where, how, within, CODE_SPACE) \ 985 CASE_STATEMENT(where, how, within, CELL_SPACE) \ 986 CASE_STATEMENT(where, how, within, PROPERTY_CELL_SPACE) \ 987 CASE_STATEMENT(where, how, within, MAP_SPACE) \ 988 CASE_BODY(where, how, within, kAnyOldSpace) 989 990 #define FOUR_CASES(byte_code) \ 991 case byte_code: \ 992 case byte_code + 1: \ 993 case byte_code + 2: \ 994 case byte_code + 3: 995 996 #define SIXTEEN_CASES(byte_code) \ 997 FOUR_CASES(byte_code) \ 998 FOUR_CASES(byte_code + 4) \ 999 FOUR_CASES(byte_code + 8) \ 1000 FOUR_CASES(byte_code + 12) 1001 1002 #define COMMON_RAW_LENGTHS(f) \ 1003 f(1) \ 1004 f(2) \ 1005 f(3) \ 1006 f(4) \ 1007 f(5) \ 1008 f(6) \ 1009 f(7) \ 1010 f(8) \ 1011 f(9) \ 1012 f(10) \ 1013 f(11) \ 1014 f(12) \ 1015 f(13) \ 1016 f(14) \ 1017 f(15) \ 1018 f(16) \ 1019 f(17) \ 1020 f(18) \ 1021 f(19) \ 1022 f(20) \ 1023 f(21) \ 1024 f(22) \ 1025 f(23) \ 1026 f(24) \ 1027 f(25) \ 1028 f(26) \ 1029 f(27) \ 1030 f(28) \ 1031 f(29) \ 1032 f(30) \ 1033 f(31) 1034 1035 // We generate 15 cases and bodies that process special tags that combine 1036 // the raw data tag and the length into one byte. 1037 #define RAW_CASE(index) \ 1038 case kRawData + index: { \ 1039 byte* raw_data_out = reinterpret_cast<byte*>(current); \ 1040 source_->CopyRaw(raw_data_out, index * kPointerSize); \ 1041 current = \ 1042 reinterpret_cast<Object**>(raw_data_out + index * kPointerSize); \ 1043 break; \ 1044 } 1045 COMMON_RAW_LENGTHS(RAW_CASE) 1046 #undef RAW_CASE 1047 1048 // Deserialize a chunk of raw data that doesn't have one of the popular 1049 // lengths. 1050 case kRawData: { 1051 int size = source_->GetInt(); 1052 byte* raw_data_out = reinterpret_cast<byte*>(current); 1053 source_->CopyRaw(raw_data_out, size); 1054 break; 1055 } 1056 1057 SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance) 1058 SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance + 16) { 1059 int root_id = RootArrayConstantFromByteCode(data); 1060 Object* object = isolate->heap()->roots_array_start()[root_id]; 1061 ASSERT(!isolate->heap()->InNewSpace(object)); 1062 *current++ = object; 1063 break; 1064 } 1065 1066 SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance) 1067 SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance + 16) { 1068 int root_id = RootArrayConstantFromByteCode(data); 1069 int skip = source_->GetInt(); 1070 current = reinterpret_cast<Object**>( 1071 reinterpret_cast<intptr_t>(current) + skip); 1072 Object* object = isolate->heap()->roots_array_start()[root_id]; 1073 ASSERT(!isolate->heap()->InNewSpace(object)); 1074 *current++ = object; 1075 break; 1076 } 1077 1078 case kRepeat: { 1079 int repeats = source_->GetInt(); 1080 Object* object = current[-1]; 1081 ASSERT(!isolate->heap()->InNewSpace(object)); 1082 for (int i = 0; i < repeats; i++) current[i] = object; 1083 current += repeats; 1084 break; 1085 } 1086 1087 STATIC_ASSERT(kRootArrayNumberOfConstantEncodings == 1088 Heap::kOldSpaceRoots); 1089 STATIC_ASSERT(kMaxRepeats == 13); 1090 case kConstantRepeat: 1091 FOUR_CASES(kConstantRepeat + 1) 1092 FOUR_CASES(kConstantRepeat + 5) 1093 FOUR_CASES(kConstantRepeat + 9) { 1094 int repeats = RepeatsForCode(data); 1095 Object* object = current[-1]; 1096 ASSERT(!isolate->heap()->InNewSpace(object)); 1097 for (int i = 0; i < repeats; i++) current[i] = object; 1098 current += repeats; 1099 break; 1100 } 1101 1102 // Deserialize a new object and write a pointer to it to the current 1103 // object. 1104 ALL_SPACES(kNewObject, kPlain, kStartOfObject) 1105 // Support for direct instruction pointers in functions. It's an inner 1106 // pointer because it points at the entry point, not at the start of the 1107 // code object. 1108 CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE) 1109 CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE) 1110 // Deserialize a new code object and write a pointer to its first 1111 // instruction to the current code object. 1112 ALL_SPACES(kNewObject, kFromCode, kInnerPointer) 1113 // Find a recently deserialized object using its offset from the current 1114 // allocation point and write a pointer to it to the current object. 1115 ALL_SPACES(kBackref, kPlain, kStartOfObject) 1116 ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject) 1117 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL 1118 // Deserialize a new object from pointer found in code and write 1119 // a pointer to it to the current object. Required only for MIPS or ARM 1120 // with ool constant pool, and omitted on the other architectures because 1121 // it is fully unrolled and would cause bloat. 1122 ALL_SPACES(kNewObject, kFromCode, kStartOfObject) 1123 // Find a recently deserialized code object using its offset from the 1124 // current allocation point and write a pointer to it to the current 1125 // object. Required only for MIPS or ARM with ool constant pool. 1126 ALL_SPACES(kBackref, kFromCode, kStartOfObject) 1127 ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject) 1128 #endif 1129 // Find a recently deserialized code object using its offset from the 1130 // current allocation point and write a pointer to its first instruction 1131 // to the current code object or the instruction pointer in a function 1132 // object. 1133 ALL_SPACES(kBackref, kFromCode, kInnerPointer) 1134 ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer) 1135 ALL_SPACES(kBackref, kPlain, kInnerPointer) 1136 ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer) 1137 // Find an object in the roots array and write a pointer to it to the 1138 // current object. 1139 CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0) 1140 CASE_BODY(kRootArray, kPlain, kStartOfObject, 0) 1141 // Find an object in the partial snapshots cache and write a pointer to it 1142 // to the current object. 1143 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0) 1144 CASE_BODY(kPartialSnapshotCache, 1145 kPlain, 1146 kStartOfObject, 1147 0) 1148 // Find an code entry in the partial snapshots cache and 1149 // write a pointer to it to the current object. 1150 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0) 1151 CASE_BODY(kPartialSnapshotCache, 1152 kPlain, 1153 kInnerPointer, 1154 0) 1155 // Find an external reference and write a pointer to it to the current 1156 // object. 1157 CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0) 1158 CASE_BODY(kExternalReference, 1159 kPlain, 1160 kStartOfObject, 1161 0) 1162 // Find an external reference and write a pointer to it in the current 1163 // code object. 1164 CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0) 1165 CASE_BODY(kExternalReference, 1166 kFromCode, 1167 kStartOfObject, 1168 0) 1169 1170 #undef CASE_STATEMENT 1171 #undef CASE_BODY 1172 #undef ALL_SPACES 1173 1174 case kSkip: { 1175 int size = source_->GetInt(); 1176 current = reinterpret_cast<Object**>( 1177 reinterpret_cast<intptr_t>(current) + size); 1178 break; 1179 } 1180 1181 case kNativesStringResource: { 1182 int index = source_->Get(); 1183 Vector<const char> source_vector = Natives::GetRawScriptSource(index); 1184 NativesExternalStringResource* resource = 1185 new NativesExternalStringResource(isolate->bootstrapper(), 1186 source_vector.start(), 1187 source_vector.length()); 1188 *current++ = reinterpret_cast<Object*>(resource); 1189 break; 1190 } 1191 1192 case kSynchronize: { 1193 // If we get here then that indicates that you have a mismatch between 1194 // the number of GC roots when serializing and deserializing. 1195 UNREACHABLE(); 1196 } 1197 1198 default: 1199 UNREACHABLE(); 1200 } 1201 } 1202 ASSERT_EQ(limit, current); 1203 } 1204 1205 1206 void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) { 1207 ASSERT(integer < 1 << 22); 1208 integer <<= 2; 1209 int bytes = 1; 1210 if (integer > 0xff) bytes = 2; 1211 if (integer > 0xffff) bytes = 3; 1212 integer |= bytes; 1213 Put(static_cast<int>(integer & 0xff), "IntPart1"); 1214 if (bytes > 1) Put(static_cast<int>((integer >> 8) & 0xff), "IntPart2"); 1215 if (bytes > 2) Put(static_cast<int>((integer >> 16) & 0xff), "IntPart3"); 1216 } 1217 1218 1219 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink) 1220 : isolate_(isolate), 1221 sink_(sink), 1222 external_reference_encoder_(new ExternalReferenceEncoder(isolate)), 1223 root_index_wave_front_(0), 1224 code_address_map_(NULL) { 1225 // The serializer is meant to be used only to generate initial heap images 1226 // from a context in which there is only one isolate. 1227 for (int i = 0; i <= LAST_SPACE; i++) { 1228 fullness_[i] = 0; 1229 } 1230 } 1231 1232 1233 Serializer::~Serializer() { 1234 delete external_reference_encoder_; 1235 if (code_address_map_ != NULL) delete code_address_map_; 1236 } 1237 1238 1239 void StartupSerializer::SerializeStrongReferences() { 1240 Isolate* isolate = this->isolate(); 1241 // No active threads. 1242 CHECK_EQ(NULL, isolate->thread_manager()->FirstThreadStateInUse()); 1243 // No active or weak handles. 1244 CHECK(isolate->handle_scope_implementer()->blocks()->is_empty()); 1245 CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles()); 1246 CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles()); 1247 // We don't support serializing installed extensions. 1248 CHECK(!isolate->has_installed_extensions()); 1249 isolate->heap()->IterateSmiRoots(this); 1250 isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); 1251 } 1252 1253 1254 void PartialSerializer::Serialize(Object** object) { 1255 this->VisitPointer(object); 1256 Pad(); 1257 } 1258 1259 1260 bool Serializer::ShouldBeSkipped(Object** current) { 1261 Object** roots = isolate()->heap()->roots_array_start(); 1262 return current == &roots[Heap::kStoreBufferTopRootIndex] 1263 || current == &roots[Heap::kStackLimitRootIndex] 1264 || current == &roots[Heap::kRealStackLimitRootIndex]; 1265 } 1266 1267 1268 void Serializer::VisitPointers(Object** start, Object** end) { 1269 Isolate* isolate = this->isolate();; 1270 1271 for (Object** current = start; current < end; current++) { 1272 if (start == isolate->heap()->roots_array_start()) { 1273 root_index_wave_front_ = 1274 Max(root_index_wave_front_, static_cast<intptr_t>(current - start)); 1275 } 1276 if (ShouldBeSkipped(current)) { 1277 sink_->Put(kSkip, "Skip"); 1278 sink_->PutInt(kPointerSize, "SkipOneWord"); 1279 } else if ((*current)->IsSmi()) { 1280 sink_->Put(kRawData + 1, "Smi"); 1281 for (int i = 0; i < kPointerSize; i++) { 1282 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); 1283 } 1284 } else { 1285 SerializeObject(*current, kPlain, kStartOfObject, 0); 1286 } 1287 } 1288 } 1289 1290 1291 // This ensures that the partial snapshot cache keeps things alive during GC and 1292 // tracks their movement. When it is called during serialization of the startup 1293 // snapshot nothing happens. When the partial (context) snapshot is created, 1294 // this array is populated with the pointers that the partial snapshot will 1295 // need. As that happens we emit serialized objects to the startup snapshot 1296 // that correspond to the elements of this cache array. On deserialization we 1297 // therefore need to visit the cache array. This fills it up with pointers to 1298 // deserialized objects. 1299 void SerializerDeserializer::Iterate(Isolate* isolate, 1300 ObjectVisitor* visitor) { 1301 if (isolate->serializer_enabled()) return; 1302 for (int i = 0; ; i++) { 1303 if (isolate->serialize_partial_snapshot_cache_length() <= i) { 1304 // Extend the array ready to get a value from the visitor when 1305 // deserializing. 1306 isolate->PushToPartialSnapshotCache(Smi::FromInt(0)); 1307 } 1308 Object** cache = isolate->serialize_partial_snapshot_cache(); 1309 visitor->VisitPointers(&cache[i], &cache[i + 1]); 1310 // Sentinel is the undefined object, which is a root so it will not normally 1311 // be found in the cache. 1312 if (cache[i] == isolate->heap()->undefined_value()) { 1313 break; 1314 } 1315 } 1316 } 1317 1318 1319 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) { 1320 Isolate* isolate = this->isolate(); 1321 1322 for (int i = 0; 1323 i < isolate->serialize_partial_snapshot_cache_length(); 1324 i++) { 1325 Object* entry = isolate->serialize_partial_snapshot_cache()[i]; 1326 if (entry == heap_object) return i; 1327 } 1328 1329 // We didn't find the object in the cache. So we add it to the cache and 1330 // then visit the pointer so that it becomes part of the startup snapshot 1331 // and we can refer to it from the partial snapshot. 1332 int length = isolate->serialize_partial_snapshot_cache_length(); 1333 isolate->PushToPartialSnapshotCache(heap_object); 1334 startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object)); 1335 // We don't recurse from the startup snapshot generator into the partial 1336 // snapshot generator. 1337 ASSERT(length == isolate->serialize_partial_snapshot_cache_length() - 1); 1338 return length; 1339 } 1340 1341 1342 int Serializer::RootIndex(HeapObject* heap_object, HowToCode from) { 1343 Heap* heap = isolate()->heap(); 1344 if (heap->InNewSpace(heap_object)) return kInvalidRootIndex; 1345 for (int i = 0; i < root_index_wave_front_; i++) { 1346 Object* root = heap->roots_array_start()[i]; 1347 if (!root->IsSmi() && root == heap_object) { 1348 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL 1349 if (from == kFromCode) { 1350 // In order to avoid code bloat in the deserializer we don't have 1351 // support for the encoding that specifies a particular root should 1352 // be written from within code. 1353 return kInvalidRootIndex; 1354 } 1355 #endif 1356 return i; 1357 } 1358 } 1359 return kInvalidRootIndex; 1360 } 1361 1362 1363 // Encode the location of an already deserialized object in order to write its 1364 // location into a later object. We can encode the location as an offset from 1365 // the start of the deserialized objects or as an offset backwards from the 1366 // current allocation pointer. 1367 void Serializer::SerializeReferenceToPreviousObject( 1368 int space, 1369 int address, 1370 HowToCode how_to_code, 1371 WhereToPoint where_to_point, 1372 int skip) { 1373 int offset = CurrentAllocationAddress(space) - address; 1374 // Shift out the bits that are always 0. 1375 offset >>= kObjectAlignmentBits; 1376 if (skip == 0) { 1377 sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer"); 1378 } else { 1379 sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space, 1380 "BackRefSerWithSkip"); 1381 sink_->PutInt(skip, "BackRefSkipDistance"); 1382 } 1383 sink_->PutInt(offset, "offset"); 1384 } 1385 1386 1387 void StartupSerializer::SerializeObject( 1388 Object* o, 1389 HowToCode how_to_code, 1390 WhereToPoint where_to_point, 1391 int skip) { 1392 CHECK(o->IsHeapObject()); 1393 HeapObject* heap_object = HeapObject::cast(o); 1394 1395 int root_index; 1396 if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) { 1397 PutRoot(root_index, heap_object, how_to_code, where_to_point, skip); 1398 return; 1399 } 1400 1401 if (address_mapper_.IsMapped(heap_object)) { 1402 int space = SpaceOfObject(heap_object); 1403 int address = address_mapper_.MappedTo(heap_object); 1404 SerializeReferenceToPreviousObject(space, 1405 address, 1406 how_to_code, 1407 where_to_point, 1408 skip); 1409 } else { 1410 if (skip != 0) { 1411 sink_->Put(kSkip, "FlushPendingSkip"); 1412 sink_->PutInt(skip, "SkipDistance"); 1413 } 1414 1415 // Object has not yet been serialized. Serialize it here. 1416 ObjectSerializer object_serializer(this, 1417 heap_object, 1418 sink_, 1419 how_to_code, 1420 where_to_point); 1421 object_serializer.Serialize(); 1422 } 1423 } 1424 1425 1426 void StartupSerializer::SerializeWeakReferences() { 1427 // This phase comes right after the partial serialization (of the snapshot). 1428 // After we have done the partial serialization the partial snapshot cache 1429 // will contain some references needed to decode the partial snapshot. We 1430 // add one entry with 'undefined' which is the sentinel that the deserializer 1431 // uses to know it is done deserializing the array. 1432 Object* undefined = isolate()->heap()->undefined_value(); 1433 VisitPointer(&undefined); 1434 isolate()->heap()->IterateWeakRoots(this, VISIT_ALL); 1435 Pad(); 1436 } 1437 1438 1439 void Serializer::PutRoot(int root_index, 1440 HeapObject* object, 1441 SerializerDeserializer::HowToCode how_to_code, 1442 SerializerDeserializer::WhereToPoint where_to_point, 1443 int skip) { 1444 if (how_to_code == kPlain && 1445 where_to_point == kStartOfObject && 1446 root_index < kRootArrayNumberOfConstantEncodings && 1447 !isolate()->heap()->InNewSpace(object)) { 1448 if (skip == 0) { 1449 sink_->Put(kRootArrayConstants + kNoSkipDistance + root_index, 1450 "RootConstant"); 1451 } else { 1452 sink_->Put(kRootArrayConstants + kHasSkipDistance + root_index, 1453 "RootConstant"); 1454 sink_->PutInt(skip, "SkipInPutRoot"); 1455 } 1456 } else { 1457 if (skip != 0) { 1458 sink_->Put(kSkip, "SkipFromPutRoot"); 1459 sink_->PutInt(skip, "SkipFromPutRootDistance"); 1460 } 1461 sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization"); 1462 sink_->PutInt(root_index, "root_index"); 1463 } 1464 } 1465 1466 1467 void PartialSerializer::SerializeObject( 1468 Object* o, 1469 HowToCode how_to_code, 1470 WhereToPoint where_to_point, 1471 int skip) { 1472 CHECK(o->IsHeapObject()); 1473 HeapObject* heap_object = HeapObject::cast(o); 1474 1475 if (heap_object->IsMap()) { 1476 // The code-caches link to context-specific code objects, which 1477 // the startup and context serializes cannot currently handle. 1478 ASSERT(Map::cast(heap_object)->code_cache() == 1479 heap_object->GetHeap()->empty_fixed_array()); 1480 } 1481 1482 int root_index; 1483 if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) { 1484 PutRoot(root_index, heap_object, how_to_code, where_to_point, skip); 1485 return; 1486 } 1487 1488 if (ShouldBeInThePartialSnapshotCache(heap_object)) { 1489 if (skip != 0) { 1490 sink_->Put(kSkip, "SkipFromSerializeObject"); 1491 sink_->PutInt(skip, "SkipDistanceFromSerializeObject"); 1492 } 1493 1494 int cache_index = PartialSnapshotCacheIndex(heap_object); 1495 sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point, 1496 "PartialSnapshotCache"); 1497 sink_->PutInt(cache_index, "partial_snapshot_cache_index"); 1498 return; 1499 } 1500 1501 // Pointers from the partial snapshot to the objects in the startup snapshot 1502 // should go through the root array or through the partial snapshot cache. 1503 // If this is not the case you may have to add something to the root array. 1504 ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object)); 1505 // All the internalized strings that the partial snapshot needs should be 1506 // either in the root table or in the partial snapshot cache. 1507 ASSERT(!heap_object->IsInternalizedString()); 1508 1509 if (address_mapper_.IsMapped(heap_object)) { 1510 int space = SpaceOfObject(heap_object); 1511 int address = address_mapper_.MappedTo(heap_object); 1512 SerializeReferenceToPreviousObject(space, 1513 address, 1514 how_to_code, 1515 where_to_point, 1516 skip); 1517 } else { 1518 if (skip != 0) { 1519 sink_->Put(kSkip, "SkipFromSerializeObject"); 1520 sink_->PutInt(skip, "SkipDistanceFromSerializeObject"); 1521 } 1522 // Object has not yet been serialized. Serialize it here. 1523 ObjectSerializer serializer(this, 1524 heap_object, 1525 sink_, 1526 how_to_code, 1527 where_to_point); 1528 serializer.Serialize(); 1529 } 1530 } 1531 1532 1533 void Serializer::ObjectSerializer::Serialize() { 1534 int space = Serializer::SpaceOfObject(object_); 1535 int size = object_->Size(); 1536 1537 sink_->Put(kNewObject + reference_representation_ + space, 1538 "ObjectSerialization"); 1539 sink_->PutInt(size >> kObjectAlignmentBits, "Size in words"); 1540 1541 if (serializer_->code_address_map_) { 1542 const char* code_name = 1543 serializer_->code_address_map_->Lookup(object_->address()); 1544 LOG(serializer_->isolate_, 1545 CodeNameEvent(object_->address(), sink_->Position(), code_name)); 1546 LOG(serializer_->isolate_, 1547 SnapshotPositionEvent(object_->address(), sink_->Position())); 1548 } 1549 1550 // Mark this object as already serialized. 1551 int offset = serializer_->Allocate(space, size); 1552 serializer_->address_mapper()->AddMapping(object_, offset); 1553 1554 // Serialize the map (first word of the object). 1555 serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject, 0); 1556 1557 // Serialize the rest of the object. 1558 CHECK_EQ(0, bytes_processed_so_far_); 1559 bytes_processed_so_far_ = kPointerSize; 1560 object_->IterateBody(object_->map()->instance_type(), size, this); 1561 OutputRawData(object_->address() + size); 1562 } 1563 1564 1565 void Serializer::ObjectSerializer::VisitPointers(Object** start, 1566 Object** end) { 1567 Object** current = start; 1568 while (current < end) { 1569 while (current < end && (*current)->IsSmi()) current++; 1570 if (current < end) OutputRawData(reinterpret_cast<Address>(current)); 1571 1572 while (current < end && !(*current)->IsSmi()) { 1573 HeapObject* current_contents = HeapObject::cast(*current); 1574 int root_index = serializer_->RootIndex(current_contents, kPlain); 1575 // Repeats are not subject to the write barrier so there are only some 1576 // objects that can be used in a repeat encoding. These are the early 1577 // ones in the root array that are never in new space. 1578 if (current != start && 1579 root_index != kInvalidRootIndex && 1580 root_index < kRootArrayNumberOfConstantEncodings && 1581 current_contents == current[-1]) { 1582 ASSERT(!serializer_->isolate()->heap()->InNewSpace(current_contents)); 1583 int repeat_count = 1; 1584 while (current < end - 1 && current[repeat_count] == current_contents) { 1585 repeat_count++; 1586 } 1587 current += repeat_count; 1588 bytes_processed_so_far_ += repeat_count * kPointerSize; 1589 if (repeat_count > kMaxRepeats) { 1590 sink_->Put(kRepeat, "SerializeRepeats"); 1591 sink_->PutInt(repeat_count, "SerializeRepeats"); 1592 } else { 1593 sink_->Put(CodeForRepeats(repeat_count), "SerializeRepeats"); 1594 } 1595 } else { 1596 serializer_->SerializeObject( 1597 current_contents, kPlain, kStartOfObject, 0); 1598 bytes_processed_so_far_ += kPointerSize; 1599 current++; 1600 } 1601 } 1602 } 1603 } 1604 1605 1606 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) { 1607 // Out-of-line constant pool entries will be visited by the ConstantPoolArray. 1608 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; 1609 1610 int skip = OutputRawData(rinfo->target_address_address(), 1611 kCanReturnSkipInsteadOfSkipping); 1612 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; 1613 Object* object = rinfo->target_object(); 1614 serializer_->SerializeObject(object, how_to_code, kStartOfObject, skip); 1615 bytes_processed_so_far_ += rinfo->target_address_size(); 1616 } 1617 1618 1619 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) { 1620 int skip = OutputRawData(reinterpret_cast<Address>(p), 1621 kCanReturnSkipInsteadOfSkipping); 1622 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef"); 1623 sink_->PutInt(skip, "SkipB4ExternalRef"); 1624 Address target = *p; 1625 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); 1626 bytes_processed_so_far_ += kPointerSize; 1627 } 1628 1629 1630 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) { 1631 int skip = OutputRawData(rinfo->target_address_address(), 1632 kCanReturnSkipInsteadOfSkipping); 1633 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; 1634 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); 1635 sink_->PutInt(skip, "SkipB4ExternalRef"); 1636 Address target = rinfo->target_reference(); 1637 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); 1638 bytes_processed_so_far_ += rinfo->target_address_size(); 1639 } 1640 1641 1642 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) { 1643 int skip = OutputRawData(rinfo->target_address_address(), 1644 kCanReturnSkipInsteadOfSkipping); 1645 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; 1646 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); 1647 sink_->PutInt(skip, "SkipB4ExternalRef"); 1648 Address target = rinfo->target_address(); 1649 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); 1650 bytes_processed_so_far_ += rinfo->target_address_size(); 1651 } 1652 1653 1654 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) { 1655 // Out-of-line constant pool entries will be visited by the ConstantPoolArray. 1656 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; 1657 1658 int skip = OutputRawData(rinfo->target_address_address(), 1659 kCanReturnSkipInsteadOfSkipping); 1660 Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address()); 1661 serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip); 1662 bytes_processed_so_far_ += rinfo->target_address_size(); 1663 } 1664 1665 1666 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) { 1667 int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping); 1668 Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address)); 1669 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); 1670 bytes_processed_so_far_ += kPointerSize; 1671 } 1672 1673 1674 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) { 1675 // Out-of-line constant pool entries will be visited by the ConstantPoolArray. 1676 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; 1677 1678 int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping); 1679 Cell* object = Cell::cast(rinfo->target_cell()); 1680 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); 1681 } 1682 1683 1684 void Serializer::ObjectSerializer::VisitExternalAsciiString( 1685 v8::String::ExternalAsciiStringResource** resource_pointer) { 1686 Address references_start = reinterpret_cast<Address>(resource_pointer); 1687 OutputRawData(references_start); 1688 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { 1689 Object* source = 1690 serializer_->isolate()->heap()->natives_source_cache()->get(i); 1691 if (!source->IsUndefined()) { 1692 ExternalAsciiString* string = ExternalAsciiString::cast(source); 1693 typedef v8::String::ExternalAsciiStringResource Resource; 1694 const Resource* resource = string->resource(); 1695 if (resource == *resource_pointer) { 1696 sink_->Put(kNativesStringResource, "NativesStringResource"); 1697 sink_->PutSection(i, "NativesStringResourceEnd"); 1698 bytes_processed_so_far_ += sizeof(resource); 1699 return; 1700 } 1701 } 1702 } 1703 // One of the strings in the natives cache should match the resource. We 1704 // can't serialize any other kinds of external strings. 1705 UNREACHABLE(); 1706 } 1707 1708 1709 static Code* CloneCodeObject(HeapObject* code) { 1710 Address copy = new byte[code->Size()]; 1711 MemCopy(copy, code->address(), code->Size()); 1712 return Code::cast(HeapObject::FromAddress(copy)); 1713 } 1714 1715 1716 static void WipeOutRelocations(Code* code) { 1717 int mode_mask = 1718 RelocInfo::kCodeTargetMask | 1719 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | 1720 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) | 1721 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY); 1722 for (RelocIterator it(code, mode_mask); !it.done(); it.next()) { 1723 if (!(FLAG_enable_ool_constant_pool && it.rinfo()->IsInConstantPool())) { 1724 it.rinfo()->WipeOut(); 1725 } 1726 } 1727 } 1728 1729 1730 int Serializer::ObjectSerializer::OutputRawData( 1731 Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) { 1732 Address object_start = object_->address(); 1733 int base = bytes_processed_so_far_; 1734 int up_to_offset = static_cast<int>(up_to - object_start); 1735 int to_skip = up_to_offset - bytes_processed_so_far_; 1736 int bytes_to_output = to_skip; 1737 bytes_processed_so_far_ += to_skip; 1738 // This assert will fail if the reloc info gives us the target_address_address 1739 // locations in a non-ascending order. Luckily that doesn't happen. 1740 ASSERT(to_skip >= 0); 1741 bool outputting_code = false; 1742 if (to_skip != 0 && code_object_ && !code_has_been_output_) { 1743 // Output the code all at once and fix later. 1744 bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_; 1745 outputting_code = true; 1746 code_has_been_output_ = true; 1747 } 1748 if (bytes_to_output != 0 && 1749 (!code_object_ || outputting_code)) { 1750 #define RAW_CASE(index) \ 1751 if (!outputting_code && bytes_to_output == index * kPointerSize && \ 1752 index * kPointerSize == to_skip) { \ 1753 sink_->PutSection(kRawData + index, "RawDataFixed"); \ 1754 to_skip = 0; /* This insn already skips. */ \ 1755 } else /* NOLINT */ 1756 COMMON_RAW_LENGTHS(RAW_CASE) 1757 #undef RAW_CASE 1758 { /* NOLINT */ 1759 // We always end up here if we are outputting the code of a code object. 1760 sink_->Put(kRawData, "RawData"); 1761 sink_->PutInt(bytes_to_output, "length"); 1762 } 1763 1764 // To make snapshots reproducible, we need to wipe out all pointers in code. 1765 if (code_object_) { 1766 Code* code = CloneCodeObject(object_); 1767 WipeOutRelocations(code); 1768 // We need to wipe out the header fields *after* wiping out the 1769 // relocations, because some of these fields are needed for the latter. 1770 code->WipeOutHeader(); 1771 object_start = code->address(); 1772 } 1773 1774 const char* description = code_object_ ? "Code" : "Byte"; 1775 for (int i = 0; i < bytes_to_output; i++) { 1776 sink_->PutSection(object_start[base + i], description); 1777 } 1778 if (code_object_) delete[] object_start; 1779 } 1780 if (to_skip != 0 && return_skip == kIgnoringReturn) { 1781 sink_->Put(kSkip, "Skip"); 1782 sink_->PutInt(to_skip, "SkipDistance"); 1783 to_skip = 0; 1784 } 1785 return to_skip; 1786 } 1787 1788 1789 int Serializer::SpaceOfObject(HeapObject* object) { 1790 for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) { 1791 AllocationSpace s = static_cast<AllocationSpace>(i); 1792 if (object->GetHeap()->InSpace(object, s)) { 1793 ASSERT(i < kNumberOfSpaces); 1794 return i; 1795 } 1796 } 1797 UNREACHABLE(); 1798 return 0; 1799 } 1800 1801 1802 int Serializer::Allocate(int space, int size) { 1803 CHECK(space >= 0 && space < kNumberOfSpaces); 1804 int allocation_address = fullness_[space]; 1805 fullness_[space] = allocation_address + size; 1806 return allocation_address; 1807 } 1808 1809 1810 int Serializer::SpaceAreaSize(int space) { 1811 if (space == CODE_SPACE) { 1812 return isolate_->memory_allocator()->CodePageAreaSize(); 1813 } else { 1814 return Page::kPageSize - Page::kObjectStartOffset; 1815 } 1816 } 1817 1818 1819 void Serializer::Pad() { 1820 // The non-branching GetInt will read up to 3 bytes too far, so we need 1821 // to pad the snapshot to make sure we don't read over the end. 1822 for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) { 1823 sink_->Put(kNop, "Padding"); 1824 } 1825 } 1826 1827 1828 void Serializer::InitializeCodeAddressMap() { 1829 isolate_->InitializeLoggingAndCounters(); 1830 code_address_map_ = new CodeAddressMap(isolate_); 1831 } 1832 1833 1834 bool SnapshotByteSource::AtEOF() { 1835 if (0u + length_ - position_ > 2 * sizeof(uint32_t)) return false; 1836 for (int x = position_; x < length_; x++) { 1837 if (data_[x] != SerializerDeserializer::nop()) return false; 1838 } 1839 return true; 1840 } 1841 1842 } } // namespace v8::internal 1843