1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <stdarg.h> 6 #include <cmath> 7 8 #include "src/globals.h" 9 #include "src/utils.h" 10 #include "src/strtod.h" 11 #include "src/bignum.h" 12 #include "src/cached-powers.h" 13 #include "src/double.h" 14 15 namespace v8 { 16 namespace internal { 17 18 // 2^53 = 9007199254740992. 19 // Any integer with at most 15 decimal digits will hence fit into a double 20 // (which has a 53bit significand) without loss of precision. 21 static const int kMaxExactDoubleIntegerDecimalDigits = 15; 22 // 2^64 = 18446744073709551616 > 10^19 23 static const int kMaxUint64DecimalDigits = 19; 24 25 // Max double: 1.7976931348623157 x 10^308 26 // Min non-zero double: 4.9406564584124654 x 10^-324 27 // Any x >= 10^309 is interpreted as +infinity. 28 // Any x <= 10^-324 is interpreted as 0. 29 // Note that 2.5e-324 (despite being smaller than the min double) will be read 30 // as non-zero (equal to the min non-zero double). 31 static const int kMaxDecimalPower = 309; 32 static const int kMinDecimalPower = -324; 33 34 // 2^64 = 18446744073709551616 35 static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF); 36 37 38 static const double exact_powers_of_ten[] = { 39 1.0, // 10^0 40 10.0, 41 100.0, 42 1000.0, 43 10000.0, 44 100000.0, 45 1000000.0, 46 10000000.0, 47 100000000.0, 48 1000000000.0, 49 10000000000.0, // 10^10 50 100000000000.0, 51 1000000000000.0, 52 10000000000000.0, 53 100000000000000.0, 54 1000000000000000.0, 55 10000000000000000.0, 56 100000000000000000.0, 57 1000000000000000000.0, 58 10000000000000000000.0, 59 100000000000000000000.0, // 10^20 60 1000000000000000000000.0, 61 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 62 10000000000000000000000.0 63 }; 64 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); 65 66 // Maximum number of significant digits in the decimal representation. 67 // In fact the value is 772 (see conversions.cc), but to give us some margin 68 // we round up to 780. 69 static const int kMaxSignificantDecimalDigits = 780; 70 71 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { 72 for (int i = 0; i < buffer.length(); i++) { 73 if (buffer[i] != '0') { 74 return buffer.SubVector(i, buffer.length()); 75 } 76 } 77 return Vector<const char>(buffer.start(), 0); 78 } 79 80 81 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { 82 for (int i = buffer.length() - 1; i >= 0; --i) { 83 if (buffer[i] != '0') { 84 return buffer.SubVector(0, i + 1); 85 } 86 } 87 return Vector<const char>(buffer.start(), 0); 88 } 89 90 91 static void TrimToMaxSignificantDigits(Vector<const char> buffer, 92 int exponent, 93 char* significant_buffer, 94 int* significant_exponent) { 95 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { 96 significant_buffer[i] = buffer[i]; 97 } 98 // The input buffer has been trimmed. Therefore the last digit must be 99 // different from '0'. 100 ASSERT(buffer[buffer.length() - 1] != '0'); 101 // Set the last digit to be non-zero. This is sufficient to guarantee 102 // correct rounding. 103 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; 104 *significant_exponent = 105 exponent + (buffer.length() - kMaxSignificantDecimalDigits); 106 } 107 108 109 // Reads digits from the buffer and converts them to a uint64. 110 // Reads in as many digits as fit into a uint64. 111 // When the string starts with "1844674407370955161" no further digit is read. 112 // Since 2^64 = 18446744073709551616 it would still be possible read another 113 // digit if it was less or equal than 6, but this would complicate the code. 114 static uint64_t ReadUint64(Vector<const char> buffer, 115 int* number_of_read_digits) { 116 uint64_t result = 0; 117 int i = 0; 118 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { 119 int digit = buffer[i++] - '0'; 120 ASSERT(0 <= digit && digit <= 9); 121 result = 10 * result + digit; 122 } 123 *number_of_read_digits = i; 124 return result; 125 } 126 127 128 // Reads a DiyFp from the buffer. 129 // The returned DiyFp is not necessarily normalized. 130 // If remaining_decimals is zero then the returned DiyFp is accurate. 131 // Otherwise it has been rounded and has error of at most 1/2 ulp. 132 static void ReadDiyFp(Vector<const char> buffer, 133 DiyFp* result, 134 int* remaining_decimals) { 135 int read_digits; 136 uint64_t significand = ReadUint64(buffer, &read_digits); 137 if (buffer.length() == read_digits) { 138 *result = DiyFp(significand, 0); 139 *remaining_decimals = 0; 140 } else { 141 // Round the significand. 142 if (buffer[read_digits] >= '5') { 143 significand++; 144 } 145 // Compute the binary exponent. 146 int exponent = 0; 147 *result = DiyFp(significand, exponent); 148 *remaining_decimals = buffer.length() - read_digits; 149 } 150 } 151 152 153 static bool DoubleStrtod(Vector<const char> trimmed, 154 int exponent, 155 double* result) { 156 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 || defined(USE_SIMULATOR)) && \ 157 !defined(_MSC_VER) 158 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is 159 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the 160 // result is not accurate. 161 // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is 162 // therefore accurate. 163 // Note that the ARM and MIPS simulators are compiled for 32bits. They 164 // therefore exhibit the same problem. 165 return false; 166 #endif 167 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { 168 int read_digits; 169 // The trimmed input fits into a double. 170 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we 171 // can compute the result-double simply by multiplying (resp. dividing) the 172 // two numbers. 173 // This is possible because IEEE guarantees that floating-point operations 174 // return the best possible approximation. 175 if (exponent < 0 && -exponent < kExactPowersOfTenSize) { 176 // 10^-exponent fits into a double. 177 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); 178 ASSERT(read_digits == trimmed.length()); 179 *result /= exact_powers_of_ten[-exponent]; 180 return true; 181 } 182 if (0 <= exponent && exponent < kExactPowersOfTenSize) { 183 // 10^exponent fits into a double. 184 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); 185 ASSERT(read_digits == trimmed.length()); 186 *result *= exact_powers_of_ten[exponent]; 187 return true; 188 } 189 int remaining_digits = 190 kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); 191 if ((0 <= exponent) && 192 (exponent - remaining_digits < kExactPowersOfTenSize)) { 193 // The trimmed string was short and we can multiply it with 194 // 10^remaining_digits. As a result the remaining exponent now fits 195 // into a double too. 196 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); 197 ASSERT(read_digits == trimmed.length()); 198 *result *= exact_powers_of_ten[remaining_digits]; 199 *result *= exact_powers_of_ten[exponent - remaining_digits]; 200 return true; 201 } 202 } 203 return false; 204 } 205 206 207 // Returns 10^exponent as an exact DiyFp. 208 // The given exponent must be in the range [1; kDecimalExponentDistance[. 209 static DiyFp AdjustmentPowerOfTen(int exponent) { 210 ASSERT(0 < exponent); 211 ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); 212 // Simply hardcode the remaining powers for the given decimal exponent 213 // distance. 214 ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); 215 switch (exponent) { 216 case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60); 217 case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57); 218 case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54); 219 case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50); 220 case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47); 221 case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44); 222 case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40); 223 default: 224 UNREACHABLE(); 225 return DiyFp(0, 0); 226 } 227 } 228 229 230 // If the function returns true then the result is the correct double. 231 // Otherwise it is either the correct double or the double that is just below 232 // the correct double. 233 static bool DiyFpStrtod(Vector<const char> buffer, 234 int exponent, 235 double* result) { 236 DiyFp input; 237 int remaining_decimals; 238 ReadDiyFp(buffer, &input, &remaining_decimals); 239 // Since we may have dropped some digits the input is not accurate. 240 // If remaining_decimals is different than 0 than the error is at most 241 // .5 ulp (unit in the last place). 242 // We don't want to deal with fractions and therefore keep a common 243 // denominator. 244 const int kDenominatorLog = 3; 245 const int kDenominator = 1 << kDenominatorLog; 246 // Move the remaining decimals into the exponent. 247 exponent += remaining_decimals; 248 int error = (remaining_decimals == 0 ? 0 : kDenominator / 2); 249 250 int old_e = input.e(); 251 input.Normalize(); 252 error <<= old_e - input.e(); 253 254 ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); 255 if (exponent < PowersOfTenCache::kMinDecimalExponent) { 256 *result = 0.0; 257 return true; 258 } 259 DiyFp cached_power; 260 int cached_decimal_exponent; 261 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, 262 &cached_power, 263 &cached_decimal_exponent); 264 265 if (cached_decimal_exponent != exponent) { 266 int adjustment_exponent = exponent - cached_decimal_exponent; 267 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); 268 input.Multiply(adjustment_power); 269 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { 270 // The product of input with the adjustment power fits into a 64 bit 271 // integer. 272 ASSERT(DiyFp::kSignificandSize == 64); 273 } else { 274 // The adjustment power is exact. There is hence only an error of 0.5. 275 error += kDenominator / 2; 276 } 277 } 278 279 input.Multiply(cached_power); 280 // The error introduced by a multiplication of a*b equals 281 // error_a + error_b + error_a*error_b/2^64 + 0.5 282 // Substituting a with 'input' and b with 'cached_power' we have 283 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), 284 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 285 int error_b = kDenominator / 2; 286 int error_ab = (error == 0 ? 0 : 1); // We round up to 1. 287 int fixed_error = kDenominator / 2; 288 error += error_b + error_ab + fixed_error; 289 290 old_e = input.e(); 291 input.Normalize(); 292 error <<= old_e - input.e(); 293 294 // See if the double's significand changes if we add/subtract the error. 295 int order_of_magnitude = DiyFp::kSignificandSize + input.e(); 296 int effective_significand_size = 297 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); 298 int precision_digits_count = 299 DiyFp::kSignificandSize - effective_significand_size; 300 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { 301 // This can only happen for very small denormals. In this case the 302 // half-way multiplied by the denominator exceeds the range of an uint64. 303 // Simply shift everything to the right. 304 int shift_amount = (precision_digits_count + kDenominatorLog) - 305 DiyFp::kSignificandSize + 1; 306 input.set_f(input.f() >> shift_amount); 307 input.set_e(input.e() + shift_amount); 308 // We add 1 for the lost precision of error, and kDenominator for 309 // the lost precision of input.f(). 310 error = (error >> shift_amount) + 1 + kDenominator; 311 precision_digits_count -= shift_amount; 312 } 313 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. 314 ASSERT(DiyFp::kSignificandSize == 64); 315 ASSERT(precision_digits_count < 64); 316 uint64_t one64 = 1; 317 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; 318 uint64_t precision_bits = input.f() & precision_bits_mask; 319 uint64_t half_way = one64 << (precision_digits_count - 1); 320 precision_bits *= kDenominator; 321 half_way *= kDenominator; 322 DiyFp rounded_input(input.f() >> precision_digits_count, 323 input.e() + precision_digits_count); 324 if (precision_bits >= half_way + error) { 325 rounded_input.set_f(rounded_input.f() + 1); 326 } 327 // If the last_bits are too close to the half-way case than we are too 328 // inaccurate and round down. In this case we return false so that we can 329 // fall back to a more precise algorithm. 330 331 *result = Double(rounded_input).value(); 332 if (half_way - error < precision_bits && precision_bits < half_way + error) { 333 // Too imprecise. The caller will have to fall back to a slower version. 334 // However the returned number is guaranteed to be either the correct 335 // double, or the next-lower double. 336 return false; 337 } else { 338 return true; 339 } 340 } 341 342 343 // Returns the correct double for the buffer*10^exponent. 344 // The variable guess should be a close guess that is either the correct double 345 // or its lower neighbor (the nearest double less than the correct one). 346 // Preconditions: 347 // buffer.length() + exponent <= kMaxDecimalPower + 1 348 // buffer.length() + exponent > kMinDecimalPower 349 // buffer.length() <= kMaxDecimalSignificantDigits 350 static double BignumStrtod(Vector<const char> buffer, 351 int exponent, 352 double guess) { 353 if (guess == V8_INFINITY) { 354 return guess; 355 } 356 357 DiyFp upper_boundary = Double(guess).UpperBoundary(); 358 359 ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); 360 ASSERT(buffer.length() + exponent > kMinDecimalPower); 361 ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); 362 // Make sure that the Bignum will be able to hold all our numbers. 363 // Our Bignum implementation has a separate field for exponents. Shifts will 364 // consume at most one bigit (< 64 bits). 365 // ln(10) == 3.3219... 366 ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); 367 Bignum input; 368 Bignum boundary; 369 input.AssignDecimalString(buffer); 370 boundary.AssignUInt64(upper_boundary.f()); 371 if (exponent >= 0) { 372 input.MultiplyByPowerOfTen(exponent); 373 } else { 374 boundary.MultiplyByPowerOfTen(-exponent); 375 } 376 if (upper_boundary.e() > 0) { 377 boundary.ShiftLeft(upper_boundary.e()); 378 } else { 379 input.ShiftLeft(-upper_boundary.e()); 380 } 381 int comparison = Bignum::Compare(input, boundary); 382 if (comparison < 0) { 383 return guess; 384 } else if (comparison > 0) { 385 return Double(guess).NextDouble(); 386 } else if ((Double(guess).Significand() & 1) == 0) { 387 // Round towards even. 388 return guess; 389 } else { 390 return Double(guess).NextDouble(); 391 } 392 } 393 394 395 double Strtod(Vector<const char> buffer, int exponent) { 396 Vector<const char> left_trimmed = TrimLeadingZeros(buffer); 397 Vector<const char> trimmed = TrimTrailingZeros(left_trimmed); 398 exponent += left_trimmed.length() - trimmed.length(); 399 if (trimmed.length() == 0) return 0.0; 400 if (trimmed.length() > kMaxSignificantDecimalDigits) { 401 char significant_buffer[kMaxSignificantDecimalDigits]; 402 int significant_exponent; 403 TrimToMaxSignificantDigits(trimmed, exponent, 404 significant_buffer, &significant_exponent); 405 return Strtod(Vector<const char>(significant_buffer, 406 kMaxSignificantDecimalDigits), 407 significant_exponent); 408 } 409 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY; 410 if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0; 411 412 double guess; 413 if (DoubleStrtod(trimmed, exponent, &guess) || 414 DiyFpStrtod(trimmed, exponent, &guess)) { 415 return guess; 416 } 417 return BignumStrtod(trimmed, exponent, guess); 418 } 419 420 } } // namespace v8::internal 421