Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_X64
      8 
      9 #include "src/cpu-profiler.h"
     10 #include "src/serialize.h"
     11 #include "src/unicode.h"
     12 #include "src/log.h"
     13 #include "src/regexp-stack.h"
     14 #include "src/macro-assembler.h"
     15 #include "src/regexp-macro-assembler.h"
     16 #include "src/x64/regexp-macro-assembler-x64.h"
     17 
     18 namespace v8 {
     19 namespace internal {
     20 
     21 #ifndef V8_INTERPRETED_REGEXP
     22 
     23 /*
     24  * This assembler uses the following register assignment convention
     25  * - rdx : Currently loaded character(s) as ASCII or UC16.  Must be loaded
     26  *         using LoadCurrentCharacter before using any of the dispatch methods.
     27  *         Temporarily stores the index of capture start after a matching pass
     28  *         for a global regexp.
     29  * - rdi : Current position in input, as negative offset from end of string.
     30  *         Please notice that this is the byte offset, not the character
     31  *         offset!  Is always a 32-bit signed (negative) offset, but must be
     32  *         maintained sign-extended to 64 bits, since it is used as index.
     33  * - rsi : End of input (points to byte after last character in input),
     34  *         so that rsi+rdi points to the current character.
     35  * - rbp : Frame pointer.  Used to access arguments, local variables and
     36  *         RegExp registers.
     37  * - rsp : Points to tip of C stack.
     38  * - rcx : Points to tip of backtrack stack.  The backtrack stack contains
     39  *         only 32-bit values.  Most are offsets from some base (e.g., character
     40  *         positions from end of string or code location from Code* pointer).
     41  * - r8  : Code object pointer.  Used to convert between absolute and
     42  *         code-object-relative addresses.
     43  *
     44  * The registers rax, rbx, r9 and r11 are free to use for computations.
     45  * If changed to use r12+, they should be saved as callee-save registers.
     46  * The macro assembler special registers r12 and r13 (kSmiConstantRegister,
     47  * kRootRegister) aren't special during execution of RegExp code (they don't
     48  * hold the values assumed when creating JS code), so no Smi or Root related
     49  * macro operations can be used.
     50  *
     51  * Each call to a C++ method should retain these registers.
     52  *
     53  * The stack will have the following content, in some order, indexable from the
     54  * frame pointer (see, e.g., kStackHighEnd):
     55  *    - Isolate* isolate     (address of the current isolate)
     56  *    - direct_call          (if 1, direct call from JavaScript code, if 0 call
     57  *                            through the runtime system)
     58  *    - stack_area_base      (high end of the memory area to use as
     59  *                            backtracking stack)
     60  *    - capture array size   (may fit multiple sets of matches)
     61  *    - int* capture_array   (int[num_saved_registers_], for output).
     62  *    - end of input         (address of end of string)
     63  *    - start of input       (address of first character in string)
     64  *    - start index          (character index of start)
     65  *    - String* input_string (input string)
     66  *    - return address
     67  *    - backup of callee save registers (rbx, possibly rsi and rdi).
     68  *    - success counter      (only useful for global regexp to count matches)
     69  *    - Offset of location before start of input (effectively character
     70  *      position -1).  Used to initialize capture registers to a non-position.
     71  *    - At start of string (if 1, we are starting at the start of the
     72  *      string, otherwise 0)
     73  *    - register 0  rbp[-n]   (Only positions must be stored in the first
     74  *    - register 1  rbp[-n-8]  num_saved_registers_ registers)
     75  *    - ...
     76  *
     77  * The first num_saved_registers_ registers are initialized to point to
     78  * "character -1" in the string (i.e., char_size() bytes before the first
     79  * character of the string).  The remaining registers starts out uninitialized.
     80  *
     81  * The first seven values must be provided by the calling code by
     82  * calling the code's entry address cast to a function pointer with the
     83  * following signature:
     84  * int (*match)(String* input_string,
     85  *              int start_index,
     86  *              Address start,
     87  *              Address end,
     88  *              int* capture_output_array,
     89  *              bool at_start,
     90  *              byte* stack_area_base,
     91  *              bool direct_call)
     92  */
     93 
     94 #define __ ACCESS_MASM((&masm_))
     95 
     96 RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(
     97     Mode mode,
     98     int registers_to_save,
     99     Zone* zone)
    100     : NativeRegExpMacroAssembler(zone),
    101       masm_(zone->isolate(), NULL, kRegExpCodeSize),
    102       no_root_array_scope_(&masm_),
    103       code_relative_fixup_positions_(4, zone),
    104       mode_(mode),
    105       num_registers_(registers_to_save),
    106       num_saved_registers_(registers_to_save),
    107       entry_label_(),
    108       start_label_(),
    109       success_label_(),
    110       backtrack_label_(),
    111       exit_label_() {
    112   ASSERT_EQ(0, registers_to_save % 2);
    113   __ jmp(&entry_label_);   // We'll write the entry code when we know more.
    114   __ bind(&start_label_);  // And then continue from here.
    115 }
    116 
    117 
    118 RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
    119   // Unuse labels in case we throw away the assembler without calling GetCode.
    120   entry_label_.Unuse();
    121   start_label_.Unuse();
    122   success_label_.Unuse();
    123   backtrack_label_.Unuse();
    124   exit_label_.Unuse();
    125   check_preempt_label_.Unuse();
    126   stack_overflow_label_.Unuse();
    127 }
    128 
    129 
    130 int RegExpMacroAssemblerX64::stack_limit_slack()  {
    131   return RegExpStack::kStackLimitSlack;
    132 }
    133 
    134 
    135 void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
    136   if (by != 0) {
    137     __ addq(rdi, Immediate(by * char_size()));
    138   }
    139 }
    140 
    141 
    142 void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
    143   ASSERT(reg >= 0);
    144   ASSERT(reg < num_registers_);
    145   if (by != 0) {
    146     __ addp(register_location(reg), Immediate(by));
    147   }
    148 }
    149 
    150 
    151 void RegExpMacroAssemblerX64::Backtrack() {
    152   CheckPreemption();
    153   // Pop Code* offset from backtrack stack, add Code* and jump to location.
    154   Pop(rbx);
    155   __ addp(rbx, code_object_pointer());
    156   __ jmp(rbx);
    157 }
    158 
    159 
    160 void RegExpMacroAssemblerX64::Bind(Label* label) {
    161   __ bind(label);
    162 }
    163 
    164 
    165 void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
    166   __ cmpl(current_character(), Immediate(c));
    167   BranchOrBacktrack(equal, on_equal);
    168 }
    169 
    170 
    171 void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
    172   __ cmpl(current_character(), Immediate(limit));
    173   BranchOrBacktrack(greater, on_greater);
    174 }
    175 
    176 
    177 void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
    178   Label not_at_start;
    179   // Did we start the match at the start of the string at all?
    180   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
    181   BranchOrBacktrack(not_equal, &not_at_start);
    182   // If we did, are we still at the start of the input?
    183   __ leap(rax, Operand(rsi, rdi, times_1, 0));
    184   __ cmpp(rax, Operand(rbp, kInputStart));
    185   BranchOrBacktrack(equal, on_at_start);
    186   __ bind(&not_at_start);
    187 }
    188 
    189 
    190 void RegExpMacroAssemblerX64::CheckNotAtStart(Label* on_not_at_start) {
    191   // Did we start the match at the start of the string at all?
    192   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
    193   BranchOrBacktrack(not_equal, on_not_at_start);
    194   // If we did, are we still at the start of the input?
    195   __ leap(rax, Operand(rsi, rdi, times_1, 0));
    196   __ cmpp(rax, Operand(rbp, kInputStart));
    197   BranchOrBacktrack(not_equal, on_not_at_start);
    198 }
    199 
    200 
    201 void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
    202   __ cmpl(current_character(), Immediate(limit));
    203   BranchOrBacktrack(less, on_less);
    204 }
    205 
    206 
    207 void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
    208   Label fallthrough;
    209   __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
    210   __ j(not_equal, &fallthrough);
    211   Drop();
    212   BranchOrBacktrack(no_condition, on_equal);
    213   __ bind(&fallthrough);
    214 }
    215 
    216 
    217 void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
    218     int start_reg,
    219     Label* on_no_match) {
    220   Label fallthrough;
    221   ReadPositionFromRegister(rdx, start_reg);  // Offset of start of capture
    222   ReadPositionFromRegister(rbx, start_reg + 1);  // Offset of end of capture
    223   __ subp(rbx, rdx);  // Length of capture.
    224 
    225   // -----------------------
    226   // rdx  = Start offset of capture.
    227   // rbx = Length of capture
    228 
    229   // If length is negative, this code will fail (it's a symptom of a partial or
    230   // illegal capture where start of capture after end of capture).
    231   // This must not happen (no back-reference can reference a capture that wasn't
    232   // closed before in the reg-exp, and we must not generate code that can cause
    233   // this condition).
    234 
    235   // If length is zero, either the capture is empty or it is nonparticipating.
    236   // In either case succeed immediately.
    237   __ j(equal, &fallthrough);
    238 
    239   // -----------------------
    240   // rdx - Start of capture
    241   // rbx - length of capture
    242   // Check that there are sufficient characters left in the input.
    243   __ movl(rax, rdi);
    244   __ addl(rax, rbx);
    245   BranchOrBacktrack(greater, on_no_match);
    246 
    247   if (mode_ == ASCII) {
    248     Label loop_increment;
    249     if (on_no_match == NULL) {
    250       on_no_match = &backtrack_label_;
    251     }
    252 
    253     __ leap(r9, Operand(rsi, rdx, times_1, 0));
    254     __ leap(r11, Operand(rsi, rdi, times_1, 0));
    255     __ addp(rbx, r9);  // End of capture
    256     // ---------------------
    257     // r11 - current input character address
    258     // r9 - current capture character address
    259     // rbx - end of capture
    260 
    261     Label loop;
    262     __ bind(&loop);
    263     __ movzxbl(rdx, Operand(r9, 0));
    264     __ movzxbl(rax, Operand(r11, 0));
    265     // al - input character
    266     // dl - capture character
    267     __ cmpb(rax, rdx);
    268     __ j(equal, &loop_increment);
    269 
    270     // Mismatch, try case-insensitive match (converting letters to lower-case).
    271     // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
    272     // a match.
    273     __ orp(rax, Immediate(0x20));  // Convert match character to lower-case.
    274     __ orp(rdx, Immediate(0x20));  // Convert capture character to lower-case.
    275     __ cmpb(rax, rdx);
    276     __ j(not_equal, on_no_match);  // Definitely not equal.
    277     __ subb(rax, Immediate('a'));
    278     __ cmpb(rax, Immediate('z' - 'a'));
    279     __ j(below_equal, &loop_increment);  // In range 'a'-'z'.
    280     // Latin-1: Check for values in range [224,254] but not 247.
    281     __ subb(rax, Immediate(224 - 'a'));
    282     __ cmpb(rax, Immediate(254 - 224));
    283     __ j(above, on_no_match);  // Weren't Latin-1 letters.
    284     __ cmpb(rax, Immediate(247 - 224));  // Check for 247.
    285     __ j(equal, on_no_match);
    286     __ bind(&loop_increment);
    287     // Increment pointers into match and capture strings.
    288     __ addp(r11, Immediate(1));
    289     __ addp(r9, Immediate(1));
    290     // Compare to end of capture, and loop if not done.
    291     __ cmpp(r9, rbx);
    292     __ j(below, &loop);
    293 
    294     // Compute new value of character position after the matched part.
    295     __ movp(rdi, r11);
    296     __ subq(rdi, rsi);
    297   } else {
    298     ASSERT(mode_ == UC16);
    299     // Save important/volatile registers before calling C function.
    300 #ifndef _WIN64
    301     // Caller save on Linux and callee save in Windows.
    302     __ pushq(rsi);
    303     __ pushq(rdi);
    304 #endif
    305     __ pushq(backtrack_stackpointer());
    306 
    307     static const int num_arguments = 4;
    308     __ PrepareCallCFunction(num_arguments);
    309 
    310     // Put arguments into parameter registers. Parameters are
    311     //   Address byte_offset1 - Address captured substring's start.
    312     //   Address byte_offset2 - Address of current character position.
    313     //   size_t byte_length - length of capture in bytes(!)
    314     //   Isolate* isolate
    315 #ifdef _WIN64
    316     // Compute and set byte_offset1 (start of capture).
    317     __ leap(rcx, Operand(rsi, rdx, times_1, 0));
    318     // Set byte_offset2.
    319     __ leap(rdx, Operand(rsi, rdi, times_1, 0));
    320     // Set byte_length.
    321     __ movp(r8, rbx);
    322     // Isolate.
    323     __ LoadAddress(r9, ExternalReference::isolate_address(isolate()));
    324 #else  // AMD64 calling convention
    325     // Compute byte_offset2 (current position = rsi+rdi).
    326     __ leap(rax, Operand(rsi, rdi, times_1, 0));
    327     // Compute and set byte_offset1 (start of capture).
    328     __ leap(rdi, Operand(rsi, rdx, times_1, 0));
    329     // Set byte_offset2.
    330     __ movp(rsi, rax);
    331     // Set byte_length.
    332     __ movp(rdx, rbx);
    333     // Isolate.
    334     __ LoadAddress(rcx, ExternalReference::isolate_address(isolate()));
    335 #endif
    336 
    337     { // NOLINT: Can't find a way to open this scope without confusing the
    338       // linter.
    339       AllowExternalCallThatCantCauseGC scope(&masm_);
    340       ExternalReference compare =
    341           ExternalReference::re_case_insensitive_compare_uc16(isolate());
    342       __ CallCFunction(compare, num_arguments);
    343     }
    344 
    345     // Restore original values before reacting on result value.
    346     __ Move(code_object_pointer(), masm_.CodeObject());
    347     __ popq(backtrack_stackpointer());
    348 #ifndef _WIN64
    349     __ popq(rdi);
    350     __ popq(rsi);
    351 #endif
    352 
    353     // Check if function returned non-zero for success or zero for failure.
    354     __ testp(rax, rax);
    355     BranchOrBacktrack(zero, on_no_match);
    356     // On success, increment position by length of capture.
    357     // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
    358     __ addq(rdi, rbx);
    359   }
    360   __ bind(&fallthrough);
    361 }
    362 
    363 
    364 void RegExpMacroAssemblerX64::CheckNotBackReference(
    365     int start_reg,
    366     Label* on_no_match) {
    367   Label fallthrough;
    368 
    369   // Find length of back-referenced capture.
    370   ReadPositionFromRegister(rdx, start_reg);  // Offset of start of capture
    371   ReadPositionFromRegister(rax, start_reg + 1);  // Offset of end of capture
    372   __ subp(rax, rdx);  // Length to check.
    373 
    374   // Fail on partial or illegal capture (start of capture after end of capture).
    375   // This must not happen (no back-reference can reference a capture that wasn't
    376   // closed before in the reg-exp).
    377   __ Check(greater_equal, kInvalidCaptureReferenced);
    378 
    379   // Succeed on empty capture (including non-participating capture)
    380   __ j(equal, &fallthrough);
    381 
    382   // -----------------------
    383   // rdx - Start of capture
    384   // rax - length of capture
    385 
    386   // Check that there are sufficient characters left in the input.
    387   __ movl(rbx, rdi);
    388   __ addl(rbx, rax);
    389   BranchOrBacktrack(greater, on_no_match);
    390 
    391   // Compute pointers to match string and capture string
    392   __ leap(rbx, Operand(rsi, rdi, times_1, 0));  // Start of match.
    393   __ addp(rdx, rsi);  // Start of capture.
    394   __ leap(r9, Operand(rdx, rax, times_1, 0));  // End of capture
    395 
    396   // -----------------------
    397   // rbx - current capture character address.
    398   // rbx - current input character address .
    399   // r9 - end of input to match (capture length after rbx).
    400 
    401   Label loop;
    402   __ bind(&loop);
    403   if (mode_ == ASCII) {
    404     __ movzxbl(rax, Operand(rdx, 0));
    405     __ cmpb(rax, Operand(rbx, 0));
    406   } else {
    407     ASSERT(mode_ == UC16);
    408     __ movzxwl(rax, Operand(rdx, 0));
    409     __ cmpw(rax, Operand(rbx, 0));
    410   }
    411   BranchOrBacktrack(not_equal, on_no_match);
    412   // Increment pointers into capture and match string.
    413   __ addp(rbx, Immediate(char_size()));
    414   __ addp(rdx, Immediate(char_size()));
    415   // Check if we have reached end of match area.
    416   __ cmpp(rdx, r9);
    417   __ j(below, &loop);
    418 
    419   // Success.
    420   // Set current character position to position after match.
    421   __ movp(rdi, rbx);
    422   __ subq(rdi, rsi);
    423 
    424   __ bind(&fallthrough);
    425 }
    426 
    427 
    428 void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
    429                                                 Label* on_not_equal) {
    430   __ cmpl(current_character(), Immediate(c));
    431   BranchOrBacktrack(not_equal, on_not_equal);
    432 }
    433 
    434 
    435 void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
    436                                                      uint32_t mask,
    437                                                      Label* on_equal) {
    438   if (c == 0) {
    439     __ testl(current_character(), Immediate(mask));
    440   } else {
    441     __ movl(rax, Immediate(mask));
    442     __ andp(rax, current_character());
    443     __ cmpl(rax, Immediate(c));
    444   }
    445   BranchOrBacktrack(equal, on_equal);
    446 }
    447 
    448 
    449 void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
    450                                                         uint32_t mask,
    451                                                         Label* on_not_equal) {
    452   if (c == 0) {
    453     __ testl(current_character(), Immediate(mask));
    454   } else {
    455     __ movl(rax, Immediate(mask));
    456     __ andp(rax, current_character());
    457     __ cmpl(rax, Immediate(c));
    458   }
    459   BranchOrBacktrack(not_equal, on_not_equal);
    460 }
    461 
    462 
    463 void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
    464     uc16 c,
    465     uc16 minus,
    466     uc16 mask,
    467     Label* on_not_equal) {
    468   ASSERT(minus < String::kMaxUtf16CodeUnit);
    469   __ leap(rax, Operand(current_character(), -minus));
    470   __ andp(rax, Immediate(mask));
    471   __ cmpl(rax, Immediate(c));
    472   BranchOrBacktrack(not_equal, on_not_equal);
    473 }
    474 
    475 
    476 void RegExpMacroAssemblerX64::CheckCharacterInRange(
    477     uc16 from,
    478     uc16 to,
    479     Label* on_in_range) {
    480   __ leal(rax, Operand(current_character(), -from));
    481   __ cmpl(rax, Immediate(to - from));
    482   BranchOrBacktrack(below_equal, on_in_range);
    483 }
    484 
    485 
    486 void RegExpMacroAssemblerX64::CheckCharacterNotInRange(
    487     uc16 from,
    488     uc16 to,
    489     Label* on_not_in_range) {
    490   __ leal(rax, Operand(current_character(), -from));
    491   __ cmpl(rax, Immediate(to - from));
    492   BranchOrBacktrack(above, on_not_in_range);
    493 }
    494 
    495 
    496 void RegExpMacroAssemblerX64::CheckBitInTable(
    497     Handle<ByteArray> table,
    498     Label* on_bit_set) {
    499   __ Move(rax, table);
    500   Register index = current_character();
    501   if (mode_ != ASCII || kTableMask != String::kMaxOneByteCharCode) {
    502     __ movp(rbx, current_character());
    503     __ andp(rbx, Immediate(kTableMask));
    504     index = rbx;
    505   }
    506   __ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize),
    507           Immediate(0));
    508   BranchOrBacktrack(not_equal, on_bit_set);
    509 }
    510 
    511 
    512 bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
    513                                                          Label* on_no_match) {
    514   // Range checks (c in min..max) are generally implemented by an unsigned
    515   // (c - min) <= (max - min) check, using the sequence:
    516   //   leap(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
    517   //   cmp(rax, Immediate(max - min))
    518   switch (type) {
    519   case 's':
    520     // Match space-characters
    521     if (mode_ == ASCII) {
    522       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
    523       Label success;
    524       __ cmpl(current_character(), Immediate(' '));
    525       __ j(equal, &success, Label::kNear);
    526       // Check range 0x09..0x0d
    527       __ leap(rax, Operand(current_character(), -'\t'));
    528       __ cmpl(rax, Immediate('\r' - '\t'));
    529       __ j(below_equal, &success, Label::kNear);
    530       // \u00a0 (NBSP).
    531       __ cmpl(rax, Immediate(0x00a0 - '\t'));
    532       BranchOrBacktrack(not_equal, on_no_match);
    533       __ bind(&success);
    534       return true;
    535     }
    536     return false;
    537   case 'S':
    538     // The emitted code for generic character classes is good enough.
    539     return false;
    540   case 'd':
    541     // Match ASCII digits ('0'..'9')
    542     __ leap(rax, Operand(current_character(), -'0'));
    543     __ cmpl(rax, Immediate('9' - '0'));
    544     BranchOrBacktrack(above, on_no_match);
    545     return true;
    546   case 'D':
    547     // Match non ASCII-digits
    548     __ leap(rax, Operand(current_character(), -'0'));
    549     __ cmpl(rax, Immediate('9' - '0'));
    550     BranchOrBacktrack(below_equal, on_no_match);
    551     return true;
    552   case '.': {
    553     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    554     __ movl(rax, current_character());
    555     __ xorp(rax, Immediate(0x01));
    556     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    557     __ subl(rax, Immediate(0x0b));
    558     __ cmpl(rax, Immediate(0x0c - 0x0b));
    559     BranchOrBacktrack(below_equal, on_no_match);
    560     if (mode_ == UC16) {
    561       // Compare original value to 0x2028 and 0x2029, using the already
    562       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    563       // 0x201d (0x2028 - 0x0b) or 0x201e.
    564       __ subl(rax, Immediate(0x2028 - 0x0b));
    565       __ cmpl(rax, Immediate(0x2029 - 0x2028));
    566       BranchOrBacktrack(below_equal, on_no_match);
    567     }
    568     return true;
    569   }
    570   case 'n': {
    571     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    572     __ movl(rax, current_character());
    573     __ xorp(rax, Immediate(0x01));
    574     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    575     __ subl(rax, Immediate(0x0b));
    576     __ cmpl(rax, Immediate(0x0c - 0x0b));
    577     if (mode_ == ASCII) {
    578       BranchOrBacktrack(above, on_no_match);
    579     } else {
    580       Label done;
    581       BranchOrBacktrack(below_equal, &done);
    582       // Compare original value to 0x2028 and 0x2029, using the already
    583       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    584       // 0x201d (0x2028 - 0x0b) or 0x201e.
    585       __ subl(rax, Immediate(0x2028 - 0x0b));
    586       __ cmpl(rax, Immediate(0x2029 - 0x2028));
    587       BranchOrBacktrack(above, on_no_match);
    588       __ bind(&done);
    589     }
    590     return true;
    591   }
    592   case 'w': {
    593     if (mode_ != ASCII) {
    594       // Table is 128 entries, so all ASCII characters can be tested.
    595       __ cmpl(current_character(), Immediate('z'));
    596       BranchOrBacktrack(above, on_no_match);
    597     }
    598     __ Move(rbx, ExternalReference::re_word_character_map());
    599     ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
    600     __ testb(Operand(rbx, current_character(), times_1, 0),
    601              current_character());
    602     BranchOrBacktrack(zero, on_no_match);
    603     return true;
    604   }
    605   case 'W': {
    606     Label done;
    607     if (mode_ != ASCII) {
    608       // Table is 128 entries, so all ASCII characters can be tested.
    609       __ cmpl(current_character(), Immediate('z'));
    610       __ j(above, &done);
    611     }
    612     __ Move(rbx, ExternalReference::re_word_character_map());
    613     ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
    614     __ testb(Operand(rbx, current_character(), times_1, 0),
    615              current_character());
    616     BranchOrBacktrack(not_zero, on_no_match);
    617     if (mode_ != ASCII) {
    618       __ bind(&done);
    619     }
    620     return true;
    621   }
    622 
    623   case '*':
    624     // Match any character.
    625     return true;
    626   // No custom implementation (yet): s(UC16), S(UC16).
    627   default:
    628     return false;
    629   }
    630 }
    631 
    632 
    633 void RegExpMacroAssemblerX64::Fail() {
    634   STATIC_ASSERT(FAILURE == 0);  // Return value for failure is zero.
    635   if (!global()) {
    636     __ Set(rax, FAILURE);
    637   }
    638   __ jmp(&exit_label_);
    639 }
    640 
    641 
    642 Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
    643   Label return_rax;
    644   // Finalize code - write the entry point code now we know how many
    645   // registers we need.
    646   // Entry code:
    647   __ bind(&entry_label_);
    648 
    649   // Tell the system that we have a stack frame.  Because the type is MANUAL, no
    650   // is generated.
    651   FrameScope scope(&masm_, StackFrame::MANUAL);
    652 
    653   // Actually emit code to start a new stack frame.
    654   __ pushq(rbp);
    655   __ movp(rbp, rsp);
    656   // Save parameters and callee-save registers. Order here should correspond
    657   //  to order of kBackup_ebx etc.
    658 #ifdef _WIN64
    659   // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
    660   // Store register parameters in pre-allocated stack slots,
    661   __ movq(Operand(rbp, kInputString), rcx);
    662   __ movq(Operand(rbp, kStartIndex), rdx);  // Passed as int32 in edx.
    663   __ movq(Operand(rbp, kInputStart), r8);
    664   __ movq(Operand(rbp, kInputEnd), r9);
    665   // Callee-save on Win64.
    666   __ pushq(rsi);
    667   __ pushq(rdi);
    668   __ pushq(rbx);
    669 #else
    670   // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
    671   // Push register parameters on stack for reference.
    672   ASSERT_EQ(kInputString, -1 * kRegisterSize);
    673   ASSERT_EQ(kStartIndex, -2 * kRegisterSize);
    674   ASSERT_EQ(kInputStart, -3 * kRegisterSize);
    675   ASSERT_EQ(kInputEnd, -4 * kRegisterSize);
    676   ASSERT_EQ(kRegisterOutput, -5 * kRegisterSize);
    677   ASSERT_EQ(kNumOutputRegisters, -6 * kRegisterSize);
    678   __ pushq(rdi);
    679   __ pushq(rsi);
    680   __ pushq(rdx);
    681   __ pushq(rcx);
    682   __ pushq(r8);
    683   __ pushq(r9);
    684 
    685   __ pushq(rbx);  // Callee-save
    686 #endif
    687 
    688   __ Push(Immediate(0));  // Number of successful matches in a global regexp.
    689   __ Push(Immediate(0));  // Make room for "input start - 1" constant.
    690 
    691   // Check if we have space on the stack for registers.
    692   Label stack_limit_hit;
    693   Label stack_ok;
    694 
    695   ExternalReference stack_limit =
    696       ExternalReference::address_of_stack_limit(isolate());
    697   __ movp(rcx, rsp);
    698   __ Move(kScratchRegister, stack_limit);
    699   __ subp(rcx, Operand(kScratchRegister, 0));
    700   // Handle it if the stack pointer is already below the stack limit.
    701   __ j(below_equal, &stack_limit_hit);
    702   // Check if there is room for the variable number of registers above
    703   // the stack limit.
    704   __ cmpp(rcx, Immediate(num_registers_ * kPointerSize));
    705   __ j(above_equal, &stack_ok);
    706   // Exit with OutOfMemory exception. There is not enough space on the stack
    707   // for our working registers.
    708   __ Set(rax, EXCEPTION);
    709   __ jmp(&return_rax);
    710 
    711   __ bind(&stack_limit_hit);
    712   __ Move(code_object_pointer(), masm_.CodeObject());
    713   CallCheckStackGuardState();  // Preserves no registers beside rbp and rsp.
    714   __ testp(rax, rax);
    715   // If returned value is non-zero, we exit with the returned value as result.
    716   __ j(not_zero, &return_rax);
    717 
    718   __ bind(&stack_ok);
    719 
    720   // Allocate space on stack for registers.
    721   __ subp(rsp, Immediate(num_registers_ * kPointerSize));
    722   // Load string length.
    723   __ movp(rsi, Operand(rbp, kInputEnd));
    724   // Load input position.
    725   __ movp(rdi, Operand(rbp, kInputStart));
    726   // Set up rdi to be negative offset from string end.
    727   __ subq(rdi, rsi);
    728   // Set rax to address of char before start of the string
    729   // (effectively string position -1).
    730   __ movp(rbx, Operand(rbp, kStartIndex));
    731   __ negq(rbx);
    732   if (mode_ == UC16) {
    733     __ leap(rax, Operand(rdi, rbx, times_2, -char_size()));
    734   } else {
    735     __ leap(rax, Operand(rdi, rbx, times_1, -char_size()));
    736   }
    737   // Store this value in a local variable, for use when clearing
    738   // position registers.
    739   __ movp(Operand(rbp, kInputStartMinusOne), rax);
    740 
    741 #if V8_OS_WIN
    742   // Ensure that we have written to each stack page, in order. Skipping a page
    743   // on Windows can cause segmentation faults. Assuming page size is 4k.
    744   const int kPageSize = 4096;
    745   const int kRegistersPerPage = kPageSize / kPointerSize;
    746   for (int i = num_saved_registers_ + kRegistersPerPage - 1;
    747       i < num_registers_;
    748       i += kRegistersPerPage) {
    749     __ movp(register_location(i), rax);  // One write every page.
    750   }
    751 #endif  // V8_OS_WIN
    752 
    753   // Initialize code object pointer.
    754   __ Move(code_object_pointer(), masm_.CodeObject());
    755 
    756   Label load_char_start_regexp, start_regexp;
    757   // Load newline if index is at start, previous character otherwise.
    758   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
    759   __ j(not_equal, &load_char_start_regexp, Label::kNear);
    760   __ Set(current_character(), '\n');
    761   __ jmp(&start_regexp, Label::kNear);
    762 
    763   // Global regexp restarts matching here.
    764   __ bind(&load_char_start_regexp);
    765   // Load previous char as initial value of current character register.
    766   LoadCurrentCharacterUnchecked(-1, 1);
    767   __ bind(&start_regexp);
    768 
    769   // Initialize on-stack registers.
    770   if (num_saved_registers_ > 0) {
    771     // Fill saved registers with initial value = start offset - 1
    772     // Fill in stack push order, to avoid accessing across an unwritten
    773     // page (a problem on Windows).
    774     if (num_saved_registers_ > 8) {
    775       __ Set(rcx, kRegisterZero);
    776       Label init_loop;
    777       __ bind(&init_loop);
    778       __ movp(Operand(rbp, rcx, times_1, 0), rax);
    779       __ subq(rcx, Immediate(kPointerSize));
    780       __ cmpq(rcx,
    781               Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
    782       __ j(greater, &init_loop);
    783     } else {  // Unroll the loop.
    784       for (int i = 0; i < num_saved_registers_; i++) {
    785         __ movp(register_location(i), rax);
    786       }
    787     }
    788   }
    789 
    790   // Initialize backtrack stack pointer.
    791   __ movp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
    792 
    793   __ jmp(&start_label_);
    794 
    795   // Exit code:
    796   if (success_label_.is_linked()) {
    797     // Save captures when successful.
    798     __ bind(&success_label_);
    799     if (num_saved_registers_ > 0) {
    800       // copy captures to output
    801       __ movp(rdx, Operand(rbp, kStartIndex));
    802       __ movp(rbx, Operand(rbp, kRegisterOutput));
    803       __ movp(rcx, Operand(rbp, kInputEnd));
    804       __ subp(rcx, Operand(rbp, kInputStart));
    805       if (mode_ == UC16) {
    806         __ leap(rcx, Operand(rcx, rdx, times_2, 0));
    807       } else {
    808         __ addp(rcx, rdx);
    809       }
    810       for (int i = 0; i < num_saved_registers_; i++) {
    811         __ movp(rax, register_location(i));
    812         if (i == 0 && global_with_zero_length_check()) {
    813           // Keep capture start in rdx for the zero-length check later.
    814           __ movp(rdx, rax);
    815         }
    816         __ addp(rax, rcx);  // Convert to index from start, not end.
    817         if (mode_ == UC16) {
    818           __ sarp(rax, Immediate(1));  // Convert byte index to character index.
    819         }
    820         __ movl(Operand(rbx, i * kIntSize), rax);
    821       }
    822     }
    823 
    824     if (global()) {
    825       // Restart matching if the regular expression is flagged as global.
    826       // Increment success counter.
    827       __ incp(Operand(rbp, kSuccessfulCaptures));
    828       // Capture results have been stored, so the number of remaining global
    829       // output registers is reduced by the number of stored captures.
    830       __ movsxlq(rcx, Operand(rbp, kNumOutputRegisters));
    831       __ subp(rcx, Immediate(num_saved_registers_));
    832       // Check whether we have enough room for another set of capture results.
    833       __ cmpp(rcx, Immediate(num_saved_registers_));
    834       __ j(less, &exit_label_);
    835 
    836       __ movp(Operand(rbp, kNumOutputRegisters), rcx);
    837       // Advance the location for output.
    838       __ addp(Operand(rbp, kRegisterOutput),
    839               Immediate(num_saved_registers_ * kIntSize));
    840 
    841       // Prepare rax to initialize registers with its value in the next run.
    842       __ movp(rax, Operand(rbp, kInputStartMinusOne));
    843 
    844       if (global_with_zero_length_check()) {
    845         // Special case for zero-length matches.
    846         // rdx: capture start index
    847         __ cmpp(rdi, rdx);
    848         // Not a zero-length match, restart.
    849         __ j(not_equal, &load_char_start_regexp);
    850         // rdi (offset from the end) is zero if we already reached the end.
    851         __ testp(rdi, rdi);
    852         __ j(zero, &exit_label_, Label::kNear);
    853         // Advance current position after a zero-length match.
    854         if (mode_ == UC16) {
    855           __ addq(rdi, Immediate(2));
    856         } else {
    857           __ incq(rdi);
    858         }
    859       }
    860 
    861       __ jmp(&load_char_start_regexp);
    862     } else {
    863       __ movp(rax, Immediate(SUCCESS));
    864     }
    865   }
    866 
    867   __ bind(&exit_label_);
    868   if (global()) {
    869     // Return the number of successful captures.
    870     __ movp(rax, Operand(rbp, kSuccessfulCaptures));
    871   }
    872 
    873   __ bind(&return_rax);
    874 #ifdef _WIN64
    875   // Restore callee save registers.
    876   __ leap(rsp, Operand(rbp, kLastCalleeSaveRegister));
    877   __ popq(rbx);
    878   __ popq(rdi);
    879   __ popq(rsi);
    880   // Stack now at rbp.
    881 #else
    882   // Restore callee save register.
    883   __ movp(rbx, Operand(rbp, kBackup_rbx));
    884   // Skip rsp to rbp.
    885   __ movp(rsp, rbp);
    886 #endif
    887   // Exit function frame, restore previous one.
    888   __ popq(rbp);
    889   __ ret(0);
    890 
    891   // Backtrack code (branch target for conditional backtracks).
    892   if (backtrack_label_.is_linked()) {
    893     __ bind(&backtrack_label_);
    894     Backtrack();
    895   }
    896 
    897   Label exit_with_exception;
    898 
    899   // Preempt-code
    900   if (check_preempt_label_.is_linked()) {
    901     SafeCallTarget(&check_preempt_label_);
    902 
    903     __ pushq(backtrack_stackpointer());
    904     __ pushq(rdi);
    905 
    906     CallCheckStackGuardState();
    907     __ testp(rax, rax);
    908     // If returning non-zero, we should end execution with the given
    909     // result as return value.
    910     __ j(not_zero, &return_rax);
    911 
    912     // Restore registers.
    913     __ Move(code_object_pointer(), masm_.CodeObject());
    914     __ popq(rdi);
    915     __ popq(backtrack_stackpointer());
    916     // String might have moved: Reload esi from frame.
    917     __ movp(rsi, Operand(rbp, kInputEnd));
    918     SafeReturn();
    919   }
    920 
    921   // Backtrack stack overflow code.
    922   if (stack_overflow_label_.is_linked()) {
    923     SafeCallTarget(&stack_overflow_label_);
    924     // Reached if the backtrack-stack limit has been hit.
    925 
    926     Label grow_failed;
    927     // Save registers before calling C function
    928 #ifndef _WIN64
    929     // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
    930     __ pushq(rsi);
    931     __ pushq(rdi);
    932 #endif
    933 
    934     // Call GrowStack(backtrack_stackpointer())
    935     static const int num_arguments = 3;
    936     __ PrepareCallCFunction(num_arguments);
    937 #ifdef _WIN64
    938     // Microsoft passes parameters in rcx, rdx, r8.
    939     // First argument, backtrack stackpointer, is already in rcx.
    940     __ leap(rdx, Operand(rbp, kStackHighEnd));  // Second argument
    941     __ LoadAddress(r8, ExternalReference::isolate_address(isolate()));
    942 #else
    943     // AMD64 ABI passes parameters in rdi, rsi, rdx.
    944     __ movp(rdi, backtrack_stackpointer());   // First argument.
    945     __ leap(rsi, Operand(rbp, kStackHighEnd));  // Second argument.
    946     __ LoadAddress(rdx, ExternalReference::isolate_address(isolate()));
    947 #endif
    948     ExternalReference grow_stack =
    949         ExternalReference::re_grow_stack(isolate());
    950     __ CallCFunction(grow_stack, num_arguments);
    951     // If return NULL, we have failed to grow the stack, and
    952     // must exit with a stack-overflow exception.
    953     __ testp(rax, rax);
    954     __ j(equal, &exit_with_exception);
    955     // Otherwise use return value as new stack pointer.
    956     __ movp(backtrack_stackpointer(), rax);
    957     // Restore saved registers and continue.
    958     __ Move(code_object_pointer(), masm_.CodeObject());
    959 #ifndef _WIN64
    960     __ popq(rdi);
    961     __ popq(rsi);
    962 #endif
    963     SafeReturn();
    964   }
    965 
    966   if (exit_with_exception.is_linked()) {
    967     // If any of the code above needed to exit with an exception.
    968     __ bind(&exit_with_exception);
    969     // Exit with Result EXCEPTION(-1) to signal thrown exception.
    970     __ Set(rax, EXCEPTION);
    971     __ jmp(&return_rax);
    972   }
    973 
    974   FixupCodeRelativePositions();
    975 
    976   CodeDesc code_desc;
    977   masm_.GetCode(&code_desc);
    978   Isolate* isolate = this->isolate();
    979   Handle<Code> code = isolate->factory()->NewCode(
    980       code_desc, Code::ComputeFlags(Code::REGEXP),
    981       masm_.CodeObject());
    982   PROFILE(isolate, RegExpCodeCreateEvent(*code, *source));
    983   return Handle<HeapObject>::cast(code);
    984 }
    985 
    986 
    987 void RegExpMacroAssemblerX64::GoTo(Label* to) {
    988   BranchOrBacktrack(no_condition, to);
    989 }
    990 
    991 
    992 void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
    993                                            int comparand,
    994                                            Label* if_ge) {
    995   __ cmpp(register_location(reg), Immediate(comparand));
    996   BranchOrBacktrack(greater_equal, if_ge);
    997 }
    998 
    999 
   1000 void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
   1001                                            int comparand,
   1002                                            Label* if_lt) {
   1003   __ cmpp(register_location(reg), Immediate(comparand));
   1004   BranchOrBacktrack(less, if_lt);
   1005 }
   1006 
   1007 
   1008 void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
   1009                                               Label* if_eq) {
   1010   __ cmpp(rdi, register_location(reg));
   1011   BranchOrBacktrack(equal, if_eq);
   1012 }
   1013 
   1014 
   1015 RegExpMacroAssembler::IrregexpImplementation
   1016     RegExpMacroAssemblerX64::Implementation() {
   1017   return kX64Implementation;
   1018 }
   1019 
   1020 
   1021 void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
   1022                                                    Label* on_end_of_input,
   1023                                                    bool check_bounds,
   1024                                                    int characters) {
   1025   ASSERT(cp_offset >= -1);      // ^ and \b can look behind one character.
   1026   ASSERT(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
   1027   if (check_bounds) {
   1028     CheckPosition(cp_offset + characters - 1, on_end_of_input);
   1029   }
   1030   LoadCurrentCharacterUnchecked(cp_offset, characters);
   1031 }
   1032 
   1033 
   1034 void RegExpMacroAssemblerX64::PopCurrentPosition() {
   1035   Pop(rdi);
   1036 }
   1037 
   1038 
   1039 void RegExpMacroAssemblerX64::PopRegister(int register_index) {
   1040   Pop(rax);
   1041   __ movp(register_location(register_index), rax);
   1042 }
   1043 
   1044 
   1045 void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
   1046   Push(label);
   1047   CheckStackLimit();
   1048 }
   1049 
   1050 
   1051 void RegExpMacroAssemblerX64::PushCurrentPosition() {
   1052   Push(rdi);
   1053 }
   1054 
   1055 
   1056 void RegExpMacroAssemblerX64::PushRegister(int register_index,
   1057                                            StackCheckFlag check_stack_limit) {
   1058   __ movp(rax, register_location(register_index));
   1059   Push(rax);
   1060   if (check_stack_limit) CheckStackLimit();
   1061 }
   1062 
   1063 
   1064 STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
   1065 
   1066 
   1067 void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
   1068   if (kPointerSize == kInt64Size) {
   1069     __ movq(rdi, register_location(reg));
   1070   } else {
   1071     // Need sign extension for x32 as rdi might be used as an index register.
   1072     __ movsxlq(rdi, register_location(reg));
   1073   }
   1074 }
   1075 
   1076 
   1077 void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) {
   1078   if (kPointerSize == kInt64Size) {
   1079     __ movq(dst, register_location(reg));
   1080   } else {
   1081     // Need sign extension for x32 as dst might be used as an index register.
   1082     __ movsxlq(dst, register_location(reg));
   1083   }
   1084 }
   1085 
   1086 
   1087 void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
   1088   __ movp(backtrack_stackpointer(), register_location(reg));
   1089   __ addp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
   1090 }
   1091 
   1092 
   1093 void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
   1094   Label after_position;
   1095   __ cmpp(rdi, Immediate(-by * char_size()));
   1096   __ j(greater_equal, &after_position, Label::kNear);
   1097   __ movq(rdi, Immediate(-by * char_size()));
   1098   // On RegExp code entry (where this operation is used), the character before
   1099   // the current position is expected to be already loaded.
   1100   // We have advanced the position, so it's safe to read backwards.
   1101   LoadCurrentCharacterUnchecked(-1, 1);
   1102   __ bind(&after_position);
   1103 }
   1104 
   1105 
   1106 void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
   1107   ASSERT(register_index >= num_saved_registers_);  // Reserved for positions!
   1108   __ movp(register_location(register_index), Immediate(to));
   1109 }
   1110 
   1111 
   1112 bool RegExpMacroAssemblerX64::Succeed() {
   1113   __ jmp(&success_label_);
   1114   return global();
   1115 }
   1116 
   1117 
   1118 void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
   1119                                                              int cp_offset) {
   1120   if (cp_offset == 0) {
   1121     __ movp(register_location(reg), rdi);
   1122   } else {
   1123     __ leap(rax, Operand(rdi, cp_offset * char_size()));
   1124     __ movp(register_location(reg), rax);
   1125   }
   1126 }
   1127 
   1128 
   1129 void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
   1130   ASSERT(reg_from <= reg_to);
   1131   __ movp(rax, Operand(rbp, kInputStartMinusOne));
   1132   for (int reg = reg_from; reg <= reg_to; reg++) {
   1133     __ movp(register_location(reg), rax);
   1134   }
   1135 }
   1136 
   1137 
   1138 void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
   1139   __ movp(rax, backtrack_stackpointer());
   1140   __ subp(rax, Operand(rbp, kStackHighEnd));
   1141   __ movp(register_location(reg), rax);
   1142 }
   1143 
   1144 
   1145 // Private methods:
   1146 
   1147 void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
   1148   // This function call preserves no register values. Caller should
   1149   // store anything volatile in a C call or overwritten by this function.
   1150   static const int num_arguments = 3;
   1151   __ PrepareCallCFunction(num_arguments);
   1152 #ifdef _WIN64
   1153   // Second argument: Code* of self. (Do this before overwriting r8).
   1154   __ movp(rdx, code_object_pointer());
   1155   // Third argument: RegExp code frame pointer.
   1156   __ movp(r8, rbp);
   1157   // First argument: Next address on the stack (will be address of
   1158   // return address).
   1159   __ leap(rcx, Operand(rsp, -kPointerSize));
   1160 #else
   1161   // Third argument: RegExp code frame pointer.
   1162   __ movp(rdx, rbp);
   1163   // Second argument: Code* of self.
   1164   __ movp(rsi, code_object_pointer());
   1165   // First argument: Next address on the stack (will be address of
   1166   // return address).
   1167   __ leap(rdi, Operand(rsp, -kRegisterSize));
   1168 #endif
   1169   ExternalReference stack_check =
   1170       ExternalReference::re_check_stack_guard_state(isolate());
   1171   __ CallCFunction(stack_check, num_arguments);
   1172 }
   1173 
   1174 
   1175 // Helper function for reading a value out of a stack frame.
   1176 template <typename T>
   1177 static T& frame_entry(Address re_frame, int frame_offset) {
   1178   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
   1179 }
   1180 
   1181 
   1182 int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
   1183                                                   Code* re_code,
   1184                                                   Address re_frame) {
   1185   Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
   1186   StackLimitCheck check(isolate);
   1187   if (check.JsHasOverflowed()) {
   1188     isolate->StackOverflow();
   1189     return EXCEPTION;
   1190   }
   1191 
   1192   // If not real stack overflow the stack guard was used to interrupt
   1193   // execution for another purpose.
   1194 
   1195   // If this is a direct call from JavaScript retry the RegExp forcing the call
   1196   // through the runtime system. Currently the direct call cannot handle a GC.
   1197   if (frame_entry<int>(re_frame, kDirectCall) == 1) {
   1198     return RETRY;
   1199   }
   1200 
   1201   // Prepare for possible GC.
   1202   HandleScope handles(isolate);
   1203   Handle<Code> code_handle(re_code);
   1204 
   1205   Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
   1206 
   1207   // Current string.
   1208   bool is_ascii = subject->IsOneByteRepresentationUnderneath();
   1209 
   1210   ASSERT(re_code->instruction_start() <= *return_address);
   1211   ASSERT(*return_address <=
   1212       re_code->instruction_start() + re_code->instruction_size());
   1213 
   1214   Object* result = isolate->stack_guard()->HandleInterrupts();
   1215 
   1216   if (*code_handle != re_code) {  // Return address no longer valid
   1217     intptr_t delta = code_handle->address() - re_code->address();
   1218     // Overwrite the return address on the stack.
   1219     *return_address += delta;
   1220   }
   1221 
   1222   if (result->IsException()) {
   1223     return EXCEPTION;
   1224   }
   1225 
   1226   Handle<String> subject_tmp = subject;
   1227   int slice_offset = 0;
   1228 
   1229   // Extract the underlying string and the slice offset.
   1230   if (StringShape(*subject_tmp).IsCons()) {
   1231     subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
   1232   } else if (StringShape(*subject_tmp).IsSliced()) {
   1233     SlicedString* slice = SlicedString::cast(*subject_tmp);
   1234     subject_tmp = Handle<String>(slice->parent());
   1235     slice_offset = slice->offset();
   1236   }
   1237 
   1238   // String might have changed.
   1239   if (subject_tmp->IsOneByteRepresentation() != is_ascii) {
   1240     // If we changed between an ASCII and an UC16 string, the specialized
   1241     // code cannot be used, and we need to restart regexp matching from
   1242     // scratch (including, potentially, compiling a new version of the code).
   1243     return RETRY;
   1244   }
   1245 
   1246   // Otherwise, the content of the string might have moved. It must still
   1247   // be a sequential or external string with the same content.
   1248   // Update the start and end pointers in the stack frame to the current
   1249   // location (whether it has actually moved or not).
   1250   ASSERT(StringShape(*subject_tmp).IsSequential() ||
   1251       StringShape(*subject_tmp).IsExternal());
   1252 
   1253   // The original start address of the characters to match.
   1254   const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
   1255 
   1256   // Find the current start address of the same character at the current string
   1257   // position.
   1258   int start_index = frame_entry<int>(re_frame, kStartIndex);
   1259   const byte* new_address = StringCharacterPosition(*subject_tmp,
   1260                                                     start_index + slice_offset);
   1261 
   1262   if (start_address != new_address) {
   1263     // If there is a difference, update the object pointer and start and end
   1264     // addresses in the RegExp stack frame to match the new value.
   1265     const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
   1266     int byte_length = static_cast<int>(end_address - start_address);
   1267     frame_entry<const String*>(re_frame, kInputString) = *subject;
   1268     frame_entry<const byte*>(re_frame, kInputStart) = new_address;
   1269     frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
   1270   } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
   1271     // Subject string might have been a ConsString that underwent
   1272     // short-circuiting during GC. That will not change start_address but
   1273     // will change pointer inside the subject handle.
   1274     frame_entry<const String*>(re_frame, kInputString) = *subject;
   1275   }
   1276 
   1277   return 0;
   1278 }
   1279 
   1280 
   1281 Operand RegExpMacroAssemblerX64::register_location(int register_index) {
   1282   ASSERT(register_index < (1<<30));
   1283   if (num_registers_ <= register_index) {
   1284     num_registers_ = register_index + 1;
   1285   }
   1286   return Operand(rbp, kRegisterZero - register_index * kPointerSize);
   1287 }
   1288 
   1289 
   1290 void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
   1291                                             Label* on_outside_input) {
   1292   __ cmpl(rdi, Immediate(-cp_offset * char_size()));
   1293   BranchOrBacktrack(greater_equal, on_outside_input);
   1294 }
   1295 
   1296 
   1297 void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
   1298                                                 Label* to) {
   1299   if (condition < 0) {  // No condition
   1300     if (to == NULL) {
   1301       Backtrack();
   1302       return;
   1303     }
   1304     __ jmp(to);
   1305     return;
   1306   }
   1307   if (to == NULL) {
   1308     __ j(condition, &backtrack_label_);
   1309     return;
   1310   }
   1311   __ j(condition, to);
   1312 }
   1313 
   1314 
   1315 void RegExpMacroAssemblerX64::SafeCall(Label* to) {
   1316   __ call(to);
   1317 }
   1318 
   1319 
   1320 void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
   1321   __ bind(label);
   1322   __ subp(Operand(rsp, 0), code_object_pointer());
   1323 }
   1324 
   1325 
   1326 void RegExpMacroAssemblerX64::SafeReturn() {
   1327   __ addp(Operand(rsp, 0), code_object_pointer());
   1328   __ ret(0);
   1329 }
   1330 
   1331 
   1332 void RegExpMacroAssemblerX64::Push(Register source) {
   1333   ASSERT(!source.is(backtrack_stackpointer()));
   1334   // Notice: This updates flags, unlike normal Push.
   1335   __ subp(backtrack_stackpointer(), Immediate(kIntSize));
   1336   __ movl(Operand(backtrack_stackpointer(), 0), source);
   1337 }
   1338 
   1339 
   1340 void RegExpMacroAssemblerX64::Push(Immediate value) {
   1341   // Notice: This updates flags, unlike normal Push.
   1342   __ subp(backtrack_stackpointer(), Immediate(kIntSize));
   1343   __ movl(Operand(backtrack_stackpointer(), 0), value);
   1344 }
   1345 
   1346 
   1347 void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
   1348   for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
   1349     int position = code_relative_fixup_positions_[i];
   1350     // The position succeeds a relative label offset from position.
   1351     // Patch the relative offset to be relative to the Code object pointer
   1352     // instead.
   1353     int patch_position = position - kIntSize;
   1354     int offset = masm_.long_at(patch_position);
   1355     masm_.long_at_put(patch_position,
   1356                        offset
   1357                        + position
   1358                        + Code::kHeaderSize
   1359                        - kHeapObjectTag);
   1360   }
   1361   code_relative_fixup_positions_.Clear();
   1362 }
   1363 
   1364 
   1365 void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
   1366   __ subp(backtrack_stackpointer(), Immediate(kIntSize));
   1367   __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
   1368   MarkPositionForCodeRelativeFixup();
   1369 }
   1370 
   1371 
   1372 void RegExpMacroAssemblerX64::Pop(Register target) {
   1373   ASSERT(!target.is(backtrack_stackpointer()));
   1374   __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
   1375   // Notice: This updates flags, unlike normal Pop.
   1376   __ addp(backtrack_stackpointer(), Immediate(kIntSize));
   1377 }
   1378 
   1379 
   1380 void RegExpMacroAssemblerX64::Drop() {
   1381   __ addp(backtrack_stackpointer(), Immediate(kIntSize));
   1382 }
   1383 
   1384 
   1385 void RegExpMacroAssemblerX64::CheckPreemption() {
   1386   // Check for preemption.
   1387   Label no_preempt;
   1388   ExternalReference stack_limit =
   1389       ExternalReference::address_of_stack_limit(isolate());
   1390   __ load_rax(stack_limit);
   1391   __ cmpp(rsp, rax);
   1392   __ j(above, &no_preempt);
   1393 
   1394   SafeCall(&check_preempt_label_);
   1395 
   1396   __ bind(&no_preempt);
   1397 }
   1398 
   1399 
   1400 void RegExpMacroAssemblerX64::CheckStackLimit() {
   1401   Label no_stack_overflow;
   1402   ExternalReference stack_limit =
   1403       ExternalReference::address_of_regexp_stack_limit(isolate());
   1404   __ load_rax(stack_limit);
   1405   __ cmpp(backtrack_stackpointer(), rax);
   1406   __ j(above, &no_stack_overflow);
   1407 
   1408   SafeCall(&stack_overflow_label_);
   1409 
   1410   __ bind(&no_stack_overflow);
   1411 }
   1412 
   1413 
   1414 void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
   1415                                                             int characters) {
   1416   if (mode_ == ASCII) {
   1417     if (characters == 4) {
   1418       __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1419     } else if (characters == 2) {
   1420       __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1421     } else {
   1422       ASSERT(characters == 1);
   1423       __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1424     }
   1425   } else {
   1426     ASSERT(mode_ == UC16);
   1427     if (characters == 2) {
   1428       __ movl(current_character(),
   1429               Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
   1430     } else {
   1431       ASSERT(characters == 1);
   1432       __ movzxwl(current_character(),
   1433                  Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
   1434     }
   1435   }
   1436 }
   1437 
   1438 #undef __
   1439 
   1440 #endif  // V8_INTERPRETED_REGEXP
   1441 
   1442 }}  // namespace v8::internal
   1443 
   1444 #endif  // V8_TARGET_ARCH_X64
   1445