Home | History | Annotate | Download | only in x87
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2011 the V8 project authors. All rights reserved.
     34 
     35 // A light-weight IA32 Assembler.
     36 
     37 #ifndef V8_X87_ASSEMBLER_X87_H_
     38 #define V8_X87_ASSEMBLER_X87_H_
     39 
     40 #include "src/isolate.h"
     41 #include "src/serialize.h"
     42 
     43 namespace v8 {
     44 namespace internal {
     45 
     46 // CPU Registers.
     47 //
     48 // 1) We would prefer to use an enum, but enum values are assignment-
     49 // compatible with int, which has caused code-generation bugs.
     50 //
     51 // 2) We would prefer to use a class instead of a struct but we don't like
     52 // the register initialization to depend on the particular initialization
     53 // order (which appears to be different on OS X, Linux, and Windows for the
     54 // installed versions of C++ we tried). Using a struct permits C-style
     55 // "initialization". Also, the Register objects cannot be const as this
     56 // forces initialization stubs in MSVC, making us dependent on initialization
     57 // order.
     58 //
     59 // 3) By not using an enum, we are possibly preventing the compiler from
     60 // doing certain constant folds, which may significantly reduce the
     61 // code generated for some assembly instructions (because they boil down
     62 // to a few constants). If this is a problem, we could change the code
     63 // such that we use an enum in optimized mode, and the struct in debug
     64 // mode. This way we get the compile-time error checking in debug mode
     65 // and best performance in optimized code.
     66 //
     67 struct Register {
     68   static const int kMaxNumAllocatableRegisters = 6;
     69   static int NumAllocatableRegisters() {
     70     return kMaxNumAllocatableRegisters;
     71   }
     72   static const int kNumRegisters = 8;
     73 
     74   static inline const char* AllocationIndexToString(int index);
     75 
     76   static inline int ToAllocationIndex(Register reg);
     77 
     78   static inline Register FromAllocationIndex(int index);
     79 
     80   static Register from_code(int code) {
     81     ASSERT(code >= 0);
     82     ASSERT(code < kNumRegisters);
     83     Register r = { code };
     84     return r;
     85   }
     86   bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
     87   bool is(Register reg) const { return code_ == reg.code_; }
     88   // eax, ebx, ecx and edx are byte registers, the rest are not.
     89   bool is_byte_register() const { return code_ <= 3; }
     90   int code() const {
     91     ASSERT(is_valid());
     92     return code_;
     93   }
     94   int bit() const {
     95     ASSERT(is_valid());
     96     return 1 << code_;
     97   }
     98 
     99   // Unfortunately we can't make this private in a struct.
    100   int code_;
    101 };
    102 
    103 const int kRegister_eax_Code = 0;
    104 const int kRegister_ecx_Code = 1;
    105 const int kRegister_edx_Code = 2;
    106 const int kRegister_ebx_Code = 3;
    107 const int kRegister_esp_Code = 4;
    108 const int kRegister_ebp_Code = 5;
    109 const int kRegister_esi_Code = 6;
    110 const int kRegister_edi_Code = 7;
    111 const int kRegister_no_reg_Code = -1;
    112 
    113 const Register eax = { kRegister_eax_Code };
    114 const Register ecx = { kRegister_ecx_Code };
    115 const Register edx = { kRegister_edx_Code };
    116 const Register ebx = { kRegister_ebx_Code };
    117 const Register esp = { kRegister_esp_Code };
    118 const Register ebp = { kRegister_ebp_Code };
    119 const Register esi = { kRegister_esi_Code };
    120 const Register edi = { kRegister_edi_Code };
    121 const Register no_reg = { kRegister_no_reg_Code };
    122 
    123 
    124 inline const char* Register::AllocationIndexToString(int index) {
    125   ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
    126   // This is the mapping of allocation indices to registers.
    127   const char* const kNames[] = { "eax", "ecx", "edx", "ebx", "esi", "edi" };
    128   return kNames[index];
    129 }
    130 
    131 
    132 inline int Register::ToAllocationIndex(Register reg) {
    133   ASSERT(reg.is_valid() && !reg.is(esp) && !reg.is(ebp));
    134   return (reg.code() >= 6) ? reg.code() - 2 : reg.code();
    135 }
    136 
    137 
    138 inline Register Register::FromAllocationIndex(int index)  {
    139   ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
    140   return (index >= 4) ? from_code(index + 2) : from_code(index);
    141 }
    142 
    143 
    144 struct X87Register {
    145   static const int kMaxNumAllocatableRegisters = 8;
    146   static const int kMaxNumRegisters = 8;
    147   static int NumAllocatableRegisters() {
    148     return kMaxNumAllocatableRegisters;
    149   }
    150 
    151   static int ToAllocationIndex(X87Register reg) {
    152     return reg.code_;
    153   }
    154 
    155   static const char* AllocationIndexToString(int index) {
    156     ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
    157     const char* const names[] = {
    158       "stX_0", "stX_1", "stX_2", "stX_3", "stX_4",
    159       "stX_5", "stX_6", "stX_7"
    160     };
    161     return names[index];
    162   }
    163 
    164   static X87Register FromAllocationIndex(int index) {
    165     ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
    166     X87Register result;
    167     result.code_ = index;
    168     return result;
    169   }
    170 
    171   bool is_valid() const {
    172     return 0 <= code_ && code_ < kMaxNumRegisters;
    173   }
    174 
    175   int code() const {
    176     ASSERT(is_valid());
    177     return code_;
    178   }
    179 
    180   bool is(X87Register reg) const {
    181     return code_ == reg.code_;
    182   }
    183 
    184   int code_;
    185 };
    186 
    187 
    188 typedef X87Register DoubleRegister;
    189 
    190 
    191 const X87Register stX_0 = { 0 };
    192 const X87Register stX_1 = { 1 };
    193 const X87Register stX_2 = { 2 };
    194 const X87Register stX_3 = { 3 };
    195 const X87Register stX_4 = { 4 };
    196 const X87Register stX_5 = { 5 };
    197 const X87Register stX_6 = { 6 };
    198 const X87Register stX_7 = { 7 };
    199 
    200 
    201 enum Condition {
    202   // any value < 0 is considered no_condition
    203   no_condition  = -1,
    204 
    205   overflow      =  0,
    206   no_overflow   =  1,
    207   below         =  2,
    208   above_equal   =  3,
    209   equal         =  4,
    210   not_equal     =  5,
    211   below_equal   =  6,
    212   above         =  7,
    213   negative      =  8,
    214   positive      =  9,
    215   parity_even   = 10,
    216   parity_odd    = 11,
    217   less          = 12,
    218   greater_equal = 13,
    219   less_equal    = 14,
    220   greater       = 15,
    221 
    222   // aliases
    223   carry         = below,
    224   not_carry     = above_equal,
    225   zero          = equal,
    226   not_zero      = not_equal,
    227   sign          = negative,
    228   not_sign      = positive
    229 };
    230 
    231 
    232 // Returns the equivalent of !cc.
    233 // Negation of the default no_condition (-1) results in a non-default
    234 // no_condition value (-2). As long as tests for no_condition check
    235 // for condition < 0, this will work as expected.
    236 inline Condition NegateCondition(Condition cc) {
    237   return static_cast<Condition>(cc ^ 1);
    238 }
    239 
    240 
    241 // Commute a condition such that {a cond b == b cond' a}.
    242 inline Condition CommuteCondition(Condition cc) {
    243   switch (cc) {
    244     case below:
    245       return above;
    246     case above:
    247       return below;
    248     case above_equal:
    249       return below_equal;
    250     case below_equal:
    251       return above_equal;
    252     case less:
    253       return greater;
    254     case greater:
    255       return less;
    256     case greater_equal:
    257       return less_equal;
    258     case less_equal:
    259       return greater_equal;
    260     default:
    261       return cc;
    262   }
    263 }
    264 
    265 
    266 // -----------------------------------------------------------------------------
    267 // Machine instruction Immediates
    268 
    269 class Immediate BASE_EMBEDDED {
    270  public:
    271   inline explicit Immediate(int x);
    272   inline explicit Immediate(const ExternalReference& ext);
    273   inline explicit Immediate(Handle<Object> handle);
    274   inline explicit Immediate(Smi* value);
    275   inline explicit Immediate(Address addr);
    276 
    277   static Immediate CodeRelativeOffset(Label* label) {
    278     return Immediate(label);
    279   }
    280 
    281   bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
    282   bool is_int8() const {
    283     return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
    284   }
    285   bool is_int16() const {
    286     return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
    287   }
    288 
    289  private:
    290   inline explicit Immediate(Label* value);
    291 
    292   int x_;
    293   RelocInfo::Mode rmode_;
    294 
    295   friend class Assembler;
    296   friend class MacroAssembler;
    297 };
    298 
    299 
    300 // -----------------------------------------------------------------------------
    301 // Machine instruction Operands
    302 
    303 enum ScaleFactor {
    304   times_1 = 0,
    305   times_2 = 1,
    306   times_4 = 2,
    307   times_8 = 3,
    308   times_int_size = times_4,
    309   times_half_pointer_size = times_2,
    310   times_pointer_size = times_4,
    311   times_twice_pointer_size = times_8
    312 };
    313 
    314 
    315 class Operand BASE_EMBEDDED {
    316  public:
    317   // [disp/r]
    318   INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
    319   // disp only must always be relocated
    320 
    321   // [base + disp/r]
    322   explicit Operand(Register base, int32_t disp,
    323                    RelocInfo::Mode rmode = RelocInfo::NONE32);
    324 
    325   // [base + index*scale + disp/r]
    326   explicit Operand(Register base,
    327                    Register index,
    328                    ScaleFactor scale,
    329                    int32_t disp,
    330                    RelocInfo::Mode rmode = RelocInfo::NONE32);
    331 
    332   // [index*scale + disp/r]
    333   explicit Operand(Register index,
    334                    ScaleFactor scale,
    335                    int32_t disp,
    336                    RelocInfo::Mode rmode = RelocInfo::NONE32);
    337 
    338   static Operand StaticVariable(const ExternalReference& ext) {
    339     return Operand(reinterpret_cast<int32_t>(ext.address()),
    340                    RelocInfo::EXTERNAL_REFERENCE);
    341   }
    342 
    343   static Operand StaticArray(Register index,
    344                              ScaleFactor scale,
    345                              const ExternalReference& arr) {
    346     return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
    347                    RelocInfo::EXTERNAL_REFERENCE);
    348   }
    349 
    350   static Operand ForCell(Handle<Cell> cell) {
    351     AllowDeferredHandleDereference embedding_raw_address;
    352     return Operand(reinterpret_cast<int32_t>(cell.location()),
    353                    RelocInfo::CELL);
    354   }
    355 
    356   // Returns true if this Operand is a wrapper for the specified register.
    357   bool is_reg(Register reg) const;
    358 
    359   // Returns true if this Operand is a wrapper for one register.
    360   bool is_reg_only() const;
    361 
    362   // Asserts that this Operand is a wrapper for one register and returns the
    363   // register.
    364   Register reg() const;
    365 
    366  private:
    367   // reg
    368   INLINE(explicit Operand(Register reg));
    369 
    370   // Set the ModRM byte without an encoded 'reg' register. The
    371   // register is encoded later as part of the emit_operand operation.
    372   inline void set_modrm(int mod, Register rm);
    373 
    374   inline void set_sib(ScaleFactor scale, Register index, Register base);
    375   inline void set_disp8(int8_t disp);
    376   inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
    377 
    378   byte buf_[6];
    379   // The number of bytes in buf_.
    380   unsigned int len_;
    381   // Only valid if len_ > 4.
    382   RelocInfo::Mode rmode_;
    383 
    384   friend class Assembler;
    385   friend class MacroAssembler;
    386   friend class LCodeGen;
    387 };
    388 
    389 
    390 // -----------------------------------------------------------------------------
    391 // A Displacement describes the 32bit immediate field of an instruction which
    392 // may be used together with a Label in order to refer to a yet unknown code
    393 // position. Displacements stored in the instruction stream are used to describe
    394 // the instruction and to chain a list of instructions using the same Label.
    395 // A Displacement contains 2 different fields:
    396 //
    397 // next field: position of next displacement in the chain (0 = end of list)
    398 // type field: instruction type
    399 //
    400 // A next value of null (0) indicates the end of a chain (note that there can
    401 // be no displacement at position zero, because there is always at least one
    402 // instruction byte before the displacement).
    403 //
    404 // Displacement _data field layout
    405 //
    406 // |31.....2|1......0|
    407 // [  next  |  type  |
    408 
    409 class Displacement BASE_EMBEDDED {
    410  public:
    411   enum Type {
    412     UNCONDITIONAL_JUMP,
    413     CODE_RELATIVE,
    414     OTHER
    415   };
    416 
    417   int data() const { return data_; }
    418   Type type() const { return TypeField::decode(data_); }
    419   void next(Label* L) const {
    420     int n = NextField::decode(data_);
    421     n > 0 ? L->link_to(n) : L->Unuse();
    422   }
    423   void link_to(Label* L) { init(L, type()); }
    424 
    425   explicit Displacement(int data) { data_ = data; }
    426 
    427   Displacement(Label* L, Type type) { init(L, type); }
    428 
    429   void print() {
    430     PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
    431                        NextField::decode(data_));
    432   }
    433 
    434  private:
    435   int data_;
    436 
    437   class TypeField: public BitField<Type, 0, 2> {};
    438   class NextField: public BitField<int,  2, 32-2> {};
    439 
    440   void init(Label* L, Type type);
    441 };
    442 
    443 
    444 class Assembler : public AssemblerBase {
    445  private:
    446   // We check before assembling an instruction that there is sufficient
    447   // space to write an instruction and its relocation information.
    448   // The relocation writer's position must be kGap bytes above the end of
    449   // the generated instructions. This leaves enough space for the
    450   // longest possible ia32 instruction, 15 bytes, and the longest possible
    451   // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
    452   // (There is a 15 byte limit on ia32 instruction length that rules out some
    453   // otherwise valid instructions.)
    454   // This allows for a single, fast space check per instruction.
    455   static const int kGap = 32;
    456 
    457  public:
    458   // Create an assembler. Instructions and relocation information are emitted
    459   // into a buffer, with the instructions starting from the beginning and the
    460   // relocation information starting from the end of the buffer. See CodeDesc
    461   // for a detailed comment on the layout (globals.h).
    462   //
    463   // If the provided buffer is NULL, the assembler allocates and grows its own
    464   // buffer, and buffer_size determines the initial buffer size. The buffer is
    465   // owned by the assembler and deallocated upon destruction of the assembler.
    466   //
    467   // If the provided buffer is not NULL, the assembler uses the provided buffer
    468   // for code generation and assumes its size to be buffer_size. If the buffer
    469   // is too small, a fatal error occurs. No deallocation of the buffer is done
    470   // upon destruction of the assembler.
    471   // TODO(vitalyr): the assembler does not need an isolate.
    472   Assembler(Isolate* isolate, void* buffer, int buffer_size);
    473   virtual ~Assembler() { }
    474 
    475   // GetCode emits any pending (non-emitted) code and fills the descriptor
    476   // desc. GetCode() is idempotent; it returns the same result if no other
    477   // Assembler functions are invoked in between GetCode() calls.
    478   void GetCode(CodeDesc* desc);
    479 
    480   // Read/Modify the code target in the branch/call instruction at pc.
    481   inline static Address target_address_at(Address pc,
    482                                           ConstantPoolArray* constant_pool);
    483   inline static void set_target_address_at(Address pc,
    484                                            ConstantPoolArray* constant_pool,
    485                                            Address target,
    486                                            ICacheFlushMode icache_flush_mode =
    487                                                FLUSH_ICACHE_IF_NEEDED);
    488   static inline Address target_address_at(Address pc, Code* code) {
    489     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
    490     return target_address_at(pc, constant_pool);
    491   }
    492   static inline void set_target_address_at(Address pc,
    493                                            Code* code,
    494                                            Address target,
    495                                            ICacheFlushMode icache_flush_mode =
    496                                                FLUSH_ICACHE_IF_NEEDED) {
    497     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
    498     set_target_address_at(pc, constant_pool, target);
    499   }
    500 
    501   // Return the code target address at a call site from the return address
    502   // of that call in the instruction stream.
    503   inline static Address target_address_from_return_address(Address pc);
    504 
    505   // This sets the branch destination (which is in the instruction on x86).
    506   // This is for calls and branches within generated code.
    507   inline static void deserialization_set_special_target_at(
    508       Address instruction_payload, Code* code, Address target) {
    509     set_target_address_at(instruction_payload, code, target);
    510   }
    511 
    512   static const int kSpecialTargetSize = kPointerSize;
    513 
    514   // Distance between the address of the code target in the call instruction
    515   // and the return address
    516   static const int kCallTargetAddressOffset = kPointerSize;
    517   // Distance between start of patched return sequence and the emitted address
    518   // to jump to.
    519   static const int kPatchReturnSequenceAddressOffset = 1;  // JMP imm32.
    520 
    521   // Distance between start of patched debug break slot and the emitted address
    522   // to jump to.
    523   static const int kPatchDebugBreakSlotAddressOffset = 1;  // JMP imm32.
    524 
    525   static const int kCallInstructionLength = 5;
    526   static const int kPatchDebugBreakSlotReturnOffset = kPointerSize;
    527   static const int kJSReturnSequenceLength = 6;
    528 
    529   // The debug break slot must be able to contain a call instruction.
    530   static const int kDebugBreakSlotLength = kCallInstructionLength;
    531 
    532   // One byte opcode for test al, 0xXX.
    533   static const byte kTestAlByte = 0xA8;
    534   // One byte opcode for nop.
    535   static const byte kNopByte = 0x90;
    536 
    537   // One byte opcode for a short unconditional jump.
    538   static const byte kJmpShortOpcode = 0xEB;
    539   // One byte prefix for a short conditional jump.
    540   static const byte kJccShortPrefix = 0x70;
    541   static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
    542   static const byte kJcShortOpcode = kJccShortPrefix | carry;
    543   static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
    544   static const byte kJzShortOpcode = kJccShortPrefix | zero;
    545 
    546 
    547   // ---------------------------------------------------------------------------
    548   // Code generation
    549   //
    550   // - function names correspond one-to-one to ia32 instruction mnemonics
    551   // - unless specified otherwise, instructions operate on 32bit operands
    552   // - instructions on 8bit (byte) operands/registers have a trailing '_b'
    553   // - instructions on 16bit (word) operands/registers have a trailing '_w'
    554   // - naming conflicts with C++ keywords are resolved via a trailing '_'
    555 
    556   // NOTE ON INTERFACE: Currently, the interface is not very consistent
    557   // in the sense that some operations (e.g. mov()) can be called in more
    558   // the one way to generate the same instruction: The Register argument
    559   // can in some cases be replaced with an Operand(Register) argument.
    560   // This should be cleaned up and made more orthogonal. The questions
    561   // is: should we always use Operands instead of Registers where an
    562   // Operand is possible, or should we have a Register (overloaded) form
    563   // instead? We must be careful to make sure that the selected instruction
    564   // is obvious from the parameters to avoid hard-to-find code generation
    565   // bugs.
    566 
    567   // Insert the smallest number of nop instructions
    568   // possible to align the pc offset to a multiple
    569   // of m. m must be a power of 2.
    570   void Align(int m);
    571   void Nop(int bytes = 1);
    572   // Aligns code to something that's optimal for a jump target for the platform.
    573   void CodeTargetAlign();
    574 
    575   // Stack
    576   void pushad();
    577   void popad();
    578 
    579   void pushfd();
    580   void popfd();
    581 
    582   void push(const Immediate& x);
    583   void push_imm32(int32_t imm32);
    584   void push(Register src);
    585   void push(const Operand& src);
    586 
    587   void pop(Register dst);
    588   void pop(const Operand& dst);
    589 
    590   void enter(const Immediate& size);
    591   void leave();
    592 
    593   // Moves
    594   void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
    595   void mov_b(Register dst, const Operand& src);
    596   void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
    597   void mov_b(const Operand& dst, int8_t imm8);
    598   void mov_b(const Operand& dst, Register src);
    599 
    600   void mov_w(Register dst, const Operand& src);
    601   void mov_w(const Operand& dst, Register src);
    602   void mov_w(const Operand& dst, int16_t imm16);
    603 
    604   void mov(Register dst, int32_t imm32);
    605   void mov(Register dst, const Immediate& x);
    606   void mov(Register dst, Handle<Object> handle);
    607   void mov(Register dst, const Operand& src);
    608   void mov(Register dst, Register src);
    609   void mov(const Operand& dst, const Immediate& x);
    610   void mov(const Operand& dst, Handle<Object> handle);
    611   void mov(const Operand& dst, Register src);
    612 
    613   void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
    614   void movsx_b(Register dst, const Operand& src);
    615 
    616   void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
    617   void movsx_w(Register dst, const Operand& src);
    618 
    619   void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
    620   void movzx_b(Register dst, const Operand& src);
    621 
    622   void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
    623   void movzx_w(Register dst, const Operand& src);
    624 
    625   // Flag management.
    626   void cld();
    627 
    628   // Repetitive string instructions.
    629   void rep_movs();
    630   void rep_stos();
    631   void stos();
    632 
    633   // Exchange two registers
    634   void xchg(Register dst, Register src);
    635 
    636   // Arithmetics
    637   void adc(Register dst, int32_t imm32);
    638   void adc(Register dst, const Operand& src);
    639 
    640   void add(Register dst, Register src) { add(dst, Operand(src)); }
    641   void add(Register dst, const Operand& src);
    642   void add(const Operand& dst, Register src);
    643   void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
    644   void add(const Operand& dst, const Immediate& x);
    645 
    646   void and_(Register dst, int32_t imm32);
    647   void and_(Register dst, const Immediate& x);
    648   void and_(Register dst, Register src) { and_(dst, Operand(src)); }
    649   void and_(Register dst, const Operand& src);
    650   void and_(const Operand& dst, Register src);
    651   void and_(const Operand& dst, const Immediate& x);
    652 
    653   void cmpb(Register reg, int8_t imm8) { cmpb(Operand(reg), imm8); }
    654   void cmpb(const Operand& op, int8_t imm8);
    655   void cmpb(Register reg, const Operand& op);
    656   void cmpb(const Operand& op, Register reg);
    657   void cmpb_al(const Operand& op);
    658   void cmpw_ax(const Operand& op);
    659   void cmpw(const Operand& op, Immediate imm16);
    660   void cmp(Register reg, int32_t imm32);
    661   void cmp(Register reg, Handle<Object> handle);
    662   void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
    663   void cmp(Register reg, const Operand& op);
    664   void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
    665   void cmp(const Operand& op, const Immediate& imm);
    666   void cmp(const Operand& op, Handle<Object> handle);
    667 
    668   void dec_b(Register dst);
    669   void dec_b(const Operand& dst);
    670 
    671   void dec(Register dst);
    672   void dec(const Operand& dst);
    673 
    674   void cdq();
    675 
    676   void idiv(Register src);
    677 
    678   // Signed multiply instructions.
    679   void imul(Register src);                               // edx:eax = eax * src.
    680   void imul(Register dst, Register src) { imul(dst, Operand(src)); }
    681   void imul(Register dst, const Operand& src);           // dst = dst * src.
    682   void imul(Register dst, Register src, int32_t imm32);  // dst = src * imm32.
    683 
    684   void inc(Register dst);
    685   void inc(const Operand& dst);
    686 
    687   void lea(Register dst, const Operand& src);
    688 
    689   // Unsigned multiply instruction.
    690   void mul(Register src);                                // edx:eax = eax * reg.
    691 
    692   void neg(Register dst);
    693 
    694   void not_(Register dst);
    695 
    696   void or_(Register dst, int32_t imm32);
    697   void or_(Register dst, Register src) { or_(dst, Operand(src)); }
    698   void or_(Register dst, const Operand& src);
    699   void or_(const Operand& dst, Register src);
    700   void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
    701   void or_(const Operand& dst, const Immediate& x);
    702 
    703   void rcl(Register dst, uint8_t imm8);
    704   void rcr(Register dst, uint8_t imm8);
    705   void ror(Register dst, uint8_t imm8);
    706   void ror_cl(Register dst);
    707 
    708   void sar(Register dst, uint8_t imm8);
    709   void sar_cl(Register dst);
    710 
    711   void sbb(Register dst, const Operand& src);
    712 
    713   void shld(Register dst, Register src) { shld(dst, Operand(src)); }
    714   void shld(Register dst, const Operand& src);
    715 
    716   void shl(Register dst, uint8_t imm8);
    717   void shl_cl(Register dst);
    718 
    719   void shrd(Register dst, Register src) { shrd(dst, Operand(src)); }
    720   void shrd(Register dst, const Operand& src);
    721 
    722   void shr(Register dst, uint8_t imm8);
    723   void shr_cl(Register dst);
    724 
    725   void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
    726   void sub(const Operand& dst, const Immediate& x);
    727   void sub(Register dst, Register src) { sub(dst, Operand(src)); }
    728   void sub(Register dst, const Operand& src);
    729   void sub(const Operand& dst, Register src);
    730 
    731   void test(Register reg, const Immediate& imm);
    732   void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
    733   void test(Register reg, const Operand& op);
    734   void test_b(Register reg, const Operand& op);
    735   void test(const Operand& op, const Immediate& imm);
    736   void test_b(Register reg, uint8_t imm8);
    737   void test_b(const Operand& op, uint8_t imm8);
    738 
    739   void xor_(Register dst, int32_t imm32);
    740   void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
    741   void xor_(Register dst, const Operand& src);
    742   void xor_(const Operand& dst, Register src);
    743   void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
    744   void xor_(const Operand& dst, const Immediate& x);
    745 
    746   // Bit operations.
    747   void bt(const Operand& dst, Register src);
    748   void bts(Register dst, Register src) { bts(Operand(dst), src); }
    749   void bts(const Operand& dst, Register src);
    750   void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
    751   void bsr(Register dst, const Operand& src);
    752 
    753   // Miscellaneous
    754   void hlt();
    755   void int3();
    756   void nop();
    757   void ret(int imm16);
    758 
    759   // Label operations & relative jumps (PPUM Appendix D)
    760   //
    761   // Takes a branch opcode (cc) and a label (L) and generates
    762   // either a backward branch or a forward branch and links it
    763   // to the label fixup chain. Usage:
    764   //
    765   // Label L;    // unbound label
    766   // j(cc, &L);  // forward branch to unbound label
    767   // bind(&L);   // bind label to the current pc
    768   // j(cc, &L);  // backward branch to bound label
    769   // bind(&L);   // illegal: a label may be bound only once
    770   //
    771   // Note: The same Label can be used for forward and backward branches
    772   // but it may be bound only once.
    773 
    774   void bind(Label* L);  // binds an unbound label L to the current code position
    775 
    776   // Calls
    777   void call(Label* L);
    778   void call(byte* entry, RelocInfo::Mode rmode);
    779   int CallSize(const Operand& adr);
    780   void call(Register reg) { call(Operand(reg)); }
    781   void call(const Operand& adr);
    782   int CallSize(Handle<Code> code, RelocInfo::Mode mode);
    783   void call(Handle<Code> code,
    784             RelocInfo::Mode rmode,
    785             TypeFeedbackId id = TypeFeedbackId::None());
    786 
    787   // Jumps
    788   // unconditional jump to L
    789   void jmp(Label* L, Label::Distance distance = Label::kFar);
    790   void jmp(byte* entry, RelocInfo::Mode rmode);
    791   void jmp(Register reg) { jmp(Operand(reg)); }
    792   void jmp(const Operand& adr);
    793   void jmp(Handle<Code> code, RelocInfo::Mode rmode);
    794 
    795   // Conditional jumps
    796   void j(Condition cc,
    797          Label* L,
    798          Label::Distance distance = Label::kFar);
    799   void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
    800   void j(Condition cc, Handle<Code> code);
    801 
    802   // Floating-point operations
    803   void fld(int i);
    804   void fstp(int i);
    805 
    806   void fld1();
    807   void fldz();
    808   void fldpi();
    809   void fldln2();
    810 
    811   void fld_s(const Operand& adr);
    812   void fld_d(const Operand& adr);
    813 
    814   void fstp_s(const Operand& adr);
    815   void fst_s(const Operand& adr);
    816   void fstp_d(const Operand& adr);
    817   void fst_d(const Operand& adr);
    818 
    819   void fild_s(const Operand& adr);
    820   void fild_d(const Operand& adr);
    821 
    822   void fist_s(const Operand& adr);
    823 
    824   void fistp_s(const Operand& adr);
    825   void fistp_d(const Operand& adr);
    826 
    827   // The fisttp instructions require SSE3.
    828   void fisttp_s(const Operand& adr);
    829   void fisttp_d(const Operand& adr);
    830 
    831   void fabs();
    832   void fchs();
    833   void fcos();
    834   void fsin();
    835   void fptan();
    836   void fyl2x();
    837   void f2xm1();
    838   void fscale();
    839   void fninit();
    840 
    841   void fadd(int i);
    842   void fadd_i(int i);
    843   void fsub(int i);
    844   void fsub_i(int i);
    845   void fmul(int i);
    846   void fmul_i(int i);
    847   void fdiv(int i);
    848   void fdiv_i(int i);
    849 
    850   void fisub_s(const Operand& adr);
    851 
    852   void faddp(int i = 1);
    853   void fsubp(int i = 1);
    854   void fsubrp(int i = 1);
    855   void fmulp(int i = 1);
    856   void fdivp(int i = 1);
    857   void fprem();
    858   void fprem1();
    859 
    860   void fxch(int i = 1);
    861   void fincstp();
    862   void ffree(int i = 0);
    863 
    864   void ftst();
    865   void fucomp(int i);
    866   void fucompp();
    867   void fucomi(int i);
    868   void fucomip();
    869   void fcompp();
    870   void fnstsw_ax();
    871   void fwait();
    872   void fnclex();
    873 
    874   void frndint();
    875 
    876   void sahf();
    877   void setcc(Condition cc, Register reg);
    878 
    879   void cpuid();
    880 
    881   // TODO(lrn): Need SFENCE for movnt?
    882 
    883   // Debugging
    884   void Print();
    885 
    886   // Check the code size generated from label to here.
    887   int SizeOfCodeGeneratedSince(Label* label) {
    888     return pc_offset() - label->pos();
    889   }
    890 
    891   // Mark address of the ExitJSFrame code.
    892   void RecordJSReturn();
    893 
    894   // Mark address of a debug break slot.
    895   void RecordDebugBreakSlot();
    896 
    897   // Record a comment relocation entry that can be used by a disassembler.
    898   // Use --code-comments to enable, or provide "force = true" flag to always
    899   // write a comment.
    900   void RecordComment(const char* msg, bool force = false);
    901 
    902   // Writes a single byte or word of data in the code stream.  Used for
    903   // inline tables, e.g., jump-tables.
    904   void db(uint8_t data);
    905   void dd(uint32_t data);
    906 
    907   // Check if there is less than kGap bytes available in the buffer.
    908   // If this is the case, we need to grow the buffer before emitting
    909   // an instruction or relocation information.
    910   inline bool buffer_overflow() const {
    911     return pc_ >= reloc_info_writer.pos() - kGap;
    912   }
    913 
    914   // Get the number of bytes available in the buffer.
    915   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
    916 
    917   static bool IsNop(Address addr);
    918 
    919   PositionsRecorder* positions_recorder() { return &positions_recorder_; }
    920 
    921   int relocation_writer_size() {
    922     return (buffer_ + buffer_size_) - reloc_info_writer.pos();
    923   }
    924 
    925   // Avoid overflows for displacements etc.
    926   static const int kMaximalBufferSize = 512*MB;
    927 
    928   byte byte_at(int pos) { return buffer_[pos]; }
    929   void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
    930 
    931   // Allocate a constant pool of the correct size for the generated code.
    932   Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
    933 
    934   // Generate the constant pool for the generated code.
    935   void PopulateConstantPool(ConstantPoolArray* constant_pool);
    936 
    937  protected:
    938   byte* addr_at(int pos) { return buffer_ + pos; }
    939 
    940 
    941  private:
    942   uint32_t long_at(int pos)  {
    943     return *reinterpret_cast<uint32_t*>(addr_at(pos));
    944   }
    945   void long_at_put(int pos, uint32_t x)  {
    946     *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
    947   }
    948 
    949   // code emission
    950   void GrowBuffer();
    951   inline void emit(uint32_t x);
    952   inline void emit(Handle<Object> handle);
    953   inline void emit(uint32_t x,
    954                    RelocInfo::Mode rmode,
    955                    TypeFeedbackId id = TypeFeedbackId::None());
    956   inline void emit(Handle<Code> code,
    957                    RelocInfo::Mode rmode,
    958                    TypeFeedbackId id = TypeFeedbackId::None());
    959   inline void emit(const Immediate& x);
    960   inline void emit_w(const Immediate& x);
    961 
    962   // Emit the code-object-relative offset of the label's position
    963   inline void emit_code_relative_offset(Label* label);
    964 
    965   // instruction generation
    966   void emit_arith_b(int op1, int op2, Register dst, int imm8);
    967 
    968   // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
    969   // with a given destination expression and an immediate operand.  It attempts
    970   // to use the shortest encoding possible.
    971   // sel specifies the /n in the modrm byte (see the Intel PRM).
    972   void emit_arith(int sel, Operand dst, const Immediate& x);
    973 
    974   void emit_operand(Register reg, const Operand& adr);
    975 
    976   void emit_farith(int b1, int b2, int i);
    977 
    978   // labels
    979   void print(Label* L);
    980   void bind_to(Label* L, int pos);
    981 
    982   // displacements
    983   inline Displacement disp_at(Label* L);
    984   inline void disp_at_put(Label* L, Displacement disp);
    985   inline void emit_disp(Label* L, Displacement::Type type);
    986   inline void emit_near_disp(Label* L);
    987 
    988   // record reloc info for current pc_
    989   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
    990 
    991   friend class CodePatcher;
    992   friend class EnsureSpace;
    993 
    994   // code generation
    995   RelocInfoWriter reloc_info_writer;
    996 
    997   PositionsRecorder positions_recorder_;
    998   friend class PositionsRecorder;
    999 };
   1000 
   1001 
   1002 // Helper class that ensures that there is enough space for generating
   1003 // instructions and relocation information.  The constructor makes
   1004 // sure that there is enough space and (in debug mode) the destructor
   1005 // checks that we did not generate too much.
   1006 class EnsureSpace BASE_EMBEDDED {
   1007  public:
   1008   explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
   1009     if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
   1010 #ifdef DEBUG
   1011     space_before_ = assembler_->available_space();
   1012 #endif
   1013   }
   1014 
   1015 #ifdef DEBUG
   1016   ~EnsureSpace() {
   1017     int bytes_generated = space_before_ - assembler_->available_space();
   1018     ASSERT(bytes_generated < assembler_->kGap);
   1019   }
   1020 #endif
   1021 
   1022  private:
   1023   Assembler* assembler_;
   1024 #ifdef DEBUG
   1025   int space_before_;
   1026 #endif
   1027 };
   1028 
   1029 } }  // namespace v8::internal
   1030 
   1031 #endif  // V8_X87_ASSEMBLER_X87_H_
   1032