Home | History | Annotate | Download | only in QR
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 // Copyright (C) 2010 Vincent Lejeune
      7 //
      8 // This Source Code Form is subject to the terms of the Mozilla
      9 // Public License v. 2.0. If a copy of the MPL was not distributed
     10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     11 
     12 #ifndef EIGEN_QR_H
     13 #define EIGEN_QR_H
     14 
     15 namespace Eigen {
     16 
     17 /** \ingroup QR_Module
     18   *
     19   *
     20   * \class HouseholderQR
     21   *
     22   * \brief Householder QR decomposition of a matrix
     23   *
     24   * \param MatrixType the type of the matrix of which we are computing the QR decomposition
     25   *
     26   * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
     27   * such that
     28   * \f[
     29   *  \mathbf{A} = \mathbf{Q} \, \mathbf{R}
     30   * \f]
     31   * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
     32   * The result is stored in a compact way compatible with LAPACK.
     33   *
     34   * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
     35   * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
     36   *
     37   * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
     38   * FullPivHouseholderQR or ColPivHouseholderQR.
     39   *
     40   * \sa MatrixBase::householderQr()
     41   */
     42 template<typename _MatrixType> class HouseholderQR
     43 {
     44   public:
     45 
     46     typedef _MatrixType MatrixType;
     47     enum {
     48       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     49       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     50       Options = MatrixType::Options,
     51       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     52       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     53     };
     54     typedef typename MatrixType::Scalar Scalar;
     55     typedef typename MatrixType::RealScalar RealScalar;
     56     typedef typename MatrixType::Index Index;
     57     typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
     58     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
     59     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
     60     typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
     61 
     62     /**
     63       * \brief Default Constructor.
     64       *
     65       * The default constructor is useful in cases in which the user intends to
     66       * perform decompositions via HouseholderQR::compute(const MatrixType&).
     67       */
     68     HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
     69 
     70     /** \brief Default Constructor with memory preallocation
     71       *
     72       * Like the default constructor but with preallocation of the internal data
     73       * according to the specified problem \a size.
     74       * \sa HouseholderQR()
     75       */
     76     HouseholderQR(Index rows, Index cols)
     77       : m_qr(rows, cols),
     78         m_hCoeffs((std::min)(rows,cols)),
     79         m_temp(cols),
     80         m_isInitialized(false) {}
     81 
     82     /** \brief Constructs a QR factorization from a given matrix
     83       *
     84       * This constructor computes the QR factorization of the matrix \a matrix by calling
     85       * the method compute(). It is a short cut for:
     86       *
     87       * \code
     88       * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
     89       * qr.compute(matrix);
     90       * \endcode
     91       *
     92       * \sa compute()
     93       */
     94     HouseholderQR(const MatrixType& matrix)
     95       : m_qr(matrix.rows(), matrix.cols()),
     96         m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
     97         m_temp(matrix.cols()),
     98         m_isInitialized(false)
     99     {
    100       compute(matrix);
    101     }
    102 
    103     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
    104       * *this is the QR decomposition, if any exists.
    105       *
    106       * \param b the right-hand-side of the equation to solve.
    107       *
    108       * \returns a solution.
    109       *
    110       * \note The case where b is a matrix is not yet implemented. Also, this
    111       *       code is space inefficient.
    112       *
    113       * \note_about_checking_solutions
    114       *
    115       * \note_about_arbitrary_choice_of_solution
    116       *
    117       * Example: \include HouseholderQR_solve.cpp
    118       * Output: \verbinclude HouseholderQR_solve.out
    119       */
    120     template<typename Rhs>
    121     inline const internal::solve_retval<HouseholderQR, Rhs>
    122     solve(const MatrixBase<Rhs>& b) const
    123     {
    124       eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
    125       return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived());
    126     }
    127 
    128     /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
    129       *
    130       * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
    131       * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
    132       *
    133       * Example: \include HouseholderQR_householderQ.cpp
    134       * Output: \verbinclude HouseholderQR_householderQ.out
    135       */
    136     HouseholderSequenceType householderQ() const
    137     {
    138       eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
    139       return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
    140     }
    141 
    142     /** \returns a reference to the matrix where the Householder QR decomposition is stored
    143       * in a LAPACK-compatible way.
    144       */
    145     const MatrixType& matrixQR() const
    146     {
    147         eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
    148         return m_qr;
    149     }
    150 
    151     HouseholderQR& compute(const MatrixType& matrix);
    152 
    153     /** \returns the absolute value of the determinant of the matrix of which
    154       * *this is the QR decomposition. It has only linear complexity
    155       * (that is, O(n) where n is the dimension of the square matrix)
    156       * as the QR decomposition has already been computed.
    157       *
    158       * \note This is only for square matrices.
    159       *
    160       * \warning a determinant can be very big or small, so for matrices
    161       * of large enough dimension, there is a risk of overflow/underflow.
    162       * One way to work around that is to use logAbsDeterminant() instead.
    163       *
    164       * \sa logAbsDeterminant(), MatrixBase::determinant()
    165       */
    166     typename MatrixType::RealScalar absDeterminant() const;
    167 
    168     /** \returns the natural log of the absolute value of the determinant of the matrix of which
    169       * *this is the QR decomposition. It has only linear complexity
    170       * (that is, O(n) where n is the dimension of the square matrix)
    171       * as the QR decomposition has already been computed.
    172       *
    173       * \note This is only for square matrices.
    174       *
    175       * \note This method is useful to work around the risk of overflow/underflow that's inherent
    176       * to determinant computation.
    177       *
    178       * \sa absDeterminant(), MatrixBase::determinant()
    179       */
    180     typename MatrixType::RealScalar logAbsDeterminant() const;
    181 
    182     inline Index rows() const { return m_qr.rows(); }
    183     inline Index cols() const { return m_qr.cols(); }
    184 
    185     /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
    186       *
    187       * For advanced uses only.
    188       */
    189     const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
    190 
    191   protected:
    192     MatrixType m_qr;
    193     HCoeffsType m_hCoeffs;
    194     RowVectorType m_temp;
    195     bool m_isInitialized;
    196 };
    197 
    198 template<typename MatrixType>
    199 typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
    200 {
    201   using std::abs;
    202   eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
    203   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    204   return abs(m_qr.diagonal().prod());
    205 }
    206 
    207 template<typename MatrixType>
    208 typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
    209 {
    210   eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
    211   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    212   return m_qr.diagonal().cwiseAbs().array().log().sum();
    213 }
    214 
    215 namespace internal {
    216 
    217 /** \internal */
    218 template<typename MatrixQR, typename HCoeffs>
    219 void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
    220 {
    221   typedef typename MatrixQR::Index Index;
    222   typedef typename MatrixQR::Scalar Scalar;
    223   typedef typename MatrixQR::RealScalar RealScalar;
    224   Index rows = mat.rows();
    225   Index cols = mat.cols();
    226   Index size = (std::min)(rows,cols);
    227 
    228   eigen_assert(hCoeffs.size() == size);
    229 
    230   typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
    231   TempType tempVector;
    232   if(tempData==0)
    233   {
    234     tempVector.resize(cols);
    235     tempData = tempVector.data();
    236   }
    237 
    238   for(Index k = 0; k < size; ++k)
    239   {
    240     Index remainingRows = rows - k;
    241     Index remainingCols = cols - k - 1;
    242 
    243     RealScalar beta;
    244     mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
    245     mat.coeffRef(k,k) = beta;
    246 
    247     // apply H to remaining part of m_qr from the left
    248     mat.bottomRightCorner(remainingRows, remainingCols)
    249         .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
    250   }
    251 }
    252 
    253 /** \internal */
    254 template<typename MatrixQR, typename HCoeffs>
    255 void householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs,
    256                                        typename MatrixQR::Index maxBlockSize=32,
    257                                        typename MatrixQR::Scalar* tempData = 0)
    258 {
    259   typedef typename MatrixQR::Index Index;
    260   typedef typename MatrixQR::Scalar Scalar;
    261   typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
    262 
    263   Index rows = mat.rows();
    264   Index cols = mat.cols();
    265   Index size = (std::min)(rows, cols);
    266 
    267   typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
    268   TempType tempVector;
    269   if(tempData==0)
    270   {
    271     tempVector.resize(cols);
    272     tempData = tempVector.data();
    273   }
    274 
    275   Index blockSize = (std::min)(maxBlockSize,size);
    276 
    277   Index k = 0;
    278   for (k = 0; k < size; k += blockSize)
    279   {
    280     Index bs = (std::min)(size-k,blockSize);  // actual size of the block
    281     Index tcols = cols - k - bs;            // trailing columns
    282     Index brows = rows-k;                   // rows of the block
    283 
    284     // partition the matrix:
    285     //        A00 | A01 | A02
    286     // mat  = A10 | A11 | A12
    287     //        A20 | A21 | A22
    288     // and performs the qr dec of [A11^T A12^T]^T
    289     // and update [A21^T A22^T]^T using level 3 operations.
    290     // Finally, the algorithm continue on A22
    291 
    292     BlockType A11_21 = mat.block(k,k,brows,bs);
    293     Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
    294 
    295     householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
    296 
    297     if(tcols)
    298     {
    299       BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
    300       apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint());
    301     }
    302   }
    303 }
    304 
    305 template<typename _MatrixType, typename Rhs>
    306 struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
    307   : solve_retval_base<HouseholderQR<_MatrixType>, Rhs>
    308 {
    309   EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs)
    310 
    311   template<typename Dest> void evalTo(Dest& dst) const
    312   {
    313     const Index rows = dec().rows(), cols = dec().cols();
    314     const Index rank = (std::min)(rows, cols);
    315     eigen_assert(rhs().rows() == rows);
    316 
    317     typename Rhs::PlainObject c(rhs());
    318 
    319     // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
    320     c.applyOnTheLeft(householderSequence(
    321       dec().matrixQR().leftCols(rank),
    322       dec().hCoeffs().head(rank)).transpose()
    323     );
    324 
    325     dec().matrixQR()
    326        .topLeftCorner(rank, rank)
    327        .template triangularView<Upper>()
    328        .solveInPlace(c.topRows(rank));
    329 
    330     dst.topRows(rank) = c.topRows(rank);
    331     dst.bottomRows(cols-rank).setZero();
    332   }
    333 };
    334 
    335 } // end namespace internal
    336 
    337 /** Performs the QR factorization of the given matrix \a matrix. The result of
    338   * the factorization is stored into \c *this, and a reference to \c *this
    339   * is returned.
    340   *
    341   * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
    342   */
    343 template<typename MatrixType>
    344 HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
    345 {
    346   Index rows = matrix.rows();
    347   Index cols = matrix.cols();
    348   Index size = (std::min)(rows,cols);
    349 
    350   m_qr = matrix;
    351   m_hCoeffs.resize(size);
    352 
    353   m_temp.resize(cols);
    354 
    355   internal::householder_qr_inplace_blocked(m_qr, m_hCoeffs, 48, m_temp.data());
    356 
    357   m_isInitialized = true;
    358   return *this;
    359 }
    360 
    361 /** \return the Householder QR decomposition of \c *this.
    362   *
    363   * \sa class HouseholderQR
    364   */
    365 template<typename Derived>
    366 const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
    367 MatrixBase<Derived>::householderQr() const
    368 {
    369   return HouseholderQR<PlainObject>(eval());
    370 }
    371 
    372 } // end namespace Eigen
    373 
    374 #endif // EIGEN_QR_H
    375