Home | History | Annotate | Download | only in blas
      1       SUBROUTINE DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
      2 *     .. Scalar Arguments ..
      3       DOUBLE PRECISION ALPHA,BETA
      4       INTEGER INCX,INCY,K,LDA,N
      5       CHARACTER UPLO
      6 *     ..
      7 *     .. Array Arguments ..
      8       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
      9 *     ..
     10 *
     11 *  Purpose
     12 *  =======
     13 *
     14 *  DSBMV  performs the matrix-vector  operation
     15 *
     16 *     y := alpha*A*x + beta*y,
     17 *
     18 *  where alpha and beta are scalars, x and y are n element vectors and
     19 *  A is an n by n symmetric band matrix, with k super-diagonals.
     20 *
     21 *  Arguments
     22 *  ==========
     23 *
     24 *  UPLO   - CHARACTER*1.
     25 *           On entry, UPLO specifies whether the upper or lower
     26 *           triangular part of the band matrix A is being supplied as
     27 *           follows:
     28 *
     29 *              UPLO = 'U' or 'u'   The upper triangular part of A is
     30 *                                  being supplied.
     31 *
     32 *              UPLO = 'L' or 'l'   The lower triangular part of A is
     33 *                                  being supplied.
     34 *
     35 *           Unchanged on exit.
     36 *
     37 *  N      - INTEGER.
     38 *           On entry, N specifies the order of the matrix A.
     39 *           N must be at least zero.
     40 *           Unchanged on exit.
     41 *
     42 *  K      - INTEGER.
     43 *           On entry, K specifies the number of super-diagonals of the
     44 *           matrix A. K must satisfy  0 .le. K.
     45 *           Unchanged on exit.
     46 *
     47 *  ALPHA  - DOUBLE PRECISION.
     48 *           On entry, ALPHA specifies the scalar alpha.
     49 *           Unchanged on exit.
     50 *
     51 *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
     52 *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
     53 *           by n part of the array A must contain the upper triangular
     54 *           band part of the symmetric matrix, supplied column by
     55 *           column, with the leading diagonal of the matrix in row
     56 *           ( k + 1 ) of the array, the first super-diagonal starting at
     57 *           position 2 in row k, and so on. The top left k by k triangle
     58 *           of the array A is not referenced.
     59 *           The following program segment will transfer the upper
     60 *           triangular part of a symmetric band matrix from conventional
     61 *           full matrix storage to band storage:
     62 *
     63 *                 DO 20, J = 1, N
     64 *                    M = K + 1 - J
     65 *                    DO 10, I = MAX( 1, J - K ), J
     66 *                       A( M + I, J ) = matrix( I, J )
     67 *              10    CONTINUE
     68 *              20 CONTINUE
     69 *
     70 *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
     71 *           by n part of the array A must contain the lower triangular
     72 *           band part of the symmetric matrix, supplied column by
     73 *           column, with the leading diagonal of the matrix in row 1 of
     74 *           the array, the first sub-diagonal starting at position 1 in
     75 *           row 2, and so on. The bottom right k by k triangle of the
     76 *           array A is not referenced.
     77 *           The following program segment will transfer the lower
     78 *           triangular part of a symmetric band matrix from conventional
     79 *           full matrix storage to band storage:
     80 *
     81 *                 DO 20, J = 1, N
     82 *                    M = 1 - J
     83 *                    DO 10, I = J, MIN( N, J + K )
     84 *                       A( M + I, J ) = matrix( I, J )
     85 *              10    CONTINUE
     86 *              20 CONTINUE
     87 *
     88 *           Unchanged on exit.
     89 *
     90 *  LDA    - INTEGER.
     91 *           On entry, LDA specifies the first dimension of A as declared
     92 *           in the calling (sub) program. LDA must be at least
     93 *           ( k + 1 ).
     94 *           Unchanged on exit.
     95 *
     96 *  X      - DOUBLE PRECISION array of DIMENSION at least
     97 *           ( 1 + ( n - 1 )*abs( INCX ) ).
     98 *           Before entry, the incremented array X must contain the
     99 *           vector x.
    100 *           Unchanged on exit.
    101 *
    102 *  INCX   - INTEGER.
    103 *           On entry, INCX specifies the increment for the elements of
    104 *           X. INCX must not be zero.
    105 *           Unchanged on exit.
    106 *
    107 *  BETA   - DOUBLE PRECISION.
    108 *           On entry, BETA specifies the scalar beta.
    109 *           Unchanged on exit.
    110 *
    111 *  Y      - DOUBLE PRECISION array of DIMENSION at least
    112 *           ( 1 + ( n - 1 )*abs( INCY ) ).
    113 *           Before entry, the incremented array Y must contain the
    114 *           vector y. On exit, Y is overwritten by the updated vector y.
    115 *
    116 *  INCY   - INTEGER.
    117 *           On entry, INCY specifies the increment for the elements of
    118 *           Y. INCY must not be zero.
    119 *           Unchanged on exit.
    120 *
    121 *
    122 *  Level 2 Blas routine.
    123 *
    124 *  -- Written on 22-October-1986.
    125 *     Jack Dongarra, Argonne National Lab.
    126 *     Jeremy Du Croz, Nag Central Office.
    127 *     Sven Hammarling, Nag Central Office.
    128 *     Richard Hanson, Sandia National Labs.
    129 *
    130 *  =====================================================================
    131 *
    132 *     .. Parameters ..
    133       DOUBLE PRECISION ONE,ZERO
    134       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
    135 *     ..
    136 *     .. Local Scalars ..
    137       DOUBLE PRECISION TEMP1,TEMP2
    138       INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
    139 *     ..
    140 *     .. External Functions ..
    141       LOGICAL LSAME
    142       EXTERNAL LSAME
    143 *     ..
    144 *     .. External Subroutines ..
    145       EXTERNAL XERBLA
    146 *     ..
    147 *     .. Intrinsic Functions ..
    148       INTRINSIC MAX,MIN
    149 *     ..
    150 *
    151 *     Test the input parameters.
    152 *
    153       INFO = 0
    154       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    155           INFO = 1
    156       ELSE IF (N.LT.0) THEN
    157           INFO = 2
    158       ELSE IF (K.LT.0) THEN
    159           INFO = 3
    160       ELSE IF (LDA.LT. (K+1)) THEN
    161           INFO = 6
    162       ELSE IF (INCX.EQ.0) THEN
    163           INFO = 8
    164       ELSE IF (INCY.EQ.0) THEN
    165           INFO = 11
    166       END IF
    167       IF (INFO.NE.0) THEN
    168           CALL XERBLA('DSBMV ',INFO)
    169           RETURN
    170       END IF
    171 *
    172 *     Quick return if possible.
    173 *
    174       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
    175 *
    176 *     Set up the start points in  X  and  Y.
    177 *
    178       IF (INCX.GT.0) THEN
    179           KX = 1
    180       ELSE
    181           KX = 1 - (N-1)*INCX
    182       END IF
    183       IF (INCY.GT.0) THEN
    184           KY = 1
    185       ELSE
    186           KY = 1 - (N-1)*INCY
    187       END IF
    188 *
    189 *     Start the operations. In this version the elements of the array A
    190 *     are accessed sequentially with one pass through A.
    191 *
    192 *     First form  y := beta*y.
    193 *
    194       IF (BETA.NE.ONE) THEN
    195           IF (INCY.EQ.1) THEN
    196               IF (BETA.EQ.ZERO) THEN
    197                   DO 10 I = 1,N
    198                       Y(I) = ZERO
    199    10             CONTINUE
    200               ELSE
    201                   DO 20 I = 1,N
    202                       Y(I) = BETA*Y(I)
    203    20             CONTINUE
    204               END IF
    205           ELSE
    206               IY = KY
    207               IF (BETA.EQ.ZERO) THEN
    208                   DO 30 I = 1,N
    209                       Y(IY) = ZERO
    210                       IY = IY + INCY
    211    30             CONTINUE
    212               ELSE
    213                   DO 40 I = 1,N
    214                       Y(IY) = BETA*Y(IY)
    215                       IY = IY + INCY
    216    40             CONTINUE
    217               END IF
    218           END IF
    219       END IF
    220       IF (ALPHA.EQ.ZERO) RETURN
    221       IF (LSAME(UPLO,'U')) THEN
    222 *
    223 *        Form  y  when upper triangle of A is stored.
    224 *
    225           KPLUS1 = K + 1
    226           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
    227               DO 60 J = 1,N
    228                   TEMP1 = ALPHA*X(J)
    229                   TEMP2 = ZERO
    230                   L = KPLUS1 - J
    231                   DO 50 I = MAX(1,J-K),J - 1
    232                       Y(I) = Y(I) + TEMP1*A(L+I,J)
    233                       TEMP2 = TEMP2 + A(L+I,J)*X(I)
    234    50             CONTINUE
    235                   Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
    236    60         CONTINUE
    237           ELSE
    238               JX = KX
    239               JY = KY
    240               DO 80 J = 1,N
    241                   TEMP1 = ALPHA*X(JX)
    242                   TEMP2 = ZERO
    243                   IX = KX
    244                   IY = KY
    245                   L = KPLUS1 - J
    246                   DO 70 I = MAX(1,J-K),J - 1
    247                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
    248                       TEMP2 = TEMP2 + A(L+I,J)*X(IX)
    249                       IX = IX + INCX
    250                       IY = IY + INCY
    251    70             CONTINUE
    252                   Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
    253                   JX = JX + INCX
    254                   JY = JY + INCY
    255                   IF (J.GT.K) THEN
    256                       KX = KX + INCX
    257                       KY = KY + INCY
    258                   END IF
    259    80         CONTINUE
    260           END IF
    261       ELSE
    262 *
    263 *        Form  y  when lower triangle of A is stored.
    264 *
    265           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
    266               DO 100 J = 1,N
    267                   TEMP1 = ALPHA*X(J)
    268                   TEMP2 = ZERO
    269                   Y(J) = Y(J) + TEMP1*A(1,J)
    270                   L = 1 - J
    271                   DO 90 I = J + 1,MIN(N,J+K)
    272                       Y(I) = Y(I) + TEMP1*A(L+I,J)
    273                       TEMP2 = TEMP2 + A(L+I,J)*X(I)
    274    90             CONTINUE
    275                   Y(J) = Y(J) + ALPHA*TEMP2
    276   100         CONTINUE
    277           ELSE
    278               JX = KX
    279               JY = KY
    280               DO 120 J = 1,N
    281                   TEMP1 = ALPHA*X(JX)
    282                   TEMP2 = ZERO
    283                   Y(JY) = Y(JY) + TEMP1*A(1,J)
    284                   L = 1 - J
    285                   IX = JX
    286                   IY = JY
    287                   DO 110 I = J + 1,MIN(N,J+K)
    288                       IX = IX + INCX
    289                       IY = IY + INCY
    290                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
    291                       TEMP2 = TEMP2 + A(L+I,J)*X(IX)
    292   110             CONTINUE
    293                   Y(JY) = Y(JY) + ALPHA*TEMP2
    294                   JX = JX + INCX
    295                   JY = JY + INCY
    296   120         CONTINUE
    297           END IF
    298       END IF
    299 *
    300       RETURN
    301 *
    302 *     End of DSBMV .
    303 *
    304       END
    305