1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. Eigen itself is part of the KDE project. 3 // 4 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #include "main.h" 11 12 template<typename MatrixType> void matrixSum(const MatrixType& m) 13 { 14 typedef typename MatrixType::Scalar Scalar; 15 16 int rows = m.rows(); 17 int cols = m.cols(); 18 19 MatrixType m1 = MatrixType::Random(rows, cols); 20 21 VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); 22 VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy 23 Scalar x = Scalar(0); 24 for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) x += m1(i,j); 25 VERIFY_IS_APPROX(m1.sum(), x); 26 } 27 28 template<typename VectorType> void vectorSum(const VectorType& w) 29 { 30 typedef typename VectorType::Scalar Scalar; 31 int size = w.size(); 32 33 VectorType v = VectorType::Random(size); 34 for(int i = 1; i < size; i++) 35 { 36 Scalar s = Scalar(0); 37 for(int j = 0; j < i; j++) s += v[j]; 38 VERIFY_IS_APPROX(s, v.start(i).sum()); 39 } 40 41 for(int i = 0; i < size-1; i++) 42 { 43 Scalar s = Scalar(0); 44 for(int j = i; j < size; j++) s += v[j]; 45 VERIFY_IS_APPROX(s, v.end(size-i).sum()); 46 } 47 48 for(int i = 0; i < size/2; i++) 49 { 50 Scalar s = Scalar(0); 51 for(int j = i; j < size-i; j++) s += v[j]; 52 VERIFY_IS_APPROX(s, v.segment(i, size-2*i).sum()); 53 } 54 } 55 56 void test_eigen2_sum() 57 { 58 for(int i = 0; i < g_repeat; i++) { 59 CALL_SUBTEST_1( matrixSum(Matrix<float, 1, 1>()) ); 60 CALL_SUBTEST_2( matrixSum(Matrix2f()) ); 61 CALL_SUBTEST_3( matrixSum(Matrix4d()) ); 62 CALL_SUBTEST_4( matrixSum(MatrixXcf(3, 3)) ); 63 CALL_SUBTEST_5( matrixSum(MatrixXf(8, 12)) ); 64 CALL_SUBTEST_6( matrixSum(MatrixXi(8, 12)) ); 65 } 66 for(int i = 0; i < g_repeat; i++) { 67 CALL_SUBTEST_5( vectorSum(VectorXf(5)) ); 68 CALL_SUBTEST_7( vectorSum(VectorXd(10)) ); 69 CALL_SUBTEST_5( vectorSum(VectorXf(33)) ); 70 } 71 } 72