Home | History | Annotate | Download | only in lib
      1 /* Functions to compute MD5 message digest of files or memory blocks.
      2    according to the definition of MD5 in RFC 1321 from April 1992.
      3    Copyright (C) 1995-2011 Red Hat, Inc.
      4    This file is part of Red Hat elfutils.
      5    Written by Ulrich Drepper <drepper (at) redhat.com>, 1995.
      6 
      7    Red Hat elfutils is free software; you can redistribute it and/or modify
      8    it under the terms of the GNU General Public License as published by the
      9    Free Software Foundation; version 2 of the License.
     10 
     11    Red Hat elfutils is distributed in the hope that it will be useful, but
     12    WITHOUT ANY WARRANTY; without even the implied warranty of
     13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14    General Public License for more details.
     15 
     16    You should have received a copy of the GNU General Public License along
     17    with Red Hat elfutils; if not, write to the Free Software Foundation,
     18    Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA.
     19 
     20    Red Hat elfutils is an included package of the Open Invention Network.
     21    An included package of the Open Invention Network is a package for which
     22    Open Invention Network licensees cross-license their patents.  No patent
     23    license is granted, either expressly or impliedly, by designation as an
     24    included package.  Should you wish to participate in the Open Invention
     25    Network licensing program, please visit www.openinventionnetwork.com
     26    <http://www.openinventionnetwork.com>.  */
     27 
     28 #ifdef HAVE_CONFIG_H
     29 # include <config.h>
     30 #endif
     31 
     32 #include <stdlib.h>
     33 #include <string.h>
     34 #include <sys/types.h>
     35 
     36 #include "md5.h"
     37 #include "system.h"
     38 
     39 #define SWAP(n) LE32 (n)
     40 
     41 /* This array contains the bytes used to pad the buffer to the next
     42    64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
     43 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
     44 
     45 
     46 /* Initialize structure containing state of computation.
     47    (RFC 1321, 3.3: Step 3)  */
     48 void
     49 md5_init_ctx (ctx)
     50      struct md5_ctx *ctx;
     51 {
     52   ctx->A = 0x67452301;
     53   ctx->B = 0xefcdab89;
     54   ctx->C = 0x98badcfe;
     55   ctx->D = 0x10325476;
     56 
     57   ctx->total[0] = ctx->total[1] = 0;
     58   ctx->buflen = 0;
     59 }
     60 
     61 /* Put result from CTX in first 16 bytes following RESBUF.  The result
     62    must be in little endian byte order.
     63 
     64    IMPORTANT: On some systems it is required that RESBUF is correctly
     65    aligned for a 32 bits value.  */
     66 void *
     67 md5_read_ctx (ctx, resbuf)
     68      const struct md5_ctx *ctx;
     69      void *resbuf;
     70 {
     71   ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
     72   ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
     73   ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
     74   ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
     75 
     76   return resbuf;
     77 }
     78 
     79 static void
     80 le64_copy (char *dest, uint64_t x)
     81 {
     82   for (size_t i = 0; i < 8; ++i)
     83     {
     84       dest[i] = (uint8_t) x;
     85       x >>= 8;
     86     }
     87 }
     88 
     89 /* Process the remaining bytes in the internal buffer and the usual
     90    prolog according to the standard and write the result to RESBUF.
     91 
     92    IMPORTANT: On some systems it is required that RESBUF is correctly
     93    aligned for a 32 bits value.  */
     94 void *
     95 md5_finish_ctx (ctx, resbuf)
     96      struct md5_ctx *ctx;
     97      void *resbuf;
     98 {
     99   /* Take yet unprocessed bytes into account.  */
    100   md5_uint32 bytes = ctx->buflen;
    101   size_t pad;
    102 
    103   /* Now count remaining bytes.  */
    104   ctx->total[0] += bytes;
    105   if (ctx->total[0] < bytes)
    106     ++ctx->total[1];
    107 
    108   pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
    109   memcpy (&ctx->buffer[bytes], fillbuf, pad);
    110 
    111   /* Put the 64-bit file length in *bits* at the end of the buffer.  */
    112   const uint64_t bit_length = ((ctx->total[0] << 3)
    113 			       + ((uint64_t) ((ctx->total[1] << 3) |
    114 					      (ctx->total[0] >> 29)) << 32));
    115   le64_copy (&ctx->buffer[bytes + pad], bit_length);
    116 
    117   /* Process last bytes.  */
    118   md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
    119 
    120   return md5_read_ctx (ctx, resbuf);
    121 }
    122 
    123 
    124 #ifdef NEED_MD5_STREAM
    125 /* Compute MD5 message digest for bytes read from STREAM.  The
    126    resulting message digest number will be written into the 16 bytes
    127    beginning at RESBLOCK.  */
    128 int
    129 md5_stream (stream, resblock)
    130      FILE *stream;
    131      void *resblock;
    132 {
    133   /* Important: BLOCKSIZE must be a multiple of 64.  */
    134 #define BLOCKSIZE 4096
    135   struct md5_ctx ctx;
    136   char buffer[BLOCKSIZE + 72];
    137   size_t sum;
    138 
    139   /* Initialize the computation context.  */
    140   md5_init_ctx (&ctx);
    141 
    142   /* Iterate over full file contents.  */
    143   while (1)
    144     {
    145       /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
    146 	 computation function processes the whole buffer so that with the
    147 	 next round of the loop another block can be read.  */
    148       size_t n;
    149       sum = 0;
    150 
    151       /* Read block.  Take care for partial reads.  */
    152       do
    153 	{
    154 	  n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
    155 
    156 	  sum += n;
    157 	}
    158       while (sum < BLOCKSIZE && n != 0);
    159       if (n == 0 && ferror (stream))
    160         return 1;
    161 
    162       /* If end of file is reached, end the loop.  */
    163       if (n == 0)
    164 	break;
    165 
    166       /* Process buffer with BLOCKSIZE bytes.  Note that
    167 			BLOCKSIZE % 64 == 0
    168        */
    169       md5_process_block (buffer, BLOCKSIZE, &ctx);
    170     }
    171 
    172   /* Add the last bytes if necessary.  */
    173   if (sum > 0)
    174     md5_process_bytes (buffer, sum, &ctx);
    175 
    176   /* Construct result in desired memory.  */
    177   md5_finish_ctx (&ctx, resblock);
    178   return 0;
    179 }
    180 #endif
    181 
    182 
    183 #ifdef NEED_MD5_BUFFER
    184 /* Compute MD5 message digest for LEN bytes beginning at BUFFER.  The
    185    result is always in little endian byte order, so that a byte-wise
    186    output yields to the wanted ASCII representation of the message
    187    digest.  */
    188 void *
    189 md5_buffer (buffer, len, resblock)
    190      const char *buffer;
    191      size_t len;
    192      void *resblock;
    193 {
    194   struct md5_ctx ctx;
    195 
    196   /* Initialize the computation context.  */
    197   md5_init_ctx (&ctx);
    198 
    199   /* Process whole buffer but last len % 64 bytes.  */
    200   md5_process_bytes (buffer, len, &ctx);
    201 
    202   /* Put result in desired memory area.  */
    203   return md5_finish_ctx (&ctx, resblock);
    204 }
    205 #endif
    206 
    207 
    208 void
    209 md5_process_bytes (buffer, len, ctx)
    210      const void *buffer;
    211      size_t len;
    212      struct md5_ctx *ctx;
    213 {
    214   /* When we already have some bits in our internal buffer concatenate
    215      both inputs first.  */
    216   if (ctx->buflen != 0)
    217     {
    218       size_t left_over = ctx->buflen;
    219       size_t add = 128 - left_over > len ? len : 128 - left_over;
    220 
    221       memcpy (&ctx->buffer[left_over], buffer, add);
    222       ctx->buflen += add;
    223 
    224       if (ctx->buflen > 64)
    225 	{
    226 	  md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
    227 
    228 	  ctx->buflen &= 63;
    229 	  /* The regions in the following copy operation cannot overlap.  */
    230 	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
    231 		  ctx->buflen);
    232 	}
    233 
    234       buffer = (const char *) buffer + add;
    235       len -= add;
    236     }
    237 
    238   /* Process available complete blocks.  */
    239   if (len >= 64)
    240     {
    241 #if !_STRING_ARCH_unaligned
    242 /* To check alignment gcc has an appropriate operator.  Other
    243    compilers don't.  */
    244 # if __GNUC__ >= 2
    245 #  define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (md5_uint32) != 0)
    246 # else
    247 #  define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (md5_uint32) != 0)
    248 # endif
    249       if (UNALIGNED_P (buffer))
    250 	while (len > 64)
    251 	  {
    252 	    md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
    253 	    buffer = (const char *) buffer + 64;
    254 	    len -= 64;
    255 	  }
    256       else
    257 #endif
    258 	{
    259 	  md5_process_block (buffer, len & ~63, ctx);
    260 	  buffer = (const char *) buffer + (len & ~63);
    261 	  len &= 63;
    262 	}
    263     }
    264 
    265   /* Move remaining bytes in internal buffer.  */
    266   if (len > 0)
    267     {
    268       size_t left_over = ctx->buflen;
    269 
    270       memcpy (&ctx->buffer[left_over], buffer, len);
    271       left_over += len;
    272       if (left_over >= 64)
    273 	{
    274 	  md5_process_block (ctx->buffer, 64, ctx);
    275 	  left_over -= 64;
    276 	  memcpy (ctx->buffer, &ctx->buffer[64], left_over);
    277 	}
    278       ctx->buflen = left_over;
    279     }
    280 }
    281 
    282 
    283 /* These are the four functions used in the four steps of the MD5 algorithm
    284    and defined in the RFC 1321.  The first function is a little bit optimized
    285    (as found in Colin Plumbs public domain implementation).  */
    286 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
    287 #define FF(b, c, d) (d ^ (b & (c ^ d)))
    288 #define FG(b, c, d) FF (d, b, c)
    289 #define FH(b, c, d) (b ^ c ^ d)
    290 #define FI(b, c, d) (c ^ (b | ~d))
    291 
    292 /* Process LEN bytes of BUFFER, accumulating context into CTX.
    293    It is assumed that LEN % 64 == 0.  */
    294 
    295 void
    296 md5_process_block (buffer, len, ctx)
    297      const void *buffer;
    298      size_t len;
    299      struct md5_ctx *ctx;
    300 {
    301   md5_uint32 correct_words[16];
    302   const md5_uint32 *words = buffer;
    303   size_t nwords = len / sizeof (md5_uint32);
    304   const md5_uint32 *endp = words + nwords;
    305   md5_uint32 A = ctx->A;
    306   md5_uint32 B = ctx->B;
    307   md5_uint32 C = ctx->C;
    308   md5_uint32 D = ctx->D;
    309 
    310   /* First increment the byte count.  RFC 1321 specifies the possible
    311      length of the file up to 2^64 bits.  Here we only compute the
    312      number of bytes.  Do a double word increment.  */
    313   ctx->total[0] += len;
    314   if (ctx->total[0] < len)
    315     ++ctx->total[1];
    316 
    317   /* Process all bytes in the buffer with 64 bytes in each round of
    318      the loop.  */
    319   while (words < endp)
    320     {
    321       md5_uint32 *cwp = correct_words;
    322       md5_uint32 A_save = A;
    323       md5_uint32 B_save = B;
    324       md5_uint32 C_save = C;
    325       md5_uint32 D_save = D;
    326 
    327       /* First round: using the given function, the context and a constant
    328 	 the next context is computed.  Because the algorithms processing
    329 	 unit is a 32-bit word and it is determined to work on words in
    330 	 little endian byte order we perhaps have to change the byte order
    331 	 before the computation.  To reduce the work for the next steps
    332 	 we store the swapped words in the array CORRECT_WORDS.  */
    333 
    334 #define OP(a, b, c, d, s, T)						\
    335       do								\
    336         {								\
    337 	  a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T;		\
    338 	  ++words;							\
    339 	  CYCLIC (a, s);						\
    340 	  a += b;							\
    341         }								\
    342       while (0)
    343 
    344       /* It is unfortunate that C does not provide an operator for
    345 	 cyclic rotation.  Hope the C compiler is smart enough.  */
    346 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
    347 
    348       /* Before we start, one word to the strange constants.
    349 	 They are defined in RFC 1321 as
    350 
    351 	 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
    352        */
    353 
    354       /* Round 1.  */
    355       OP (A, B, C, D,  7, 0xd76aa478);
    356       OP (D, A, B, C, 12, 0xe8c7b756);
    357       OP (C, D, A, B, 17, 0x242070db);
    358       OP (B, C, D, A, 22, 0xc1bdceee);
    359       OP (A, B, C, D,  7, 0xf57c0faf);
    360       OP (D, A, B, C, 12, 0x4787c62a);
    361       OP (C, D, A, B, 17, 0xa8304613);
    362       OP (B, C, D, A, 22, 0xfd469501);
    363       OP (A, B, C, D,  7, 0x698098d8);
    364       OP (D, A, B, C, 12, 0x8b44f7af);
    365       OP (C, D, A, B, 17, 0xffff5bb1);
    366       OP (B, C, D, A, 22, 0x895cd7be);
    367       OP (A, B, C, D,  7, 0x6b901122);
    368       OP (D, A, B, C, 12, 0xfd987193);
    369       OP (C, D, A, B, 17, 0xa679438e);
    370       OP (B, C, D, A, 22, 0x49b40821);
    371 
    372       /* For the second to fourth round we have the possibly swapped words
    373 	 in CORRECT_WORDS.  Redefine the macro to take an additional first
    374 	 argument specifying the function to use.  */
    375 #undef OP
    376 #define OP(f, a, b, c, d, k, s, T)					\
    377       do 								\
    378 	{								\
    379 	  a += f (b, c, d) + correct_words[k] + T;			\
    380 	  CYCLIC (a, s);						\
    381 	  a += b;							\
    382 	}								\
    383       while (0)
    384 
    385       /* Round 2.  */
    386       OP (FG, A, B, C, D,  1,  5, 0xf61e2562);
    387       OP (FG, D, A, B, C,  6,  9, 0xc040b340);
    388       OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
    389       OP (FG, B, C, D, A,  0, 20, 0xe9b6c7aa);
    390       OP (FG, A, B, C, D,  5,  5, 0xd62f105d);
    391       OP (FG, D, A, B, C, 10,  9, 0x02441453);
    392       OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
    393       OP (FG, B, C, D, A,  4, 20, 0xe7d3fbc8);
    394       OP (FG, A, B, C, D,  9,  5, 0x21e1cde6);
    395       OP (FG, D, A, B, C, 14,  9, 0xc33707d6);
    396       OP (FG, C, D, A, B,  3, 14, 0xf4d50d87);
    397       OP (FG, B, C, D, A,  8, 20, 0x455a14ed);
    398       OP (FG, A, B, C, D, 13,  5, 0xa9e3e905);
    399       OP (FG, D, A, B, C,  2,  9, 0xfcefa3f8);
    400       OP (FG, C, D, A, B,  7, 14, 0x676f02d9);
    401       OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
    402 
    403       /* Round 3.  */
    404       OP (FH, A, B, C, D,  5,  4, 0xfffa3942);
    405       OP (FH, D, A, B, C,  8, 11, 0x8771f681);
    406       OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
    407       OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
    408       OP (FH, A, B, C, D,  1,  4, 0xa4beea44);
    409       OP (FH, D, A, B, C,  4, 11, 0x4bdecfa9);
    410       OP (FH, C, D, A, B,  7, 16, 0xf6bb4b60);
    411       OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
    412       OP (FH, A, B, C, D, 13,  4, 0x289b7ec6);
    413       OP (FH, D, A, B, C,  0, 11, 0xeaa127fa);
    414       OP (FH, C, D, A, B,  3, 16, 0xd4ef3085);
    415       OP (FH, B, C, D, A,  6, 23, 0x04881d05);
    416       OP (FH, A, B, C, D,  9,  4, 0xd9d4d039);
    417       OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
    418       OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
    419       OP (FH, B, C, D, A,  2, 23, 0xc4ac5665);
    420 
    421       /* Round 4.  */
    422       OP (FI, A, B, C, D,  0,  6, 0xf4292244);
    423       OP (FI, D, A, B, C,  7, 10, 0x432aff97);
    424       OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
    425       OP (FI, B, C, D, A,  5, 21, 0xfc93a039);
    426       OP (FI, A, B, C, D, 12,  6, 0x655b59c3);
    427       OP (FI, D, A, B, C,  3, 10, 0x8f0ccc92);
    428       OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
    429       OP (FI, B, C, D, A,  1, 21, 0x85845dd1);
    430       OP (FI, A, B, C, D,  8,  6, 0x6fa87e4f);
    431       OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
    432       OP (FI, C, D, A, B,  6, 15, 0xa3014314);
    433       OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
    434       OP (FI, A, B, C, D,  4,  6, 0xf7537e82);
    435       OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
    436       OP (FI, C, D, A, B,  2, 15, 0x2ad7d2bb);
    437       OP (FI, B, C, D, A,  9, 21, 0xeb86d391);
    438 
    439       /* Add the starting values of the context.  */
    440       A += A_save;
    441       B += B_save;
    442       C += C_save;
    443       D += D_save;
    444     }
    445 
    446   /* Put checksum in context given as argument.  */
    447   ctx->A = A;
    448   ctx->B = B;
    449   ctx->C = C;
    450   ctx->D = D;
    451 }
    452