Home | History | Annotate | Download | only in math
      1 /*
      2  * Copyright (C) 2011 The Guava Authors
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  * http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package com.google.common.math;
     18 
     19 import static com.google.common.base.Preconditions.checkArgument;
     20 import static com.google.common.math.DoubleUtils.IMPLICIT_BIT;
     21 import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS;
     22 import static com.google.common.math.DoubleUtils.getExponent;
     23 import static com.google.common.math.DoubleUtils.getSignificand;
     24 import static com.google.common.math.DoubleUtils.isFinite;
     25 import static com.google.common.math.DoubleUtils.isNormal;
     26 import static com.google.common.math.DoubleUtils.next;
     27 import static com.google.common.math.DoubleUtils.scaleNormalize;
     28 import static com.google.common.math.MathPreconditions.checkInRange;
     29 import static com.google.common.math.MathPreconditions.checkNonNegative;
     30 import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
     31 
     32 import java.math.BigInteger;
     33 import java.math.RoundingMode;
     34 
     35 import com.google.common.annotations.VisibleForTesting;
     36 import com.google.common.annotations.Beta;
     37 
     38 /**
     39  * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}.
     40  *
     41  * @author Louis Wasserman
     42  * @since 11.0
     43  */
     44 @Beta
     45 public final class DoubleMath {
     46   /*
     47    * This method returns a value y such that rounding y DOWN (towards zero) gives the same result
     48    * as rounding x according to the specified mode.
     49    */
     50   static double roundIntermediate(double x, RoundingMode mode) {
     51     if (!isFinite(x)) {
     52       throw new ArithmeticException("input is infinite or NaN");
     53     }
     54     switch (mode) {
     55       case UNNECESSARY:
     56         checkRoundingUnnecessary(isMathematicalInteger(x));
     57         return x;
     58 
     59       case FLOOR:
     60         return (x >= 0.0) ? x : Math.floor(x);
     61 
     62       case CEILING:
     63         return (x >= 0.0) ? Math.ceil(x) : x;
     64 
     65       case DOWN:
     66         return x;
     67 
     68       case UP:
     69         return (x >= 0.0) ? Math.ceil(x) : Math.floor(x);
     70 
     71       case HALF_EVEN:
     72         return Math.rint(x);
     73 
     74       case HALF_UP:
     75         if (isMathematicalInteger(x)) {
     76           return x;
     77         } else {
     78           return (x >= 0.0) ? x + 0.5 : x - 0.5;
     79         }
     80 
     81       case HALF_DOWN:
     82         if (isMathematicalInteger(x)) {
     83           return x;
     84         } else if (x >= 0.0) {
     85           double z = x + 0.5;
     86           return (z == x) ? x : next(z, false); // x + 0.5 - epsilon
     87         } else {
     88           double z = x - 0.5;
     89           return (z == x) ? x : next(z, true); // x - 0.5 + epsilon
     90         }
     91 
     92       default:
     93         throw new AssertionError();
     94     }
     95   }
     96 
     97   /**
     98    * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding
     99    * mode, if possible.
    100    *
    101    * @throws ArithmeticException if
    102    *         <ul>
    103    *         <li>{@code x} is infinite or NaN
    104    *         <li>{@code x}, after being rounded to a mathematical integer using the specified
    105    *         rounding mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code
    106    *         Integer.MAX_VALUE}
    107    *         <li>{@code x} is not a mathematical integer and {@code mode} is
    108    *         {@link RoundingMode#UNNECESSARY}
    109    *         </ul>
    110    */
    111   public static int roundToInt(double x, RoundingMode mode) {
    112     double z = roundIntermediate(x, mode);
    113     checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0);
    114     return (int) z;
    115   }
    116 
    117   private static final double MIN_INT_AS_DOUBLE = -0x1p31;
    118   private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0;
    119 
    120   /**
    121    * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding
    122    * mode, if possible.
    123    *
    124    * @throws ArithmeticException if
    125    *         <ul>
    126    *         <li>{@code x} is infinite or NaN
    127    *         <li>{@code x}, after being rounded to a mathematical integer using the specified
    128    *         rounding mode, is either less than {@code Long.MIN_VALUE} or greater than {@code
    129    *         Long.MAX_VALUE}
    130    *         <li>{@code x} is not a mathematical integer and {@code mode} is
    131    *         {@link RoundingMode#UNNECESSARY}
    132    *         </ul>
    133    */
    134   public static long roundToLong(double x, RoundingMode mode) {
    135     double z = roundIntermediate(x, mode);
    136     checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE);
    137     return (long) z;
    138   }
    139 
    140   private static final double MIN_LONG_AS_DOUBLE = -0x1p63;
    141   /*
    142    * We cannot store Long.MAX_VALUE as a double without losing precision.  Instead, we store
    143    * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1.
    144    */
    145   private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63;
    146 
    147   /**
    148    * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified
    149    * rounding mode, if possible.
    150    *
    151    * @throws ArithmeticException if
    152    *         <ul>
    153    *         <li>{@code x} is infinite or NaN
    154    *         <li>{@code x} is not a mathematical integer and {@code mode} is
    155    *         {@link RoundingMode#UNNECESSARY}
    156    *         </ul>
    157    */
    158   public static BigInteger roundToBigInteger(double x, RoundingMode mode) {
    159     x = roundIntermediate(x, mode);
    160     if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) {
    161       return BigInteger.valueOf((long) x);
    162     }
    163     int exponent = getExponent(x);
    164     if (exponent < 0) {
    165       return BigInteger.ZERO;
    166     }
    167     long significand = getSignificand(x);
    168     BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS);
    169     return (x < 0) ? result.negate() : result;
    170   }
    171 
    172   /**
    173    * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer
    174    * {@code k}.
    175    */
    176   public static boolean isPowerOfTwo(double x) {
    177     return x > 0.0 && isFinite(x) && LongMath.isPowerOfTwo(getSignificand(x));
    178   }
    179 
    180   /**
    181    * Returns the base 2 logarithm of a double value.
    182    *
    183    * <p>Special cases:
    184    * <ul>
    185    * <li>If {@code x} is NaN or less than zero, the result is NaN.
    186    * <li>If {@code x} is positive infinity, the result is positive infinity.
    187    * <li>If {@code x} is positive or negative zero, the result is negative infinity.
    188    * </ul>
    189    *
    190    * <p>The computed result must be within 1 ulp of the exact result.
    191    *
    192    * <p>If the result of this method will be immediately rounded to an {@code int},
    193    * {@link #log2(double, RoundingMode)} is faster.
    194    */
    195   public static double log2(double x) {
    196     return Math.log(x) / LN_2; // surprisingly within 1 ulp according to tests
    197   }
    198 
    199   private static final double LN_2 = Math.log(2);
    200 
    201   /**
    202    * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an
    203    * {@code int}.
    204    *
    205    * <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}.
    206    *
    207    * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is
    208    *         infinite
    209    */
    210   @SuppressWarnings("fallthrough")
    211   public static int log2(double x, RoundingMode mode) {
    212     checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite");
    213     int exponent = getExponent(x);
    214     if (!isNormal(x)) {
    215       return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS;
    216       // Do the calculation on a normal value.
    217     }
    218     // x is positive, finite, and normal
    219     boolean increment;
    220     switch (mode) {
    221       case UNNECESSARY:
    222         checkRoundingUnnecessary(isPowerOfTwo(x));
    223         // fall through
    224       case FLOOR:
    225         increment = false;
    226         break;
    227       case CEILING:
    228         increment = !isPowerOfTwo(x);
    229         break;
    230       case DOWN:
    231         increment = exponent < 0 & !isPowerOfTwo(x);
    232         break;
    233       case UP:
    234         increment = exponent >= 0 & !isPowerOfTwo(x);
    235         break;
    236       case HALF_DOWN:
    237       case HALF_EVEN:
    238       case HALF_UP:
    239         double xScaled = scaleNormalize(x);
    240         // sqrt(2) is irrational, and the spec is relative to the "exact numerical result,"
    241         // so log2(x) is never exactly exponent + 0.5.
    242         increment = (xScaled * xScaled) > 2.0;
    243         break;
    244       default:
    245         throw new AssertionError();
    246     }
    247     return increment ? exponent + 1 : exponent;
    248   }
    249 
    250   /**
    251    * Returns {@code true} if {@code x} represents a mathematical integer.
    252    *
    253    * <p>This is equivalent to, but not necessarily implemented as, the expression {@code
    254    * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}.
    255    */
    256   public static boolean isMathematicalInteger(double x) {
    257     return isFinite(x)
    258         && (x == 0.0 || SIGNIFICAND_BITS
    259             - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x));
    260   }
    261 
    262   /**
    263    * Returns {@code n!}, that is, the product of the first {@code n} positive
    264    * integers, {@code 1} if {@code n == 0}, or e n!}, or
    265    * {@link Double#POSITIVE_INFINITY} if {@code n! > Double.MAX_VALUE}.
    266    *
    267    * <p>The result is within 1 ulp of the true value.
    268    *
    269    * @throws IllegalArgumentException if {@code n < 0}
    270    */
    271   public static double factorial(int n) {
    272     checkNonNegative("n", n);
    273     if (n > MAX_FACTORIAL) {
    274       return Double.POSITIVE_INFINITY;
    275     } else {
    276       // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate
    277       // result than multiplying by EVERY_SIXTEENTH_FACTORIAL[n >> 4] directly.
    278       double accum = 1.0;
    279       for (int i = 1 + (n & ~0xf); i <= n; i++) {
    280         accum *= i;
    281       }
    282       return accum * EVERY_SIXTEENTH_FACTORIAL[n >> 4];
    283     }
    284   }
    285 
    286   @VisibleForTesting
    287   static final int MAX_FACTORIAL = 170;
    288 
    289   @VisibleForTesting
    290   static final double[] EVERY_SIXTEENTH_FACTORIAL = {
    291       0x1.0p0,
    292       0x1.30777758p44,
    293       0x1.956ad0aae33a4p117,
    294       0x1.ee69a78d72cb6p202,
    295       0x1.fe478ee34844ap295,
    296       0x1.c619094edabffp394,
    297       0x1.3638dd7bd6347p498,
    298       0x1.7cac197cfe503p605,
    299       0x1.1e5dfc140e1e5p716,
    300       0x1.8ce85fadb707ep829,
    301       0x1.95d5f3d928edep945};
    302 }
    303