1 /* 2 ********************************************************************** 3 * Copyright (C) 1999-2011, International Business Machines 4 * Corporation and others. All Rights Reserved. 5 ********************************************************************** 6 * Date Name Description 7 * 11/17/99 aliu Creation. 8 ********************************************************************** 9 */ 10 11 #include "unicode/utypes.h" 12 13 #if !UCONFIG_NO_TRANSLITERATION 14 15 #include "unicode/unistr.h" 16 #include "unicode/uniset.h" 17 #include "unicode/utf16.h" 18 #include "rbt_set.h" 19 #include "rbt_rule.h" 20 #include "cmemory.h" 21 #include "putilimp.h" 22 23 U_CDECL_BEGIN 24 static void U_CALLCONV _deleteRule(void *rule) { 25 delete (icu::TransliterationRule *)rule; 26 } 27 U_CDECL_END 28 29 //---------------------------------------------------------------------- 30 // BEGIN Debugging support 31 //---------------------------------------------------------------------- 32 33 // #define DEBUG_RBT 34 35 #ifdef DEBUG_RBT 36 #include <stdio.h> 37 #include "charstr.h" 38 39 /** 40 * @param appendTo result is appended to this param. 41 * @param input the string being transliterated 42 * @param pos the index struct 43 */ 44 static UnicodeString& _formatInput(UnicodeString &appendTo, 45 const UnicodeString& input, 46 const UTransPosition& pos) { 47 // Output a string of the form aaa{bbb|ccc|ddd}eee, where 48 // the {} indicate the context start and limit, and the || 49 // indicate the start and limit. 50 if (0 <= pos.contextStart && 51 pos.contextStart <= pos.start && 52 pos.start <= pos.limit && 53 pos.limit <= pos.contextLimit && 54 pos.contextLimit <= input.length()) { 55 56 UnicodeString a, b, c, d, e; 57 input.extractBetween(0, pos.contextStart, a); 58 input.extractBetween(pos.contextStart, pos.start, b); 59 input.extractBetween(pos.start, pos.limit, c); 60 input.extractBetween(pos.limit, pos.contextLimit, d); 61 input.extractBetween(pos.contextLimit, input.length(), e); 62 appendTo.append(a).append((UChar)123/*{*/).append(b). 63 append((UChar)124/*|*/).append(c).append((UChar)124/*|*/).append(d). 64 append((UChar)125/*}*/).append(e); 65 } else { 66 appendTo.append("INVALID UTransPosition"); 67 //appendTo.append((UnicodeString)"INVALID UTransPosition {cs=" + 68 // pos.contextStart + ", s=" + pos.start + ", l=" + 69 // pos.limit + ", cl=" + pos.contextLimit + "} on " + 70 // input); 71 } 72 return appendTo; 73 } 74 75 // Append a hex string to the target 76 UnicodeString& _appendHex(uint32_t number, 77 int32_t digits, 78 UnicodeString& target) { 79 static const UChar digitString[] = { 80 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 81 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0 82 }; 83 while (digits--) { 84 target += digitString[(number >> (digits*4)) & 0xF]; 85 } 86 return target; 87 } 88 89 // Replace nonprintable characters with unicode escapes 90 UnicodeString& _escape(const UnicodeString &source, 91 UnicodeString &target) { 92 for (int32_t i = 0; i < source.length(); ) { 93 UChar32 ch = source.char32At(i); 94 i += U16_LENGTH(ch); 95 if (ch < 0x09 || (ch > 0x0A && ch < 0x20)|| ch > 0x7E) { 96 if (ch <= 0xFFFF) { 97 target += "\\u"; 98 _appendHex(ch, 4, target); 99 } else { 100 target += "\\U"; 101 _appendHex(ch, 8, target); 102 } 103 } else { 104 target += ch; 105 } 106 } 107 return target; 108 } 109 110 inline void _debugOut(const char* msg, TransliterationRule* rule, 111 const Replaceable& theText, UTransPosition& pos) { 112 UnicodeString buf(msg, ""); 113 if (rule) { 114 UnicodeString r; 115 rule->toRule(r, TRUE); 116 buf.append((UChar)32).append(r); 117 } 118 buf.append(UnicodeString(" => ", "")); 119 UnicodeString* text = (UnicodeString*)&theText; 120 _formatInput(buf, *text, pos); 121 UnicodeString esc; 122 _escape(buf, esc); 123 CharString cbuf(esc); 124 printf("%s\n", (const char*) cbuf); 125 } 126 127 #else 128 #define _debugOut(msg, rule, theText, pos) 129 #endif 130 131 //---------------------------------------------------------------------- 132 // END Debugging support 133 //---------------------------------------------------------------------- 134 135 // Fill the precontext and postcontext with the patterns of the rules 136 // that are masking one another. 137 static void maskingError(const icu::TransliterationRule& rule1, 138 const icu::TransliterationRule& rule2, 139 UParseError& parseError) { 140 icu::UnicodeString r; 141 int32_t len; 142 143 parseError.line = parseError.offset = -1; 144 145 // for pre-context 146 rule1.toRule(r, FALSE); 147 len = uprv_min(r.length(), U_PARSE_CONTEXT_LEN-1); 148 r.extract(0, len, parseError.preContext); 149 parseError.preContext[len] = 0; 150 151 //for post-context 152 r.truncate(0); 153 rule2.toRule(r, FALSE); 154 len = uprv_min(r.length(), U_PARSE_CONTEXT_LEN-1); 155 r.extract(0, len, parseError.postContext); 156 parseError.postContext[len] = 0; 157 } 158 159 U_NAMESPACE_BEGIN 160 161 /** 162 * Construct a new empty rule set. 163 */ 164 TransliterationRuleSet::TransliterationRuleSet(UErrorCode& status) : UMemory() { 165 ruleVector = new UVector(&_deleteRule, NULL, status); 166 if (U_FAILURE(status)) { 167 return; 168 } 169 if (ruleVector == NULL) { 170 status = U_MEMORY_ALLOCATION_ERROR; 171 } 172 rules = NULL; 173 maxContextLength = 0; 174 } 175 176 /** 177 * Copy constructor. 178 */ 179 TransliterationRuleSet::TransliterationRuleSet(const TransliterationRuleSet& other) : 180 UMemory(other), 181 ruleVector(0), 182 rules(0), 183 maxContextLength(other.maxContextLength) { 184 185 int32_t i, len; 186 uprv_memcpy(index, other.index, sizeof(index)); 187 UErrorCode status = U_ZERO_ERROR; 188 ruleVector = new UVector(&_deleteRule, NULL, status); 189 if (other.ruleVector != 0 && ruleVector != 0 && U_SUCCESS(status)) { 190 len = other.ruleVector->size(); 191 for (i=0; i<len && U_SUCCESS(status); ++i) { 192 TransliterationRule *tempTranslitRule = new TransliterationRule(*(TransliterationRule*)other.ruleVector->elementAt(i)); 193 // Null pointer test 194 if (tempTranslitRule == NULL) { 195 status = U_MEMORY_ALLOCATION_ERROR; 196 break; 197 } 198 ruleVector->addElement(tempTranslitRule, status); 199 if (U_FAILURE(status)) { 200 break; 201 } 202 } 203 } 204 if (other.rules != 0 && U_SUCCESS(status)) { 205 UParseError p; 206 freeze(p, status); 207 } 208 } 209 210 /** 211 * Destructor. 212 */ 213 TransliterationRuleSet::~TransliterationRuleSet() { 214 delete ruleVector; // This deletes the contained rules 215 uprv_free(rules); 216 } 217 218 void TransliterationRuleSet::setData(const TransliterationRuleData* d) { 219 /** 220 * We assume that the ruleset has already been frozen. 221 */ 222 int32_t len = index[256]; // see freeze() 223 for (int32_t i=0; i<len; ++i) { 224 rules[i]->setData(d); 225 } 226 } 227 228 /** 229 * Return the maximum context length. 230 * @return the length of the longest preceding context. 231 */ 232 int32_t TransliterationRuleSet::getMaximumContextLength(void) const { 233 return maxContextLength; 234 } 235 236 /** 237 * Add a rule to this set. Rules are added in order, and order is 238 * significant. The last call to this method must be followed by 239 * a call to <code>freeze()</code> before the rule set is used. 240 * 241 * <p>If freeze() has already been called, calling addRule() 242 * unfreezes the rules, and freeze() must be called again. 243 * 244 * @param adoptedRule the rule to add 245 */ 246 void TransliterationRuleSet::addRule(TransliterationRule* adoptedRule, 247 UErrorCode& status) { 248 if (U_FAILURE(status)) { 249 delete adoptedRule; 250 return; 251 } 252 ruleVector->addElement(adoptedRule, status); 253 254 int32_t len; 255 if ((len = adoptedRule->getContextLength()) > maxContextLength) { 256 maxContextLength = len; 257 } 258 259 uprv_free(rules); 260 rules = 0; 261 } 262 263 /** 264 * Check this for masked rules and index it to optimize performance. 265 * The sequence of operations is: (1) add rules to a set using 266 * <code>addRule()</code>; (2) freeze the set using 267 * <code>freeze()</code>; (3) use the rule set. If 268 * <code>addRule()</code> is called after calling this method, it 269 * invalidates this object, and this method must be called again. 270 * That is, <code>freeze()</code> may be called multiple times, 271 * although for optimal performance it shouldn't be. 272 */ 273 void TransliterationRuleSet::freeze(UParseError& parseError,UErrorCode& status) { 274 /* Construct the rule array and index table. We reorder the 275 * rules by sorting them into 256 bins. Each bin contains all 276 * rules matching the index value for that bin. A rule 277 * matches an index value if string whose first key character 278 * has a low byte equal to the index value can match the rule. 279 * 280 * Each bin contains zero or more rules, in the same order 281 * they were found originally. However, the total rules in 282 * the bins may exceed the number in the original vector, 283 * since rules that have a variable as their first key 284 * character will generally fall into more than one bin. 285 * 286 * That is, each bin contains all rules that either have that 287 * first index value as their first key character, or have 288 * a set containing the index value as their first character. 289 */ 290 int32_t n = ruleVector->size(); 291 int32_t j; 292 int16_t x; 293 UVector v(2*n, status); // heuristic; adjust as needed 294 295 if (U_FAILURE(status)) { 296 return; 297 } 298 299 /* Precompute the index values. This saves a LOT of time. 300 * Be careful not to call malloc(0). 301 */ 302 int16_t* indexValue = (int16_t*) uprv_malloc( sizeof(int16_t) * (n > 0 ? n : 1) ); 303 /* test for NULL */ 304 if (indexValue == 0) { 305 status = U_MEMORY_ALLOCATION_ERROR; 306 return; 307 } 308 for (j=0; j<n; ++j) { 309 TransliterationRule* r = (TransliterationRule*) ruleVector->elementAt(j); 310 indexValue[j] = r->getIndexValue(); 311 } 312 for (x=0; x<256; ++x) { 313 index[x] = v.size(); 314 for (j=0; j<n; ++j) { 315 if (indexValue[j] >= 0) { 316 if (indexValue[j] == x) { 317 v.addElement(ruleVector->elementAt(j), status); 318 } 319 } else { 320 // If the indexValue is < 0, then the first key character is 321 // a set, and we must use the more time-consuming 322 // matchesIndexValue check. In practice this happens 323 // rarely, so we seldom tread this code path. 324 TransliterationRule* r = (TransliterationRule*) ruleVector->elementAt(j); 325 if (r->matchesIndexValue((uint8_t)x)) { 326 v.addElement(r, status); 327 } 328 } 329 } 330 } 331 uprv_free(indexValue); 332 index[256] = v.size(); 333 334 /* Freeze things into an array. 335 */ 336 uprv_free(rules); // Contains alias pointers 337 338 /* You can't do malloc(0)! */ 339 if (v.size() == 0) { 340 rules = NULL; 341 return; 342 } 343 rules = (TransliterationRule **)uprv_malloc(v.size() * sizeof(TransliterationRule *)); 344 /* test for NULL */ 345 if (rules == 0) { 346 status = U_MEMORY_ALLOCATION_ERROR; 347 return; 348 } 349 for (j=0; j<v.size(); ++j) { 350 rules[j] = (TransliterationRule*) v.elementAt(j); 351 } 352 353 // TODO Add error reporting that indicates the rules that 354 // are being masked. 355 //UnicodeString errors; 356 357 /* Check for masking. This is MUCH faster than our old check, 358 * which was each rule against each following rule, since we 359 * only have to check for masking within each bin now. It's 360 * 256*O(n2^2) instead of O(n1^2), where n1 is the total rule 361 * count, and n2 is the per-bin rule count. But n2<<n1, so 362 * it's a big win. 363 */ 364 for (x=0; x<256; ++x) { 365 for (j=index[x]; j<index[x+1]-1; ++j) { 366 TransliterationRule* r1 = rules[j]; 367 for (int32_t k=j+1; k<index[x+1]; ++k) { 368 TransliterationRule* r2 = rules[k]; 369 if (r1->masks(*r2)) { 370 //| if (errors == null) { 371 //| errors = new StringBuffer(); 372 //| } else { 373 //| errors.append("\n"); 374 //| } 375 //| errors.append("Rule " + r1 + " masks " + r2); 376 status = U_RULE_MASK_ERROR; 377 maskingError(*r1, *r2, parseError); 378 return; 379 } 380 } 381 } 382 } 383 384 //if (errors != null) { 385 // throw new IllegalArgumentException(errors.toString()); 386 //} 387 } 388 389 /** 390 * Transliterate the given text with the given UTransPosition 391 * indices. Return TRUE if the transliteration should continue 392 * or FALSE if it should halt (because of a U_PARTIAL_MATCH match). 393 * Note that FALSE is only ever returned if isIncremental is TRUE. 394 * @param text the text to be transliterated 395 * @param pos the position indices, which will be updated 396 * @param incremental if TRUE, assume new text may be inserted 397 * at index.limit, and return FALSE if thre is a partial match. 398 * @return TRUE unless a U_PARTIAL_MATCH has been obtained, 399 * indicating that transliteration should stop until more text 400 * arrives. 401 */ 402 UBool TransliterationRuleSet::transliterate(Replaceable& text, 403 UTransPosition& pos, 404 UBool incremental) { 405 int16_t indexByte = (int16_t) (text.char32At(pos.start) & 0xFF); 406 for (int32_t i=index[indexByte]; i<index[indexByte+1]; ++i) { 407 UMatchDegree m = rules[i]->matchAndReplace(text, pos, incremental); 408 switch (m) { 409 case U_MATCH: 410 _debugOut("match", rules[i], text, pos); 411 return TRUE; 412 case U_PARTIAL_MATCH: 413 _debugOut("partial match", rules[i], text, pos); 414 return FALSE; 415 default: /* Ram: added default to make GCC happy */ 416 break; 417 } 418 } 419 // No match or partial match from any rule 420 pos.start += U16_LENGTH(text.char32At(pos.start)); 421 _debugOut("no match", NULL, text, pos); 422 return TRUE; 423 } 424 425 /** 426 * Create rule strings that represents this rule set. 427 */ 428 UnicodeString& TransliterationRuleSet::toRules(UnicodeString& ruleSource, 429 UBool escapeUnprintable) const { 430 int32_t i; 431 int32_t count = ruleVector->size(); 432 ruleSource.truncate(0); 433 for (i=0; i<count; ++i) { 434 if (i != 0) { 435 ruleSource.append((UChar) 0x000A /*\n*/); 436 } 437 TransliterationRule *r = 438 (TransliterationRule*) ruleVector->elementAt(i); 439 r->toRule(ruleSource, escapeUnprintable); 440 } 441 return ruleSource; 442 } 443 444 /** 445 * Return the set of all characters that may be modified 446 * (getTarget=false) or emitted (getTarget=true) by this set. 447 */ 448 UnicodeSet& TransliterationRuleSet::getSourceTargetSet(UnicodeSet& result, 449 UBool getTarget) const 450 { 451 result.clear(); 452 int32_t count = ruleVector->size(); 453 for (int32_t i=0; i<count; ++i) { 454 TransliterationRule* r = 455 (TransliterationRule*) ruleVector->elementAt(i); 456 if (getTarget) { 457 r->addTargetSetTo(result); 458 } else { 459 r->addSourceSetTo(result); 460 } 461 } 462 return result; 463 } 464 465 U_NAMESPACE_END 466 467 #endif /* #if !UCONFIG_NO_TRANSLITERATION */ 468