1 /* 2 ******************************************************************************* 3 * Copyright (C) 1996-2013, International Business Machines Corporation and * 4 * others. All Rights Reserved. * 5 ******************************************************************************* 6 */ 7 8 #include "unicode/utypes.h" 9 10 #if !UCONFIG_NO_FORMATTING 11 12 #include "itrbnf.h" 13 14 #include "unicode/umachine.h" 15 16 #include "unicode/tblcoll.h" 17 #include "unicode/coleitr.h" 18 #include "unicode/ures.h" 19 #include "unicode/ustring.h" 20 #include "unicode/decimfmt.h" 21 #include "unicode/udata.h" 22 #include "testutil.h" 23 24 //#include "llong.h" 25 26 #include <string.h> 27 28 // import com.ibm.text.RuleBasedNumberFormat; 29 // import com.ibm.test.TestFmwk; 30 31 // import java.util.Locale; 32 // import java.text.NumberFormat; 33 34 // current macro not in icu1.8.1 35 #define TESTCASE(id,test) \ 36 case id: \ 37 name = #test; \ 38 if (exec) { \ 39 logln(#test "---"); \ 40 logln(); \ 41 test(); \ 42 } \ 43 break 44 45 void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/) 46 { 47 if (exec) logln("TestSuite RuleBasedNumberFormat"); 48 switch (index) { 49 #if U_HAVE_RBNF 50 TESTCASE(0, TestEnglishSpellout); 51 TESTCASE(1, TestOrdinalAbbreviations); 52 TESTCASE(2, TestDurations); 53 TESTCASE(3, TestSpanishSpellout); 54 TESTCASE(4, TestFrenchSpellout); 55 TESTCASE(5, TestSwissFrenchSpellout); 56 TESTCASE(6, TestItalianSpellout); 57 TESTCASE(7, TestGermanSpellout); 58 TESTCASE(8, TestThaiSpellout); 59 TESTCASE(9, TestAPI); 60 TESTCASE(10, TestFractionalRuleSet); 61 TESTCASE(11, TestSwedishSpellout); 62 TESTCASE(12, TestBelgianFrenchSpellout); 63 TESTCASE(13, TestSmallValues); 64 TESTCASE(14, TestLocalizations); 65 TESTCASE(15, TestAllLocales); 66 TESTCASE(16, TestHebrewFraction); 67 TESTCASE(17, TestPortugueseSpellout); 68 TESTCASE(18, TestMultiplierSubstitution); 69 TESTCASE(19, TestSetDecimalFormatSymbols); 70 #else 71 TESTCASE(0, TestRBNFDisabled); 72 #endif 73 default: 74 name = ""; 75 break; 76 } 77 } 78 79 #if U_HAVE_RBNF 80 81 void IntlTestRBNF::TestHebrewFraction() { 82 83 // this is the expected output for 123.45, with no '<' in it. 84 UChar text1[] = { 85 0x05de, 0x05d0, 0x05d4, 0x0020, 86 0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020, 87 0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020, 88 0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020, 89 0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020, 90 0x05d7, 0x05de, 0x05e9, 0x0000, 91 }; 92 UChar text2[] = { 93 0x05DE, 0x05D0, 0x05D4, 0x0020, 94 0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020, 95 0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020, 96 0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020, 97 0x05D0, 0x05E4, 0x05E1, 0x0020, 98 0x05D0, 0x05E4, 0x05E1, 0x0020, 99 0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020, 100 0x05D7, 0x05DE, 0x05E9, 0x0000, 101 }; 102 UErrorCode status = U_ZERO_ERROR; 103 RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, "he_IL", status); 104 if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { 105 errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s", u_errorName(status)); 106 delete formatter; 107 return; 108 } 109 UnicodeString result; 110 Formattable parseResult; 111 ParsePosition pp(0); 112 { 113 UnicodeString expected(text1); 114 formatter->format(123.45, result); 115 if (result != expected) { 116 errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); 117 } else { 118 // formatter->parse(result, parseResult, pp); 119 // if (parseResult.getDouble() != 123.45) { 120 // errln("expected 123.45 but got: %g", parseResult.getDouble()); 121 // } 122 } 123 } 124 { 125 UnicodeString expected(text2); 126 result.remove(); 127 formatter->format(123.0045, result); 128 if (result != expected) { 129 errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); 130 } else { 131 pp.setIndex(0); 132 // formatter->parse(result, parseResult, pp); 133 // if (parseResult.getDouble() != 123.0045) { 134 // errln("expected 123.0045 but got: %g", parseResult.getDouble()); 135 // } 136 } 137 } 138 delete formatter; 139 } 140 141 void 142 IntlTestRBNF::TestAPI() { 143 // This test goes through the APIs that were not tested before. 144 // These tests are too small to have separate test classes/functions 145 146 UErrorCode status = U_ZERO_ERROR; 147 RuleBasedNumberFormat* formatter 148 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); 149 if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { 150 dataerrln("Unable to create formatter. - %s", u_errorName(status)); 151 delete formatter; 152 return; 153 } 154 155 logln("RBNF API test starting"); 156 // test clone 157 { 158 logln("Testing Clone"); 159 RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone(); 160 if(rbnfClone != NULL) { 161 if(!(*rbnfClone == *formatter)) { 162 errln("Clone should be semantically equivalent to the original!"); 163 } 164 delete rbnfClone; 165 } else { 166 errln("Cloning failed!"); 167 } 168 } 169 170 // test assignment 171 { 172 logln("Testing assignment operator"); 173 RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status); 174 assignResult = *formatter; 175 if(!(assignResult == *formatter)) { 176 errln("Assignment result should be semantically equivalent to the original!"); 177 } 178 } 179 180 // test rule constructor 181 { 182 logln("Testing rule constructor"); 183 LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STRING "rbnf", "en", &status)); 184 if(U_FAILURE(status)) { 185 errln("Unable to access resource bundle with data!"); 186 } else { 187 int32_t ruleLen = 0; 188 int32_t len = 0; 189 LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRules", NULL, &status)); 190 LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), "SpelloutRules", NULL, &status)); 191 UnicodeString desc; 192 while (ures_hasNext(ruleSets.getAlias())) { 193 const UChar* currentString = ures_getNextString(ruleSets.getAlias(), &len, NULL, &status); 194 ruleLen += len; 195 desc.append(currentString); 196 } 197 198 const UChar *spelloutRules = desc.getTerminatedBuffer(); 199 200 if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) { 201 errln("Unable to access the rules string!"); 202 } else { 203 UParseError perror; 204 RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status); 205 if(!(ruleCtorResult == *formatter)) { 206 errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); 207 } 208 209 // Jitterbug 4452, for coverage 210 RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS(), perror, status); 211 if(!(nf == *formatter)) { 212 errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); 213 } 214 } 215 } 216 } 217 218 // test getRules 219 { 220 logln("Testing getRules function"); 221 UnicodeString rules = formatter->getRules(); 222 UParseError perror; 223 RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status); 224 225 if(!(fromRulesResult == *formatter)) { 226 errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!"); 227 } 228 } 229 230 231 { 232 logln("Testing copy constructor"); 233 RuleBasedNumberFormat copyCtorResult(*formatter); 234 if(!(copyCtorResult == *formatter)) { 235 errln("Copy constructor result result should be semantically equivalent to the original!"); 236 } 237 } 238 239 #if !UCONFIG_NO_COLLATION 240 // test ruleset names 241 { 242 logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names"); 243 int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames(); 244 if(noOfRuleSetNames == 0) { 245 errln("Number of rule set names should be more than zero"); 246 } 247 UnicodeString ruleSetName; 248 int32_t i = 0; 249 int32_t intFormatNum = 34567; 250 double doubleFormatNum = 893411.234; 251 logln("number of rule set names is %i", noOfRuleSetNames); 252 for(i = 0; i < noOfRuleSetNames; i++) { 253 FieldPosition pos1, pos2; 254 UnicodeString intFormatResult, doubleFormatResult; 255 Formattable intParseResult, doubleParseResult; 256 257 ruleSetName = formatter->getRuleSetName(i); 258 log("Rule set name %i is ", i); 259 log(ruleSetName); 260 logln(". Format results are: "); 261 intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status); 262 doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status); 263 if(U_FAILURE(status)) { 264 errln("Format using a rule set failed"); 265 break; 266 } 267 logln(intFormatResult); 268 logln(doubleFormatResult); 269 formatter->setLenient(TRUE); 270 formatter->parse(intFormatResult, intParseResult, status); 271 formatter->parse(doubleFormatResult, doubleParseResult, status); 272 273 logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); 274 275 formatter->setLenient(FALSE); 276 formatter->parse(intFormatResult, intParseResult, status); 277 formatter->parse(doubleFormatResult, doubleParseResult, status); 278 279 logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); 280 281 if(U_FAILURE(status)) { 282 errln("Error during parsing"); 283 } 284 285 intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status); 286 if(U_SUCCESS(status)) { 287 errln("Using invalid rule set name should have failed"); 288 break; 289 } 290 status = U_ZERO_ERROR; 291 doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status); 292 if(U_SUCCESS(status)) { 293 errln("Using invalid rule set name should have failed"); 294 break; 295 } 296 status = U_ZERO_ERROR; 297 } 298 status = U_ZERO_ERROR; 299 } 300 #endif 301 302 // test API 303 UnicodeString expected("four point five",""); 304 logln("Testing format(double)"); 305 UnicodeString result; 306 formatter->format(4.5,result); 307 if(result != expected) { 308 errln("Formatted 4.5, expected " + expected + " got " + result); 309 } else { 310 logln("Formatted 4.5, expected " + expected + " got " + result); 311 } 312 result.remove(); 313 expected = "four"; 314 formatter->format((int32_t)4,result); 315 if(result != expected) { 316 errln("Formatted 4, expected " + expected + " got " + result); 317 } else { 318 logln("Formatted 4, expected " + expected + " got " + result); 319 } 320 321 result.remove(); 322 FieldPosition pos; 323 formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR); 324 if(result != expected) { 325 errln("Formatted 4 int64_t, expected " + expected + " got " + result); 326 } else { 327 logln("Formatted 4 int64_t, expected " + expected + " got " + result); 328 } 329 330 //Jitterbug 4452, for coverage 331 result.remove(); 332 FieldPosition pos2; 333 formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, status = U_ZERO_ERROR); 334 if(result != expected) { 335 errln("Formatted 4 int64_t, expected " + expected + " got " + result); 336 } else { 337 logln("Formatted 4 int64_t, expected " + expected + " got " + result); 338 } 339 340 // clean up 341 logln("Cleaning up"); 342 delete formatter; 343 } 344 345 void IntlTestRBNF::TestFractionalRuleSet() 346 { 347 UnicodeString fracRules( 348 "%main:\n" 349 // this rule formats the number if it's 1 or more. It formats 350 // the integral part using a DecimalFormat ("#,##0" puts 351 // thousands separators in the right places) and the fractional 352 // part using %%frac. If there is no fractional part, it 353 // just shows the integral part. 354 " x.0: <#,##0<[ >%%frac>];\n" 355 // this rule formats the number if it's between 0 and 1. It 356 // shows only the fractional part (0.5 shows up as "1/2," not 357 // "0 1/2") 358 " 0.x: >%%frac>;\n" 359 // the fraction rule set. This works the same way as the one in the 360 // preceding example: We multiply the fractional part of the number 361 // being formatted by each rule's base value and use the rule that 362 // produces the result closest to 0 (or the first rule that produces 0). 363 // Since we only provide rules for the numbers from 2 to 10, we know 364 // we'll get a fraction with a denominator between 2 and 10. 365 // "<0<" causes the numerator of the fraction to be formatted 366 // using numerals 367 "%%frac:\n" 368 " 2: 1/2;\n" 369 " 3: <0</3;\n" 370 " 4: <0</4;\n" 371 " 5: <0</5;\n" 372 " 6: <0</6;\n" 373 " 7: <0</7;\n" 374 " 8: <0</8;\n" 375 " 9: <0</9;\n" 376 " 10: <0</10;\n"); 377 378 // mondo hack 379 int len = fracRules.length(); 380 int change = 2; 381 for (int i = 0; i < len; ++i) { 382 UChar ch = fracRules.charAt(i); 383 if (ch == '\n') { 384 change = 2; // change ok 385 } else if (ch == ':') { 386 change = 1; // change, but once we hit a non-space char, don't change 387 } else if (ch == ' ') { 388 if (change != 0) { 389 fracRules.setCharAt(i, (UChar)0x200e); 390 } 391 } else { 392 if (change == 1) { 393 change = 0; 394 } 395 } 396 } 397 398 UErrorCode status = U_ZERO_ERROR; 399 UParseError perror; 400 RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, status); 401 if (U_FAILURE(status)) { 402 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 403 } else { 404 static const char* const testData[][2] = { 405 { "0", "0" }, 406 { ".1", "1/10" }, 407 { ".11", "1/9" }, 408 { ".125", "1/8" }, 409 { ".1428", "1/7" }, 410 { ".1667", "1/6" }, 411 { ".2", "1/5" }, 412 { ".25", "1/4" }, 413 { ".333", "1/3" }, 414 { ".5", "1/2" }, 415 { "1.1", "1 1/10" }, 416 { "2.11", "2 1/9" }, 417 { "3.125", "3 1/8" }, 418 { "4.1428", "4 1/7" }, 419 { "5.1667", "5 1/6" }, 420 { "6.2", "6 1/5" }, 421 { "7.25", "7 1/4" }, 422 { "8.333", "8 1/3" }, 423 { "9.5", "9 1/2" }, 424 { ".2222", "2/9" }, 425 { ".4444", "4/9" }, 426 { ".5555", "5/9" }, 427 { "1.2856", "1 2/7" }, 428 { NULL, NULL } 429 }; 430 doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions 431 } 432 } 433 434 #if 0 435 #define LLAssert(a) \ 436 if (!(a)) errln("FAIL: " #a) 437 438 void IntlTestRBNF::TestLLongConstructors() 439 { 440 logln("Testing constructors"); 441 442 // constant (shouldn't really be public) 443 LLAssert(llong(llong::kD32).asDouble() == llong::kD32); 444 445 // internal constructor (shouldn't really be public) 446 LLAssert(llong(0, 1).asDouble() == 1); 447 LLAssert(llong(1, 0).asDouble() == llong::kD32); 448 LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1); 449 450 // public empty constructor 451 LLAssert(llong().asDouble() == 0); 452 453 // public int32_t constructor 454 LLAssert(llong((int32_t)0).asInt() == (int32_t)0); 455 LLAssert(llong((int32_t)1).asInt() == (int32_t)1); 456 LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1); 457 LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff); 458 LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1); 459 LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000); 460 461 // public int16_t constructor 462 LLAssert(llong((int16_t)0).asInt() == (int16_t)0); 463 LLAssert(llong((int16_t)1).asInt() == (int16_t)1); 464 LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1); 465 LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff); 466 LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff); 467 LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000); 468 469 // public int8_t constructor 470 LLAssert(llong((int8_t)0).asInt() == (int8_t)0); 471 LLAssert(llong((int8_t)1).asInt() == (int8_t)1); 472 LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1); 473 LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f); 474 LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff); 475 LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80); 476 477 // public uint16_t constructor 478 LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0); 479 LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1); 480 LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1); 481 LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff); 482 LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff); 483 LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000); 484 485 // public uint32_t constructor 486 LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0); 487 LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1); 488 LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1); 489 LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff); 490 LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1); 491 LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000); 492 493 // public double constructor 494 LLAssert(llong((double)0).asDouble() == (double)0); 495 LLAssert(llong((double)1).asDouble() == (double)1); 496 LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff); 497 LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000); 498 LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001); 499 500 // can't access uprv_maxmantissa, so fake it 501 double maxmantissa = (llong((int32_t)1) << 40).asDouble(); 502 LLAssert(llong(maxmantissa).asDouble() == maxmantissa); 503 LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa); 504 505 // copy constructor 506 LLAssert(llong(llong(0, 1)).asDouble() == 1); 507 LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32); 508 LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1); 509 510 // asInt - test unsigned to signed narrowing conversion 511 LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff); 512 LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000); 513 514 // asUInt - test signed to unsigned narrowing conversion 515 LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1); 516 LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000); 517 518 // asDouble already tested 519 520 } 521 522 void IntlTestRBNF::TestLLongSimpleOperators() 523 { 524 logln("Testing simple operators"); 525 526 // operator== 527 LLAssert(llong() == llong(0, 0)); 528 LLAssert(llong(1,0) == llong(1, 0)); 529 LLAssert(llong(0,1) == llong(0, 1)); 530 531 // operator!= 532 LLAssert(llong(1,0) != llong(1,1)); 533 LLAssert(llong(0,1) != llong(1,1)); 534 LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff)); 535 536 // unsigned > 537 LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff))); 538 539 // unsigned < 540 LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1))); 541 542 // unsigned >= 543 LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff))); 544 LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1))); 545 546 // unsigned <= 547 LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1))); 548 LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1))); 549 550 // operator> 551 LLAssert(llong(1, 1) > llong(1, 0)); 552 LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff)); 553 LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0)); 554 LLAssert(llong(1, 0) > llong(0, 0x7fffffff)); 555 LLAssert(llong(1, 0) > llong(0, 0xffffffff)); 556 LLAssert(llong(0, 0) > llong(0x80000000, 1)); 557 558 // operator< 559 LLAssert(llong(1, 0) < llong(1, 1)); 560 LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000)); 561 LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1)); 562 LLAssert(llong(0, 0x7fffffff) < llong(1, 0)); 563 LLAssert(llong(0, 0xffffffff) < llong(1, 0)); 564 LLAssert(llong(0x80000000, 1) < llong(0, 0)); 565 566 // operator>= 567 LLAssert(llong(1, 1) >= llong(1, 0)); 568 LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff)); 569 LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0)); 570 LLAssert(llong(1, 0) >= llong(0, 0x7fffffff)); 571 LLAssert(llong(1, 0) >= llong(0, 0xffffffff)); 572 LLAssert(llong(0, 0) >= llong(0x80000000, 1)); 573 LLAssert(llong() >= llong(0, 0)); 574 LLAssert(llong(1,0) >= llong(1, 0)); 575 LLAssert(llong(0,1) >= llong(0, 1)); 576 577 // operator<= 578 LLAssert(llong(1, 0) <= llong(1, 1)); 579 LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000)); 580 LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1)); 581 LLAssert(llong(0, 0x7fffffff) <= llong(1, 0)); 582 LLAssert(llong(0, 0xffffffff) <= llong(1, 0)); 583 LLAssert(llong(0x80000000, 1) <= llong(0, 0)); 584 LLAssert(llong() <= llong(0, 0)); 585 LLAssert(llong(1,0) <= llong(1, 0)); 586 LLAssert(llong(0,1) <= llong(0, 1)); 587 588 // operator==(int32) 589 LLAssert(llong() == (int32_t)0); 590 LLAssert(llong(0,1) == (int32_t)1); 591 592 // operator!=(int32) 593 LLAssert(llong(1,0) != (int32_t)0); 594 LLAssert(llong(0,1) != (int32_t)2); 595 LLAssert(llong(0,0xffffffff) != (int32_t)-1); 596 597 llong negOne(0xffffffff, 0xffffffff); 598 599 // operator>(int32) 600 LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff); 601 LLAssert(negOne > (int32_t)-2); 602 LLAssert(llong(1, 0) > (int32_t)0x7fffffff); 603 LLAssert(llong(0, 0) > (int32_t)-1); 604 605 // operator<(int32) 606 LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff); 607 LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1); 608 609 // operator>=(int32) 610 LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff); 611 LLAssert(negOne >= (int32_t)-2); 612 LLAssert(llong(1, 0) >= (int32_t)0x7fffffff); 613 LLAssert(llong(0, 0) >= (int32_t)-1); 614 LLAssert(llong() >= (int32_t)0); 615 LLAssert(llong(0,1) >= (int32_t)1); 616 617 // operator<=(int32) 618 LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff); 619 LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1); 620 LLAssert(llong() <= (int32_t)0); 621 LLAssert(llong(0,1) <= (int32_t)1); 622 623 // operator= 624 LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1); 625 626 // operator <<= 627 LLAssert((llong(1, 1) <<= 0) == llong(1, 1)); 628 LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000)); 629 LLAssert((llong(1, 1) <<= 32) == llong(1, 0)); 630 LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0)); 631 LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used 632 LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used 633 634 // operator << 635 LLAssert((llong((int32_t)1) << 5).asUInt() == 32); 636 637 // operator >>= (sign extended) 638 LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc)); 639 LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde)); 640 LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff)); 641 LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000)); 642 LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used 643 LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used 644 645 // operator >> sign extended) 646 LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde)); 647 648 // ushr (right shift without sign extension) 649 LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc)); 650 LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde)); 651 LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1)); 652 LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000)); 653 LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used 654 LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used 655 656 // operator&(llong) 657 LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); 658 659 // operator|(llong) 660 LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); 661 662 // operator^(llong) 663 LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); 664 665 // operator&(uint32) 666 LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); 667 668 // operator|(uint32) 669 LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); 670 671 // operator^(uint32) 672 LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); 673 674 // operator~ 675 LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa)); 676 677 // operator&=(llong) 678 LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); 679 680 // operator|=(llong) 681 LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); 682 683 // operator^=(llong) 684 LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); 685 686 // operator&=(uint32) 687 LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); 688 689 // operator|=(uint32) 690 LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); 691 692 // operator^=(uint32) 693 LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); 694 695 // prefix inc 696 LLAssert(llong(1, 0) == ++llong(0,0xffffffff)); 697 698 // prefix dec 699 LLAssert(llong(0,0xffffffff) == --llong(1, 0)); 700 701 // postfix inc 702 { 703 llong n(0, 0xffffffff); 704 LLAssert(llong(0, 0xffffffff) == n++); 705 LLAssert(llong(1, 0) == n); 706 } 707 708 // postfix dec 709 { 710 llong n(1, 0); 711 LLAssert(llong(1, 0) == n--); 712 LLAssert(llong(0, 0xffffffff) == n); 713 } 714 715 // unary minus 716 LLAssert(llong(0, 0) == -llong(0, 0)); 717 LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1)); 718 LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff)); 719 LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1)); 720 LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow 721 722 // operator-= 723 { 724 llong n; 725 LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff)); 726 LLAssert(n == llong(0xffffffff, 0xffffffff)); 727 728 n = llong(1, 0); 729 LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff)); 730 LLAssert(n == llong(0, 0xffffffff)); 731 } 732 733 // operator- 734 { 735 llong n; 736 LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff)); 737 LLAssert(n == llong(0, 0)); 738 739 n = llong(1, 0); 740 LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff)); 741 LLAssert(n == llong(1, 0)); 742 } 743 744 // operator+= 745 { 746 llong n(0xffffffff, 0xffffffff); 747 LLAssert((n += llong(0, 1)) == llong(0, 0)); 748 LLAssert(n == llong(0, 0)); 749 750 n = llong(0, 0xffffffff); 751 LLAssert((n += llong(0, 1)) == llong(1, 0)); 752 LLAssert(n == llong(1, 0)); 753 } 754 755 // operator+ 756 { 757 llong n(0xffffffff, 0xffffffff); 758 LLAssert((n + llong(0, 1)) == llong(0, 0)); 759 LLAssert(n == llong(0xffffffff, 0xffffffff)); 760 761 n = llong(0, 0xffffffff); 762 LLAssert((n + llong(0, 1)) == llong(1, 0)); 763 LLAssert(n == llong(0, 0xffffffff)); 764 } 765 766 } 767 768 void IntlTestRBNF::TestLLong() 769 { 770 logln("Starting TestLLong"); 771 772 TestLLongConstructors(); 773 774 TestLLongSimpleOperators(); 775 776 logln("Testing operator*=, operator*"); 777 778 // operator*=, operator* 779 // small and large values, positive, &NEGative, zero 780 // also test commutivity 781 { 782 const llong ZERO; 783 const llong ONE(0, 1); 784 const llong NEG_ONE((int32_t)-1); 785 const llong THREE(0, 3); 786 const llong NEG_THREE((int32_t)-3); 787 const llong TWO_TO_16(0, 0x10000); 788 const llong NEG_TWO_TO_16 = -TWO_TO_16; 789 const llong TWO_TO_32(1, 0); 790 const llong NEG_TWO_TO_32 = -TWO_TO_32; 791 792 const llong NINE(0, 9); 793 const llong NEG_NINE = -NINE; 794 795 const llong TWO_TO_16X3(0, 0x00030000); 796 const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3; 797 798 const llong TWO_TO_32X3(3, 0); 799 const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3; 800 801 const llong TWO_TO_48(0x10000, 0); 802 const llong NEG_TWO_TO_48 = -TWO_TO_48; 803 804 const int32_t VALUE_WIDTH = 9; 805 const llong* values[VALUE_WIDTH] = { 806 &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32 807 }; 808 809 const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = { 810 &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, 811 &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32, 812 &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32, 813 &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3, 814 &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3, 815 &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48, 816 &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48, 817 &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO, 818 &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO 819 }; 820 821 for (int i = 0; i < VALUE_WIDTH; ++i) { 822 for (int j = 0; j < VALUE_WIDTH; ++j) { 823 llong lhs = *values[i]; 824 llong rhs = *values[j]; 825 llong ans = *answers[i*VALUE_WIDTH + j]; 826 827 llong n = lhs; 828 829 LLAssert((n *= rhs) == ans); 830 LLAssert(n == ans); 831 832 n = lhs; 833 LLAssert((n * rhs) == ans); 834 LLAssert(n == lhs); 835 } 836 } 837 } 838 839 logln("Testing operator/=, operator/"); 840 // operator/=, operator/ 841 // test num = 0, div = 0, pos/neg, > 2^32, div > num 842 { 843 const llong ZERO; 844 const llong ONE(0, 1); 845 const llong NEG_ONE = -ONE; 846 const llong MAX(0x7fffffff, 0xffffffff); 847 const llong MIN(0x80000000, 0); 848 const llong TWO(0, 2); 849 const llong NEG_TWO = -TWO; 850 const llong FIVE(0, 5); 851 const llong NEG_FIVE = -FIVE; 852 const llong TWO_TO_32(1, 0); 853 const llong NEG_TWO_TO_32 = -TWO_TO_32; 854 const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0); 855 const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5; 856 const llong TWO_TO_32X5 = TWO_TO_32 * FIVE; 857 const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5; 858 859 const llong* tuples[] = { // lhs, rhs, ans 860 &ZERO, &ZERO, &ZERO, 861 &ONE, &ZERO,&MAX, 862 &NEG_ONE, &ZERO, &MIN, 863 &ONE, &ONE, &ONE, 864 &ONE, &NEG_ONE, &NEG_ONE, 865 &NEG_ONE, &ONE, &NEG_ONE, 866 &NEG_ONE, &NEG_ONE, &ONE, 867 &FIVE, &TWO, &TWO, 868 &FIVE, &NEG_TWO, &NEG_TWO, 869 &NEG_FIVE, &TWO, &NEG_TWO, 870 &NEG_FIVE, &NEG_TWO, &TWO, 871 &TWO, &FIVE, &ZERO, 872 &TWO, &NEG_FIVE, &ZERO, 873 &NEG_TWO, &FIVE, &ZERO, 874 &NEG_TWO, &NEG_FIVE, &ZERO, 875 &TWO_TO_32, &TWO_TO_32, &ONE, 876 &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE, 877 &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE, 878 &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE, 879 &TWO_TO_32, &FIVE, &TWO_TO_32d5, 880 &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5, 881 &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5, 882 &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5, 883 &TWO_TO_32X5, &FIVE, &TWO_TO_32, 884 &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32, 885 &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32, 886 &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32, 887 &TWO_TO_32X5, &TWO_TO_32, &FIVE, 888 &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE, 889 &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE, 890 &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE 891 }; 892 const int TUPLE_WIDTH = 3; 893 const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH; 894 for (int i = 0; i < TUPLE_COUNT; ++i) { 895 const llong lhs = *tuples[i*TUPLE_WIDTH+0]; 896 const llong rhs = *tuples[i*TUPLE_WIDTH+1]; 897 const llong ans = *tuples[i*TUPLE_WIDTH+2]; 898 899 llong n = lhs; 900 if (!((n /= rhs) == ans)) { 901 errln("fail: (n /= rhs) == ans"); 902 } 903 LLAssert(n == ans); 904 905 n = lhs; 906 LLAssert((n / rhs) == ans); 907 LLAssert(n == lhs); 908 } 909 } 910 911 logln("Testing operator%%=, operator%%"); 912 //operator%=, operator% 913 { 914 const llong ZERO; 915 const llong ONE(0, 1); 916 const llong TWO(0, 2); 917 const llong THREE(0,3); 918 const llong FOUR(0, 4); 919 const llong FIVE(0, 5); 920 const llong SIX(0, 6); 921 922 const llong NEG_ONE = -ONE; 923 const llong NEG_TWO = -TWO; 924 const llong NEG_THREE = -THREE; 925 const llong NEG_FOUR = -FOUR; 926 const llong NEG_FIVE = -FIVE; 927 const llong NEG_SIX = -SIX; 928 929 const llong NINETY_NINE(0, 99); 930 const llong HUNDRED(0, 100); 931 const llong HUNDRED_ONE(0, 101); 932 933 const llong BIG(0x12345678, 0x9abcdef0); 934 const llong BIG_FIVE(BIG * FIVE); 935 const llong BIG_FIVEm1 = BIG_FIVE - ONE; 936 const llong BIG_FIVEp1 = BIG_FIVE + ONE; 937 938 const llong* tuples[] = { 939 &ZERO, &FIVE, &ZERO, 940 &ONE, &FIVE, &ONE, 941 &TWO, &FIVE, &TWO, 942 &THREE, &FIVE, &THREE, 943 &FOUR, &FIVE, &FOUR, 944 &FIVE, &FIVE, &ZERO, 945 &SIX, &FIVE, &ONE, 946 &ZERO, &NEG_FIVE, &ZERO, 947 &ONE, &NEG_FIVE, &ONE, 948 &TWO, &NEG_FIVE, &TWO, 949 &THREE, &NEG_FIVE, &THREE, 950 &FOUR, &NEG_FIVE, &FOUR, 951 &FIVE, &NEG_FIVE, &ZERO, 952 &SIX, &NEG_FIVE, &ONE, 953 &NEG_ONE, &FIVE, &NEG_ONE, 954 &NEG_TWO, &FIVE, &NEG_TWO, 955 &NEG_THREE, &FIVE, &NEG_THREE, 956 &NEG_FOUR, &FIVE, &NEG_FOUR, 957 &NEG_FIVE, &FIVE, &ZERO, 958 &NEG_SIX, &FIVE, &NEG_ONE, 959 &NEG_ONE, &NEG_FIVE, &NEG_ONE, 960 &NEG_TWO, &NEG_FIVE, &NEG_TWO, 961 &NEG_THREE, &NEG_FIVE, &NEG_THREE, 962 &NEG_FOUR, &NEG_FIVE, &NEG_FOUR, 963 &NEG_FIVE, &NEG_FIVE, &ZERO, 964 &NEG_SIX, &NEG_FIVE, &NEG_ONE, 965 &NINETY_NINE, &FIVE, &FOUR, 966 &HUNDRED, &FIVE, &ZERO, 967 &HUNDRED_ONE, &FIVE, &ONE, 968 &BIG_FIVEm1, &FIVE, &FOUR, 969 &BIG_FIVE, &FIVE, &ZERO, 970 &BIG_FIVEp1, &FIVE, &ONE 971 }; 972 const int TUPLE_WIDTH = 3; 973 const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH; 974 for (int i = 0; i < TUPLE_COUNT; ++i) { 975 const llong lhs = *tuples[i*TUPLE_WIDTH+0]; 976 const llong rhs = *tuples[i*TUPLE_WIDTH+1]; 977 const llong ans = *tuples[i*TUPLE_WIDTH+2]; 978 979 llong n = lhs; 980 if (!((n %= rhs) == ans)) { 981 errln("fail: (n %= rhs) == ans"); 982 } 983 LLAssert(n == ans); 984 985 n = lhs; 986 LLAssert((n % rhs) == ans); 987 LLAssert(n == lhs); 988 } 989 } 990 991 logln("Testing pow"); 992 // pow 993 LLAssert(llong(0, 0).pow(0) == llong(0, 0)); 994 LLAssert(llong(0, 0).pow(2) == llong(0, 0)); 995 LLAssert(llong(0, 2).pow(0) == llong(0, 1)); 996 LLAssert(llong(0, 2).pow(2) == llong(0, 4)); 997 LLAssert(llong(0, 2).pow(32) == llong(1, 0)); 998 LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5)); 999 1000 // absolute value 1001 { 1002 const llong n(0xffffffff,0xffffffff); 1003 LLAssert(n.abs() == llong(0, 1)); 1004 } 1005 1006 #ifdef RBNF_DEBUG 1007 logln("Testing atoll"); 1008 // atoll 1009 const char empty[] = ""; 1010 const char zero[] = "0"; 1011 const char neg_one[] = "-1"; 1012 const char neg_12345[] = "-12345"; 1013 const char big1[] = "123456789abcdef0"; 1014 const char big2[] = "fFfFfFfFfFfFfFfF"; 1015 LLAssert(llong::atoll(empty) == llong(0, 0)); 1016 LLAssert(llong::atoll(zero) == llong(0, 0)); 1017 LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff)); 1018 LLAssert(llong::atoll(neg_12345) == -llong(0, 12345)); 1019 LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0)); 1020 LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff)); 1021 #endif 1022 1023 // u_atoll 1024 const UChar uempty[] = { 0 }; 1025 const UChar uzero[] = { 0x30, 0 }; 1026 const UChar uneg_one[] = { 0x2d, 0x31, 0 }; 1027 const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 }; 1028 const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 }; 1029 const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 }; 1030 LLAssert(llong::utoll(uempty) == llong(0, 0)); 1031 LLAssert(llong::utoll(uzero) == llong(0, 0)); 1032 LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff)); 1033 LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345)); 1034 LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0)); 1035 LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff)); 1036 1037 #ifdef RBNF_DEBUG 1038 logln("Testing lltoa"); 1039 // lltoa 1040 { 1041 char buf[64]; // ascii 1042 LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0)); 1043 LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0)); 1044 LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0)); 1045 LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0)); 1046 } 1047 #endif 1048 1049 logln("Testing u_lltoa"); 1050 // u_lltoa 1051 { 1052 UChar buf[64]; 1053 LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0)); 1054 LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0)); 1055 LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0)); 1056 LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0)); 1057 } 1058 } 1059 1060 /* if 0 */ 1061 #endif 1062 1063 void 1064 IntlTestRBNF::TestEnglishSpellout() 1065 { 1066 UErrorCode status = U_ZERO_ERROR; 1067 RuleBasedNumberFormat* formatter 1068 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); 1069 if (U_FAILURE(status)) { 1070 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1071 } else { 1072 static const char* const testData[][2] = { 1073 { "1", "one" }, 1074 { "2", "two" }, 1075 { "15", "fifteen" }, 1076 { "20", "twenty" }, 1077 { "23", "twenty-three" }, 1078 { "73", "seventy-three" }, 1079 { "88", "eighty-eight" }, 1080 { "100", "one hundred" }, 1081 { "106", "one hundred six" }, 1082 { "127", "one hundred twenty-seven" }, 1083 { "200", "two hundred" }, 1084 { "579", "five hundred seventy-nine" }, 1085 { "1,000", "one thousand" }, 1086 { "2,000", "two thousand" }, 1087 { "3,004", "three thousand four" }, 1088 { "4,567", "four thousand five hundred sixty-seven" }, 1089 { "15,943", "fifteen thousand nine hundred forty-three" }, 1090 { "2,345,678", "two million three hundred forty-five thousand six hundred seventy-eight" }, 1091 { "-36", "minus thirty-six" }, 1092 { "234.567", "two hundred thirty-four point five six seven" }, 1093 { NULL, NULL} 1094 }; 1095 1096 doTest(formatter, testData, TRUE); 1097 1098 #if !UCONFIG_NO_COLLATION 1099 if( !logKnownIssue("9503") ) { 1100 formatter->setLenient(TRUE); 1101 static const char* lpTestData[][2] = { 1102 { "fifty-7", "57" }, 1103 { " fifty-7", "57" }, 1104 { " fifty-7", "57" }, 1105 { "2 thousand six HUNDRED fifty-7", "2,657" }, 1106 { "fifteen hundred and zero", "1,500" }, 1107 { "FOurhundred thiRTY six", "436" }, 1108 { NULL, NULL} 1109 }; 1110 doLenientParseTest(formatter, lpTestData); 1111 } 1112 #endif 1113 } 1114 delete formatter; 1115 } 1116 1117 void 1118 IntlTestRBNF::TestOrdinalAbbreviations() 1119 { 1120 UErrorCode status = U_ZERO_ERROR; 1121 RuleBasedNumberFormat* formatter 1122 = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status); 1123 1124 if (U_FAILURE(status)) { 1125 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1126 } else { 1127 static const char* const testData[][2] = { 1128 { "1", "1st" }, 1129 { "2", "2nd" }, 1130 { "3", "3rd" }, 1131 { "4", "4th" }, 1132 { "7", "7th" }, 1133 { "10", "10th" }, 1134 { "11", "11th" }, 1135 { "13", "13th" }, 1136 { "20", "20th" }, 1137 { "21", "21st" }, 1138 { "22", "22nd" }, 1139 { "23", "23rd" }, 1140 { "24", "24th" }, 1141 { "33", "33rd" }, 1142 { "102", "102nd" }, 1143 { "312", "312th" }, 1144 { "12,345", "12,345th" }, 1145 { NULL, NULL} 1146 }; 1147 1148 doTest(formatter, testData, FALSE); 1149 } 1150 delete formatter; 1151 } 1152 1153 void 1154 IntlTestRBNF::TestDurations() 1155 { 1156 UErrorCode status = U_ZERO_ERROR; 1157 RuleBasedNumberFormat* formatter 1158 = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status); 1159 1160 if (U_FAILURE(status)) { 1161 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1162 } else { 1163 static const char* const testData[][2] = { 1164 { "3,600", "1:00:00" }, //move me and I fail 1165 { "0", "0 sec." }, 1166 { "1", "1 sec." }, 1167 { "24", "24 sec." }, 1168 { "60", "1:00" }, 1169 { "73", "1:13" }, 1170 { "145", "2:25" }, 1171 { "666", "11:06" }, 1172 // { "3,600", "1:00:00" }, 1173 { "3,740", "1:02:20" }, 1174 { "10,293", "2:51:33" }, 1175 { NULL, NULL} 1176 }; 1177 1178 doTest(formatter, testData, TRUE); 1179 1180 #if !UCONFIG_NO_COLLATION 1181 formatter->setLenient(TRUE); 1182 static const char* lpTestData[][2] = { 1183 { "2-51-33", "10,293" }, 1184 { NULL, NULL} 1185 }; 1186 doLenientParseTest(formatter, lpTestData); 1187 #endif 1188 } 1189 delete formatter; 1190 } 1191 1192 void 1193 IntlTestRBNF::TestSpanishSpellout() 1194 { 1195 UErrorCode status = U_ZERO_ERROR; 1196 RuleBasedNumberFormat* formatter 1197 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status); 1198 1199 if (U_FAILURE(status)) { 1200 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1201 } else { 1202 static const char* const testData[][2] = { 1203 { "1", "uno" }, 1204 { "6", "seis" }, 1205 { "16", "diecis\\u00e9is" }, 1206 { "20", "veinte" }, 1207 { "24", "veinticuatro" }, 1208 { "26", "veintis\\u00e9is" }, 1209 { "73", "setenta y tres" }, 1210 { "88", "ochenta y ocho" }, 1211 { "100", "cien" }, 1212 { "106", "ciento seis" }, 1213 { "127", "ciento veintisiete" }, 1214 { "200", "doscientos" }, 1215 { "579", "quinientos setenta y nueve" }, 1216 { "1,000", "mil" }, 1217 { "2,000", "dos mil" }, 1218 { "3,004", "tres mil cuatro" }, 1219 { "4,567", "cuatro mil quinientos sesenta y siete" }, 1220 { "15,943", "quince mil novecientos cuarenta y tres" }, 1221 { "2,345,678", "dos millones trescientos cuarenta y cinco mil seiscientos setenta y ocho"}, 1222 { "-36", "menos treinta y seis" }, 1223 { "234.567", "doscientos treinta y cuatro coma cinco seis siete" }, 1224 { NULL, NULL} 1225 }; 1226 1227 doTest(formatter, testData, TRUE); 1228 } 1229 delete formatter; 1230 } 1231 1232 void 1233 IntlTestRBNF::TestFrenchSpellout() 1234 { 1235 UErrorCode status = U_ZERO_ERROR; 1236 RuleBasedNumberFormat* formatter 1237 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status); 1238 1239 if (U_FAILURE(status)) { 1240 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1241 } else { 1242 static const char* const testData[][2] = { 1243 { "1", "un" }, 1244 { "15", "quinze" }, 1245 { "20", "vingt" }, 1246 { "21", "vingt-et-un" }, 1247 { "23", "vingt-trois" }, 1248 { "62", "soixante-deux" }, 1249 { "70", "soixante-dix" }, 1250 { "71", "soixante-et-onze" }, 1251 { "73", "soixante-treize" }, 1252 { "80", "quatre-vingts" }, 1253 { "88", "quatre-vingt-huit" }, 1254 { "100", "cent" }, 1255 { "106", "cent six" }, 1256 { "127", "cent vingt-sept" }, 1257 { "200", "deux cents" }, 1258 { "579", "cinq cent soixante-dix-neuf" }, 1259 { "1,000", "mille" }, 1260 { "1,123", "mille cent vingt-trois" }, 1261 { "1,594", "mille cinq cent quatre-vingt-quatorze" }, 1262 { "2,000", "deux mille" }, 1263 { "3,004", "trois mille quatre" }, 1264 { "4,567", "quatre mille cinq cent soixante-sept" }, 1265 { "15,943", "quinze mille neuf cent quarante-trois" }, 1266 { "2,345,678", "deux millions trois cent quarante-cinq mille six cent soixante-dix-huit" }, 1267 { "-36", "moins trente-six" }, 1268 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, 1269 { NULL, NULL} 1270 }; 1271 1272 doTest(formatter, testData, TRUE); 1273 1274 #if !UCONFIG_NO_COLLATION 1275 formatter->setLenient(TRUE); 1276 static const char* lpTestData[][2] = { 1277 { "trente-et-un", "31" }, 1278 { "un cent quatre vingt dix huit", "198" }, 1279 { NULL, NULL} 1280 }; 1281 doLenientParseTest(formatter, lpTestData); 1282 #endif 1283 } 1284 delete formatter; 1285 } 1286 1287 static const char* const swissFrenchTestData[][2] = { 1288 { "1", "un" }, 1289 { "15", "quinze" }, 1290 { "20", "vingt" }, 1291 { "21", "vingt-et-un" }, 1292 { "23", "vingt-trois" }, 1293 { "62", "soixante-deux" }, 1294 { "70", "septante" }, 1295 { "71", "septante-et-un" }, 1296 { "73", "septante-trois" }, 1297 { "80", "huitante" }, 1298 { "88", "huitante-huit" }, 1299 { "100", "cent" }, 1300 { "106", "cent six" }, 1301 { "127", "cent vingt-sept" }, 1302 { "200", "deux cents" }, 1303 { "579", "cinq cent septante-neuf" }, 1304 { "1,000", "mille" }, 1305 { "1,123", "mille cent vingt-trois" }, 1306 { "1,594", "mille cinq cent nonante-quatre" }, 1307 { "2,000", "deux mille" }, 1308 { "3,004", "trois mille quatre" }, 1309 { "4,567", "quatre mille cinq cent soixante-sept" }, 1310 { "15,943", "quinze mille neuf cent quarante-trois" }, 1311 { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, 1312 { "-36", "moins trente-six" }, 1313 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, 1314 { NULL, NULL} 1315 }; 1316 1317 void 1318 IntlTestRBNF::TestSwissFrenchSpellout() 1319 { 1320 UErrorCode status = U_ZERO_ERROR; 1321 RuleBasedNumberFormat* formatter 1322 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status); 1323 1324 if (U_FAILURE(status)) { 1325 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1326 } else { 1327 doTest(formatter, swissFrenchTestData, TRUE); 1328 } 1329 delete formatter; 1330 } 1331 1332 static const char* const belgianFrenchTestData[][2] = { 1333 { "1", "un" }, 1334 { "15", "quinze" }, 1335 { "20", "vingt" }, 1336 { "21", "vingt-et-un" }, 1337 { "23", "vingt-trois" }, 1338 { "62", "soixante-deux" }, 1339 { "70", "septante" }, 1340 { "71", "septante-et-un" }, 1341 { "73", "septante-trois" }, 1342 { "80", "quatre-vingts" }, 1343 { "88", "quatre-vingt huit" }, 1344 { "90", "nonante" }, 1345 { "91", "nonante-et-un" }, 1346 { "95", "nonante-cinq" }, 1347 { "100", "cent" }, 1348 { "106", "cent six" }, 1349 { "127", "cent vingt-sept" }, 1350 { "200", "deux cents" }, 1351 { "579", "cinq cent septante-neuf" }, 1352 { "1,000", "mille" }, 1353 { "1,123", "mille cent vingt-trois" }, 1354 { "1,594", "mille cinq cent nonante-quatre" }, 1355 { "2,000", "deux mille" }, 1356 { "3,004", "trois mille quatre" }, 1357 { "4,567", "quatre mille cinq cent soixante-sept" }, 1358 { "15,943", "quinze mille neuf cent quarante-trois" }, 1359 { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, 1360 { "-36", "moins trente-six" }, 1361 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, 1362 { NULL, NULL} 1363 }; 1364 1365 1366 void 1367 IntlTestRBNF::TestBelgianFrenchSpellout() 1368 { 1369 UErrorCode status = U_ZERO_ERROR; 1370 RuleBasedNumberFormat* formatter 1371 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), status); 1372 1373 if (U_FAILURE(status)) { 1374 errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(status)); 1375 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1376 } else { 1377 // Belgian french should match Swiss french. 1378 doTest(formatter, belgianFrenchTestData, TRUE); 1379 } 1380 delete formatter; 1381 } 1382 1383 void 1384 IntlTestRBNF::TestItalianSpellout() 1385 { 1386 UErrorCode status = U_ZERO_ERROR; 1387 RuleBasedNumberFormat* formatter 1388 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status); 1389 1390 if (U_FAILURE(status)) { 1391 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1392 } else { 1393 static const char* const testData[][2] = { 1394 { "1", "uno" }, 1395 { "15", "quindici" }, 1396 { "20", "venti" }, 1397 { "23", "venti\\u00ADtr\\u00E9" }, 1398 { "73", "settanta\\u00ADtr\\u00E9" }, 1399 { "88", "ottant\\u00ADotto" }, 1400 { "100", "cento" }, 1401 { "101", "cento\\u00ADuno" }, 1402 { "103", "cento\\u00ADtr\\u00E9" }, 1403 { "106", "cento\\u00ADsei" }, 1404 { "108", "cent\\u00ADotto" }, 1405 { "127", "cento\\u00ADventi\\u00ADsette" }, 1406 { "181", "cent\\u00ADottant\\u00ADuno" }, 1407 { "200", "due\\u00ADcento" }, 1408 { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" }, 1409 { "1,000", "mille" }, 1410 { "2,000", "due\\u00ADmila" }, 1411 { "3,004", "tre\\u00ADmila\\u00ADquattro" }, 1412 { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessanta\\u00ADsette" }, 1413 { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaranta\\u00ADtr\\u00E9" }, 1414 { "-36", "meno trenta\\u00ADsei" }, 1415 { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cinque sei sette" }, 1416 { NULL, NULL} 1417 }; 1418 1419 doTest(formatter, testData, TRUE); 1420 } 1421 delete formatter; 1422 } 1423 1424 void 1425 IntlTestRBNF::TestPortugueseSpellout() 1426 { 1427 UErrorCode status = U_ZERO_ERROR; 1428 RuleBasedNumberFormat* formatter 1429 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status); 1430 1431 if (U_FAILURE(status)) { 1432 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1433 } else { 1434 static const char* const testData[][2] = { 1435 { "1", "um" }, 1436 { "15", "quinze" }, 1437 { "20", "vinte" }, 1438 { "23", "vinte e tr\\u00EAs" }, 1439 { "73", "setenta e tr\\u00EAs" }, 1440 { "88", "oitenta e oito" }, 1441 { "100", "cem" }, 1442 { "106", "cento e seis" }, 1443 { "108", "cento e oito" }, 1444 { "127", "cento e vinte e sete" }, 1445 { "181", "cento e oitenta e um" }, 1446 { "200", "duzentos" }, 1447 { "579", "quinhentos e setenta e nove" }, 1448 { "1,000", "mil" }, 1449 { "2,000", "dois mil" }, 1450 { "3,004", "tr\\u00EAs mil e quatro" }, 1451 { "4,567", "quatro mil e quinhentos e sessenta e sete" }, 1452 { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" }, 1453 { "-36", "menos trinta e seis" }, 1454 { "234.567", "duzentos e trinta e quatro v\\u00EDrgula cinco seis sete" }, 1455 { NULL, NULL} 1456 }; 1457 1458 doTest(formatter, testData, TRUE); 1459 } 1460 delete formatter; 1461 } 1462 void 1463 IntlTestRBNF::TestGermanSpellout() 1464 { 1465 UErrorCode status = U_ZERO_ERROR; 1466 RuleBasedNumberFormat* formatter 1467 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status); 1468 1469 if (U_FAILURE(status)) { 1470 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1471 } else { 1472 static const char* const testData[][2] = { 1473 { "1", "eins" }, 1474 { "15", "f\\u00fcnfzehn" }, 1475 { "20", "zwanzig" }, 1476 { "23", "drei\\u00ADund\\u00ADzwanzig" }, 1477 { "73", "drei\\u00ADund\\u00ADsiebzig" }, 1478 { "88", "acht\\u00ADund\\u00ADachtzig" }, 1479 { "100", "ein\\u00ADhundert" }, 1480 { "106", "ein\\u00ADhundert\\u00ADsechs" }, 1481 { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" }, 1482 { "200", "zwei\\u00ADhundert" }, 1483 { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzig" }, 1484 { "1,000", "ein\\u00ADtausend" }, 1485 { "2,000", "zwei\\u00ADtausend" }, 1486 { "3,004", "drei\\u00ADtausend\\u00ADvier" }, 1487 { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADsechzig" }, 1488 { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\u00ADdrei\\u00ADund\\u00ADvierzig" }, 1489 { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00ADund\\u00ADsiebzig" }, 1490 { NULL, NULL} 1491 }; 1492 1493 doTest(formatter, testData, TRUE); 1494 1495 #if !UCONFIG_NO_COLLATION 1496 formatter->setLenient(TRUE); 1497 static const char* lpTestData[][2] = { 1498 { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" }, 1499 { NULL, NULL} 1500 }; 1501 doLenientParseTest(formatter, lpTestData); 1502 #endif 1503 } 1504 delete formatter; 1505 } 1506 1507 void 1508 IntlTestRBNF::TestThaiSpellout() 1509 { 1510 UErrorCode status = U_ZERO_ERROR; 1511 RuleBasedNumberFormat* formatter 1512 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status); 1513 1514 if (U_FAILURE(status)) { 1515 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1516 } else { 1517 static const char* const testData[][2] = { 1518 { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" }, 1519 { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, 1520 { "10", "\\u0e2a\\u0e34\\u0e1a" }, 1521 { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, 1522 { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, 1523 { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, 1524 { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38\\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" }, 1525 { NULL, NULL} 1526 }; 1527 1528 doTest(formatter, testData, TRUE); 1529 } 1530 delete formatter; 1531 } 1532 1533 void 1534 IntlTestRBNF::TestSwedishSpellout() 1535 { 1536 UErrorCode status = U_ZERO_ERROR; 1537 RuleBasedNumberFormat* formatter 1538 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status); 1539 1540 if (U_FAILURE(status)) { 1541 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1542 } else { 1543 static const char* testDataDefault[][2] = { 1544 { "101", "ett\\u00adhundra\\u00adett" }, 1545 { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" }, 1546 { "1,001", "et\\u00adtusen ett" }, 1547 { "1,100", "et\\u00adtusen ett\\u00adhundra" }, 1548 { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, 1549 { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00adfyra" }, 1550 { "10,001", "tio\\u00adtusen ett" }, 1551 { "11,000", "elva\\u00adtusen" }, 1552 { "12,000", "tolv\\u00adtusen" }, 1553 { "20,000", "tjugo\\u00adtusen" }, 1554 { "21,000", "tjugo\\u00adet\\u00adtusen" }, 1555 { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, 1556 { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" }, 1557 { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" }, 1558 { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhundra" }, 1559 { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" }, 1560 { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adfem\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" }, 1561 { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" }, 1562 { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrtio\\u00adfem komma sex sju \\u00e5tta" }, 1563 { NULL, NULL } 1564 }; 1565 doTest(formatter, testDataDefault, TRUE); 1566 1567 static const char* testDataNeutrum[][2] = { 1568 { "101", "ett\\u00adhundra\\u00adett" }, 1569 { "1,001", "et\\u00adtusen ett" }, 1570 { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, 1571 { "10,001", "tio\\u00adtusen ett" }, 1572 { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, 1573 { NULL, NULL } 1574 }; 1575 1576 formatter->setDefaultRuleSet("%spellout-cardinal-neuter", status); 1577 if (U_SUCCESS(status)) { 1578 logln(" testing spellout-cardinal-neuter rules"); 1579 doTest(formatter, testDataNeutrum, TRUE); 1580 } 1581 else { 1582 errln("Can't test spellout-cardinal-neuter rules"); 1583 } 1584 1585 static const char* testDataYear[][2] = { 1586 { "101", "ett\\u00adhundra\\u00adett" }, 1587 { "900", "nio\\u00adhundra" }, 1588 { "1,001", "et\\u00adtusen ett" }, 1589 { "1,100", "elva\\u00adhundra" }, 1590 { "1,101", "elva\\u00adhundra\\u00adett" }, 1591 { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" }, 1592 { "2,001", "tjugo\\u00adhundra\\u00adett" }, 1593 { "10,001", "tio\\u00adtusen ett" }, 1594 { NULL, NULL } 1595 }; 1596 1597 status = U_ZERO_ERROR; 1598 formatter->setDefaultRuleSet("%spellout-numbering-year", status); 1599 if (U_SUCCESS(status)) { 1600 logln("testing year rules"); 1601 doTest(formatter, testDataYear, TRUE); 1602 } 1603 else { 1604 errln("Can't test year rules"); 1605 } 1606 1607 } 1608 delete formatter; 1609 } 1610 1611 void 1612 IntlTestRBNF::TestSmallValues() 1613 { 1614 UErrorCode status = U_ZERO_ERROR; 1615 RuleBasedNumberFormat* formatter 1616 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status); 1617 1618 if (U_FAILURE(status)) { 1619 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1620 } else { 1621 static const char* const testDataDefault[][2] = { 1622 { "0.001", "zero point zero zero one" }, 1623 { "0.0001", "zero point zero zero zero one" }, 1624 { "0.00001", "zero point zero zero zero zero one" }, 1625 { "0.000001", "zero point zero zero zero zero zero one" }, 1626 { "0.0000001", "zero point zero zero zero zero zero zero one" }, 1627 { "0.00000001", "zero point zero zero zero zero zero zero zero one" }, 1628 { "0.000000001", "zero point zero zero zero zero zero zero zero zero one" }, 1629 { "0.0000000001", "zero point zero zero zero zero zero zero zero zero zero one" }, 1630 { "0.00000000001", "zero point zero zero zero zero zero zero zero zero zero zero one" }, 1631 { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" }, 1632 { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" }, 1633 { "0.00000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, 1634 { "0.000000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, 1635 { "10,000,000.001", "ten million point zero zero one" }, 1636 { "10,000,000.0001", "ten million point zero zero zero one" }, 1637 { "10,000,000.00001", "ten million point zero zero zero zero one" }, 1638 { "10,000,000.000001", "ten million point zero zero zero zero zero one" }, 1639 { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" }, 1640 // { "10,000,000.00000001", "ten million point zero zero zero zero zero zero zero one" }, 1641 // { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" }, 1642 { "10,000,000", "ten million" }, 1643 // { "1,234,567,890.0987654", "one billion, two hundred and thirty-four million, five hundred and sixty-seven thousand, eight hundred and ninety point zero nine eight seven six five four" }, 1644 // { "123,456,789.9876543", "one hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine point nine eight seven six five four three" }, 1645 // { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three two one" }, 1646 { "1,234,567.7654321", "one million two hundred thirty-four thousand five hundred sixty-seven point seven six five four three two one" }, 1647 { "123,456.654321", "one hundred twenty-three thousand four hundred fifty-six point six five four three two one" }, 1648 { "12,345.54321", "twelve thousand three hundred forty-five point five four three two one" }, 1649 { "1,234.4321", "one thousand two hundred thirty-four point four three two one" }, 1650 { "123.321", "one hundred twenty-three point three two one" }, 1651 { "0.0000000011754944", "zero point zero zero zero zero zero zero zero zero one one seven five four nine four four" }, 1652 { "0.000001175494351", "zero point zero zero zero zero zero one one seven five four nine four three five one" }, 1653 { NULL, NULL } 1654 }; 1655 1656 doTest(formatter, testDataDefault, TRUE); 1657 1658 delete formatter; 1659 } 1660 } 1661 1662 void 1663 IntlTestRBNF::TestLocalizations(void) 1664 { 1665 int i; 1666 UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n" 1667 "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need"); 1668 1669 UErrorCode status = U_ZERO_ERROR; 1670 UParseError perror; 1671 RuleBasedNumberFormat formatter(rules, perror, status); 1672 if (U_FAILURE(status)) { 1673 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1674 } else { 1675 { 1676 static const char* const testData[][2] = { 1677 { "0", "nada" }, 1678 { "5", "yah, some" }, 1679 { "423", "plenty" }, 1680 { "12345", "more'n you'll ever need" }, 1681 { NULL, NULL } 1682 }; 1683 doTest(&formatter, testData, FALSE); 1684 } 1685 1686 { 1687 UnicodeString loc("<<%main, %other>,<en, Main, Other>,<fr, leMain, leOther>,<de, 'das Main', 'etwas anderes'>>"); 1688 static const char* const testData[][2] = { 1689 { "0", "no" }, 1690 { "5", "some" }, 1691 { "423", "a lot" }, 1692 { "12345", "tons" }, 1693 { NULL, NULL } 1694 }; 1695 RuleBasedNumberFormat formatter0(rules, loc, perror, status); 1696 if (U_FAILURE(status)) { 1697 errln("failed to build second formatter"); 1698 } else { 1699 doTest(&formatter0, testData, FALSE); 1700 1701 { 1702 // exercise localization info 1703 Locale locale0("en__VALLEY@turkey=gobblegobble"); 1704 Locale locale1("de_DE_FOO"); 1705 Locale locale2("ja_JP"); 1706 UnicodeString name = formatter0.getRuleSetName(0); 1707 if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main" 1708 && formatter0.getRuleSetDisplayName(0, locale1) == "das Main" 1709 && formatter0.getRuleSetDisplayName(0, locale2) == "%main" 1710 && formatter0.getRuleSetDisplayName(name, locale0) == "Main" 1711 && formatter0.getRuleSetDisplayName(name, locale1) == "das Main" 1712 && formatter0.getRuleSetDisplayName(name, locale2) == "%main"){ 1713 logln("getRuleSetDisplayName tested"); 1714 }else { 1715 errln("failed to getRuleSetDisplayName"); 1716 } 1717 } 1718 1719 for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales(); ++i) { 1720 Locale locale = formatter0.getRuleSetDisplayNameLocale(i, status); 1721 if (U_SUCCESS(status)) { 1722 for (int j = 0; j < formatter0.getNumberOfRuleSetNames(); ++j) { 1723 UnicodeString name = formatter0.getRuleSetName(j); 1724 UnicodeString lname = formatter0.getRuleSetDisplayName(j, locale); 1725 UnicodeString msg = locale.getName(); 1726 msg.append(": "); 1727 msg.append(name); 1728 msg.append(" = "); 1729 msg.append(lname); 1730 logln(msg); 1731 } 1732 } 1733 } 1734 } 1735 } 1736 1737 { 1738 static const char* goodLocs[] = { 1739 "", // zero-length ok, same as providing no localization data 1740 "<<>>", // no public rule sets ok 1741 "<<%main>>", // no localizations ok 1742 "<<%main,>,<en, Main,>>", // comma before close angle ok 1743 "<<%main>,<en, ',<>\" '>>", // quotes everything until next quote 1744 "<<%main>,<'en', \"it's ok\">>", // double quotes work too 1745 " \n <\n <\n %main\n >\n , \t <\t en\t , \tfoo \t\t > \n\n > \n ", // Pattern_White_Space ok 1746 }; 1747 int32_t goodLocsLen = sizeof(goodLocs)/sizeof(goodLocs[0]); 1748 1749 static const char* badLocs[] = { 1750 " ", // non-zero length 1751 "<>", // empty array 1752 "<", // unclosed outer array 1753 "<<", // unclosed inner array 1754 "<<,>>", // unexpected comma 1755 "<<''>>", // empty string 1756 " x<<%main>>", // first non space char not open angle bracket 1757 "<%main>", // missing inner array 1758 "<<%main %other>>", // elements missing separating commma (spaces must be quoted) 1759 "<<%main><en, Main>>", // arrays missing separating comma 1760 "<<%main>,<en, main, foo>>", // too many elements in locale data 1761 "<<%main>,<en>>", // too few elements in locale data 1762 "<<<%main>>>", // unexpected open angle 1763 "<<%main<>>>", // unexpected open angle 1764 "<<%main, %other>,<en,,>>", // implicit empty strings 1765 "<<%main>,<en,''>>", // empty string 1766 "<<%main>, < en, '>>", // unterminated quote 1767 "<<%main>, < en, \"<>>", // unterminated quote 1768 "<<%main\">>", // quote in string 1769 "<<%main'>>", // quote in string 1770 "<<%main<>>", // open angle in string 1771 "<<%main>> x", // extra non-space text at end 1772 1773 }; 1774 int32_t badLocsLen = sizeof(badLocs)/sizeof(badLocs[0]); 1775 1776 for (i = 0; i < goodLocsLen; ++i) { 1777 logln("[%d] '%s'", i, goodLocs[i]); 1778 UErrorCode status = U_ZERO_ERROR; 1779 UnicodeString loc(goodLocs[i]); 1780 RuleBasedNumberFormat fmt(rules, loc, perror, status); 1781 if (U_FAILURE(status)) { 1782 errln("Failed parse of good localization string: '%s'", goodLocs[i]); 1783 } 1784 } 1785 1786 for (i = 0; i < badLocsLen; ++i) { 1787 logln("[%d] '%s'", i, badLocs[i]); 1788 UErrorCode status = U_ZERO_ERROR; 1789 UnicodeString loc(badLocs[i]); 1790 RuleBasedNumberFormat fmt(rules, loc, perror, status); 1791 if (U_SUCCESS(status)) { 1792 errln("Successful parse of bad localization string: '%s'", badLocs[i]); 1793 } 1794 } 1795 } 1796 } 1797 } 1798 1799 void 1800 IntlTestRBNF::TestAllLocales() 1801 { 1802 const char* names[] = { 1803 " (spellout) ", 1804 " (ordinal) ", 1805 " (duration) " 1806 }; 1807 double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111}; 1808 1809 // RBNF parse is extremely slow when lenient option is enabled. 1810 // For non-exhaustive mode, we only test a few locales. 1811 const char* parseLocales[] = {"en_US", "nl_NL", "be", NULL}; 1812 1813 1814 int32_t count = 0; 1815 const Locale* locales = Locale::getAvailableLocales(count); 1816 for (int i = 0; i < count; ++i) { 1817 const Locale* loc = &locales[i]; 1818 UBool testParse = TRUE; 1819 if (quick) { 1820 testParse = FALSE; 1821 for (int k = 0; parseLocales[k] != NULL; k++) { 1822 if (strcmp(loc->getLanguage(), parseLocales[k]) == 0) { 1823 testParse = TRUE; 1824 break; 1825 } 1826 } 1827 } 1828 1829 for (int j = 0; j < 3; ++j) { 1830 UErrorCode status = U_ZERO_ERROR; 1831 RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTag)j, *loc, status); 1832 if (U_FAILURE(status)) { 1833 errln(UnicodeString(loc->getName()) + names[j] 1834 + "ERROR could not instantiate -> " + u_errorName(status)); 1835 continue; 1836 } 1837 #if !UCONFIG_NO_COLLATION 1838 for (unsigned int numidx = 0; numidx < sizeof(numbers)/sizeof(double); numidx++) { 1839 double n = numbers[numidx]; 1840 UnicodeString str; 1841 f->format(n, str); 1842 1843 logln(UnicodeString(loc->getName()) + names[j] 1844 + "success: " + n + " -> " + str); 1845 1846 if (testParse) { 1847 // We do not validate the result in this test case, 1848 // because there are cases which do not round trip by design. 1849 Formattable num; 1850 1851 // regular parse 1852 status = U_ZERO_ERROR; 1853 f->setLenient(FALSE); 1854 f->parse(str, num, status); 1855 if (U_FAILURE(status)) { 1856 //TODO: We need to fix parse problems - see #6895 / #6896 1857 if (status == U_INVALID_FORMAT_ERROR) { 1858 logln(UnicodeString(loc->getName()) + names[j] 1859 + "WARNING could not parse '" + str + "' -> " + u_errorName(status)); 1860 } else { 1861 errln(UnicodeString(loc->getName()) + names[j] 1862 + "ERROR could not parse '" + str + "' -> " + u_errorName(status)); 1863 } 1864 } 1865 // lenient parse 1866 status = U_ZERO_ERROR; 1867 f->setLenient(TRUE); 1868 f->parse(str, num, status); 1869 if (U_FAILURE(status)) { 1870 //TODO: We need to fix parse problems - see #6895 / #6896 1871 if (status == U_INVALID_FORMAT_ERROR) { 1872 logln(UnicodeString(loc->getName()) + names[j] 1873 + "WARNING could not parse(lenient) '" + str + "' -> " + u_errorName(status)); 1874 } else { 1875 errln(UnicodeString(loc->getName()) + names[j] 1876 + "ERROR could not parse(lenient) '" + str + "' -> " + u_errorName(status)); 1877 } 1878 } 1879 } 1880 } 1881 #endif 1882 delete f; 1883 } 1884 } 1885 } 1886 1887 void 1888 IntlTestRBNF::TestMultiplierSubstitution(void) { 1889 UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;"); 1890 UErrorCode status = U_ZERO_ERROR; 1891 UParseError parse_error; 1892 RuleBasedNumberFormat *rbnf = 1893 new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status); 1894 if (U_SUCCESS(status)) { 1895 UnicodeString res; 1896 FieldPosition pos; 1897 double n = 1234000.0; 1898 rbnf->format(n, res, pos); 1899 delete rbnf; 1900 1901 UnicodeString expected = UNICODE_STRING_SIMPLE("1.234 million"); 1902 if (expected != res) { 1903 UnicodeString msg = "Expected: "; 1904 msg.append(expected); 1905 msg.append(" but got "); 1906 msg.append(res); 1907 errln(msg); 1908 } 1909 } 1910 } 1911 1912 void 1913 IntlTestRBNF::TestSetDecimalFormatSymbols() { 1914 UErrorCode status = U_ZERO_ERROR; 1915 1916 RuleBasedNumberFormat rbnf(URBNF_ORDINAL, Locale::getEnglish(), status); 1917 if (U_FAILURE(status)) { 1918 dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); 1919 return; 1920 } 1921 1922 DecimalFormatSymbols dfs(Locale::getEnglish(), status); 1923 if (U_FAILURE(status)) { 1924 errln("Unable to create DecimalFormatSymbols - " + UnicodeString(u_errorName(status))); 1925 return; 1926 } 1927 1928 UnicodeString expected[] = { 1929 UnicodeString("1,001st"), 1930 UnicodeString("1&001st") 1931 }; 1932 1933 double number = 1001; 1934 1935 UnicodeString result; 1936 1937 rbnf.format(number, result); 1938 if (result != expected[0]) { 1939 errln("Format Error - Got: " + result + " Expected: " + expected[0]); 1940 } 1941 1942 result.remove(); 1943 1944 /* Set new symbol for testing */ 1945 dfs.setSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol, UnicodeString("&"), TRUE); 1946 rbnf.setDecimalFormatSymbols(dfs); 1947 1948 rbnf.format(number, result); 1949 if (result != expected[1]) { 1950 errln("Format Error - Got: " + result + " Expected: " + expected[1]); 1951 } 1952 } 1953 1954 1955 void 1956 IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testData[][2], UBool testParsing) 1957 { 1958 // man, error reporting would be easier with printf-style syntax for unicode string and formattable 1959 1960 UErrorCode status = U_ZERO_ERROR; 1961 DecimalFormatSymbols dfs("en", status); 1962 // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); 1963 DecimalFormat decFmt("#,###.################", dfs, status); 1964 if (U_FAILURE(status)) { 1965 errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); 1966 } else { 1967 for (int i = 0; testData[i][0]; ++i) { 1968 const char* numString = testData[i][0]; 1969 const char* expectedWords = testData[i][1]; 1970 1971 log("[%i] %s = ", i, numString); 1972 Formattable expectedNumber; 1973 decFmt.parse(numString, expectedNumber, status); 1974 if (U_FAILURE(status)) { 1975 errln("FAIL: decFmt could not parse %s", numString); 1976 break; 1977 } else { 1978 UnicodeString actualString; 1979 FieldPosition pos; 1980 formatter->format(expectedNumber, actualString/* , pos*/, status); 1981 if (U_FAILURE(status)) { 1982 UnicodeString msg = "Fail: formatter could not format "; 1983 decFmt.format(expectedNumber, msg, status); 1984 errln(msg); 1985 break; 1986 } else { 1987 UnicodeString expectedString = UnicodeString(expectedWords, -1, US_INV).unescape(); 1988 if (actualString != expectedString) { 1989 UnicodeString msg = "FAIL: check failed for "; 1990 decFmt.format(expectedNumber, msg, status); 1991 msg.append(", expected "); 1992 msg.append(expectedString); 1993 msg.append(" but got "); 1994 msg.append(actualString); 1995 errln(msg); 1996 break; 1997 } else { 1998 logln(actualString); 1999 if (testParsing) { 2000 Formattable parsedNumber; 2001 formatter->parse(actualString, parsedNumber, status); 2002 if (U_FAILURE(status)) { 2003 UnicodeString msg = "FAIL: formatter could not parse "; 2004 msg.append(actualString); 2005 msg.append(" status code: " ); 2006 msg.append(u_errorName(status)); 2007 errln(msg); 2008 break; 2009 } else { 2010 if (parsedNumber != expectedNumber) { 2011 UnicodeString msg = "FAIL: parse failed for "; 2012 msg.append(actualString); 2013 msg.append(", expected "); 2014 decFmt.format(expectedNumber, msg, status); 2015 msg.append(", but got "); 2016 decFmt.format(parsedNumber, msg, status); 2017 errln(msg); 2018 break; 2019 } 2020 } 2021 } 2022 } 2023 } 2024 } 2025 } 2026 } 2027 } 2028 2029 void 2030 IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2]) 2031 { 2032 UErrorCode status = U_ZERO_ERROR; 2033 NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); 2034 if (U_FAILURE(status)) { 2035 errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); 2036 } else { 2037 for (int i = 0; testData[i][0]; ++i) { 2038 const char* spelledNumber = testData[i][0]; // spelled-out number 2039 const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale 2040 2041 UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape(); 2042 Formattable actualNumber; 2043 formatter->parse(spelledNumberString, actualNumber, status); 2044 if (U_FAILURE(status)) { 2045 UnicodeString msg = "FAIL: formatter could not parse "; 2046 msg.append(spelledNumberString); 2047 errln(msg); 2048 break; 2049 } else { 2050 // I changed the logic of this test somewhat from Java-- instead of comparing the 2051 // strings, I compare the Formattables. Hmmm, but the Formattables don't compare, 2052 // so change it back. 2053 2054 UnicodeString asciiUSNumberString = asciiUSNumber; 2055 Formattable expectedNumber; 2056 decFmt->parse(asciiUSNumberString, expectedNumber, status); 2057 if (U_FAILURE(status)) { 2058 UnicodeString msg = "FAIL: decFmt could not parse "; 2059 msg.append(asciiUSNumberString); 2060 errln(msg); 2061 break; 2062 } else { 2063 UnicodeString actualNumberString; 2064 UnicodeString expectedNumberString; 2065 decFmt->format(actualNumber, actualNumberString, status); 2066 decFmt->format(expectedNumber, expectedNumberString, status); 2067 if (actualNumberString != expectedNumberString) { 2068 UnicodeString msg = "FAIL: parsing"; 2069 msg.append(asciiUSNumberString); 2070 msg.append("\n"); 2071 msg.append(" lenient parse failed for "); 2072 msg.append(spelledNumberString); 2073 msg.append(", expected "); 2074 msg.append(expectedNumberString); 2075 msg.append(", but got "); 2076 msg.append(actualNumberString); 2077 errln(msg); 2078 break; 2079 } 2080 } 2081 } 2082 } 2083 delete decFmt; 2084 } 2085 } 2086 2087 /* U_HAVE_RBNF */ 2088 #else 2089 2090 void 2091 IntlTestRBNF::TestRBNFDisabled() { 2092 errln("*** RBNF currently disabled on this platform ***\n"); 2093 } 2094 2095 /* U_HAVE_RBNF */ 2096 #endif 2097 2098 #endif /* #if !UCONFIG_NO_FORMATTING */ 2099